Analysis of Antibiotics in Groundwater: A Review
-
摘要: 抗生素是一类环境中新型有机污染物,其在地下水系统中的污染状况和环境行为备受关注。本文从污染来源、危害、污染现状、检测技术和迁移转化等方面综述了近年来地下水中抗生素的研究现状。抗生素主要来源于抗生素生产工业、医疗卫生业、畜牧养殖业、水产养殖业等,进入地下水中的微量抗生素不但诱导抗药性细菌的产生,更对原位微生物及人体产生危害。检测技术的进步是抗生素污染研究的重要支撑,目前已有多种抗生素污染的检测技术,其中酶联免疫技术主要用于抗生素污染初步筛查;气相色谱-质谱技术由于需要衍生化等处理过程而较少使用;毛细管电泳技术具有消耗样品量少、分析成本低等优点,但重现性差使其应用受到限制;液相色谱技术是在抗生素检测中应用较普遍的技术,特别是液相色谱-串联质谱技术具有灵敏度高、检出限低、可检测多组分污染物等优点,应用最为广泛。近年来依托于各种检测技术在国内外均有地下水中抗生素检出的报道,其检出浓度范围1~104 ng/L不等,检出种类有磺胺类、喹诺酮类、四环素类及大环内酯类抗生素。抗生素在地下水系统中的迁移转化行为包括吸附、水解、光解、生物降解等过程,其基质复杂、含量低和产物难以定性等问题给检测提出了新的挑战。优化检测方法、开发新的预处理技术、开展全面的地下水污染调查、进行代谢产物定性分析、探索抗生素治理技术等,将是今后地下水中抗生素污染研究的主要方向。Abstract: Antibiotics as emerging organic pollutants, which do harm to humans and the environment, have aroused widespread attention. The pollution status of antibiotics in groundwater has become a research hotspot. Antibiotics in groundwater mainly derive from the antibiotic production industry, medical and health departments, animal husbandry and aquaculture. The trace-level antibiotics in groundwater increase bacterial resistance, damage human health by reducing immunity, causing abnormal or allergic reaction, carcinogenesis, teratogenesis and mutagenesis. There are various detection techniques for antibiotics in groundwater. For example, enzyme linked immunosorbent assay is usually applied to screen antibiotic contamination. However, Gas Chromatography-Mass Spectrometry is rarely used, due to complicated processes. Capillary Chromatography detection technology has the advantages of low sample consumption and low analysis cost, but the poor reproducibility is its weakness. Liquid Chromatography has been widely used, among which Liquid Chromatography-Tandem Mass Spectrometry is the most commonly used detection technique with high sensitivity, low detection limit and high efficiency. Many studies have reported occurrences of antibiotics in groundwater in many countries. The detected concentrations range from 1 to 104 ng/L, and the detected types are mainly sulfonamides, tetracyclines, quinolones and macrolides antibiotics. Antibiotics in groundwater systems undergo a series of migration and transformation behaviours, such as adsorption, hydrolysis, photolysis and biodegradation. The main research direction for the future, including establishment of perfect detection methods and pretreatment technologies, comprehensive groundwater pollution investigation, analysis of antibiotics metabolites and its toxicity, treatment of antibiotics contamination are also discussed in this paper.
-
Keywords:
- groundwaters /
- antibiotics /
- detection technology /
- migration and transformation
-
随着大气中CO2浓度从1750年的280×10-6逐渐上升到2005年的380×10-6[1],使得的环境问题中碳循环和温室气体(CO2、O3、N2O、CH4)问题更为突出。全球碳循环主要是指碳在岩石圈、水圈、气圈和生物圈之间不同形态之间的相互转换和运移。在全球碳循环的研究中,随着岩溶地区碳“汇”和“源”的研究逐步深入[2-3],发现在岩溶作用下产生溶解性无机碳(Dissolved Inorganic Carbon,以下简称DIC)并存储于水体中,具有碳“汇”效应[4-5]。DIC是整个碳循环的一个重要组成部分。在整个过程中水、大气和基岩相互作用主要方程式可以简化为:
(1)气与水相互作用:
CO2(g)+H2O(aq)→ H2CO3(aq)
(2)水与岩相互作用:
H2CO3(aq)+CaCO3(s)→2HCO3-(aq)+Ca2+(aq)
大气CO2溶于水体后在水体中形成DIC的存在形式分别为:CO2、H2CO3、HCO3-、CO32-等主要形态平衡混合物。由于pH值控制着水体中DIC不同形态所占的比例,在pH值为7~9时,水体中的DIC主要是以HCO3-的形式存在[4]。随着碳稳定同位素分析精度的提高,研究水循环中不同形态碳及测定同位素能够揭示碳“源”、“汇”以及碳通量等问题[6-9]。最初测试水体中DIC的前处理方法主要是BaCl2沉淀法[10],通过将液体样品中DIC转化为固体样品来测试沉淀物(碳酸盐)的碳同位素值,但已经有学者指出BaCl2沉淀法在快速沉淀过程中存在着同位素分馏[11]。Matthews等[12]开发研究了以惰性气体为载气携带测试气体进入质谱仪的高真空室离子源室。随着这种测试技术的发展和完善,美国Thermo Fisher公司研发了水体中DIC的碳同位素分析的前处理装置GasBench。该装置能够直接测定水中DIC的碳同位素,具有准确度高、分析速度较快等特点,已经在国内实验室得到广泛的应用[13-16]。为了准确测定水体DIC中极易逸出的游离CO2,我国研究人员针对其特点提出了准确的测试方法[17],并且对室内测试DIC含量和碳同位素的方法都进行了详细研究[18],但是并没有指出如何解决野外样品前处理过程对水体中所有DIC引起的碳同位素分馏。
水体中DIC是全球碳循环中的重要研究对象,因此能够精确地分析测定水中的DIC碳同位素,对于探究碳在水圈中的运移、循环机制等都具有十分重要的科学意义。本文对现有水体中DIC碳同位素测试的三种前处理方法(BaCl2沉淀法、医用无菌高密度聚乙烯瓶装样、GasBenchⅡ顶空样品瓶野外直接生成CO2气体)进行定量对比分析,研究不同前处理方法对水体中DIC的测试结果的影响和引起的碳同位素分馏大小,以寻求建立一套操作简单、准确测定水体中DIC碳同位素的前处理方法。
1. 实验部分
1.1 水样的采集和水样理化性质测定
为了能够对比前处理方法对DIC的影响,本次研究选择不同浓度的DIC样品进行对比,采集桂林地区盘龙洞洞穴滴水和地下河天窗样品。桂林市地处于低纬度地区,湘桂走廊南端,东经109°36'至111°29',北纬24°15'至26°23',平均海拔150 m。该地区属于亚热带季风气候,四季分明,雨量充沛,夏季的季风降水主要受到夏季风的影响,年均气温19.5℃,年均降水量1868 mm[19]。
盘龙洞处于桂林市南部38 km处的报安村(如图 1所示),所处为典型的亚热带温润地区岩溶峰丛洼地。洞穴围岩为上泥盆统融县组(D3r)灰岩,灰岩质纯,局部有页岩夹层。洞穴内年均气温19.5℃,洞穴滴水的水温为19.3~21.2℃,洞穴空气的相对湿度为90%~98%[20]。在野外使用Merck碱度试剂盒滴定地下河天窗(样品编号P地)和洞穴滴水(样品编号P6)的HCO3-浓度;使用WTW Multi 3420多参数水质分析仪现场测定采集水样的pH值和温度;使用testo 435-2多功能测量仪检测样品,采集周围环境的大气压强值。在实验室测试样品时,使用testo 435-2多功能测量仪现场测量环境温度和大气压强,结果列于表 1。
表 1 野外水样HCO3-、pH、温度和实验室温度、压强测量结果Table 1. The measurement results of HCO3-,pH,temperature in field samples and the temperature and pressure in laboratory样品编号 HCO3-浓度
c/(mmol·L-1)pH值 温度
θ/℃大气压
p/PaP地 4.1 7.28 19.5 995.9 P6 7.1 7.85 17.8 995.9 实验室 - - 18.5 998.2 1.2 水样的前处理
1.2.1 BaCl2沉淀法
用于采集样品的600 mL聚乙烯瓶用稀盐酸浸泡24 h后,用超纯水(Mill-Q advantage A10超纯水机纯化,电阻率18.2 MΩ·cm,下同)洗净烘干,备用。在野外采集样品时先用水样冲洗样品瓶三次,加入200 mL左右过滤后的水样,再加入6 mL的2 mol/L NaOH溶液(用市售纯度 > 96%的分析纯NaOH粉末配制)至pH=12后继续加入过量的BaCl2粉末(市售分析纯,纯度 > 99.5%),最后再加满水样用parafilm封口膜密封。野外采集P地和P6样品(含平行样品)总共4份避光保存带回实验室处理。带回实验室的δ13CDIC野外水样在低温中静置24 h后迅速过滤、烘干,得到不纯的BaCO3样品。
1.2.2 医用无菌高密度聚乙烯瓶装样
市售医用无菌25 mL聚乙烯瓶,用稀盐酸浸泡24 h后,用超纯水洗净烘干,备用。在野外采集样品时先用水样润洗三次,采集的同时加入HgCl2来淬灭水中微生物。装样时尽量避免样品瓶中有气泡,同时用parafilm封口膜密封瓶口。野外采集P地和P6样品(含平行样品)总共4份,避光保存,带回实验室低温保存以备测试。
1.2.3 GasBenchⅡ顶空样品瓶装样
GasBenchⅡ顶空样品瓶和1 mL医用注射器均用稀盐酸浸泡24 h后,用超纯水洗净烘干,备用。顶空样品瓶放入GasBenchⅡ样品盘中利用自动进样器加入脱水100%的磷酸(德国Merck公司)。为了避免排空时间较偏短导致的顶空瓶内残余空气中的CO2和排空过程中外部空气少量回流对测试结果的影响[21],因此在加入脱水100%磷酸后用高纯He气(纯度 > 99.999%)吹扫540 s。在野外样品采集时先用水样润洗注射器三次后,取600 μL样品缓慢注射至顶空样品瓶内,注射样品时避免样品受瓶内气压影响喷至顶空样品瓶盖口导致测样时将水汽带入测试系统。野外采集P地和P6样品(含平行样品)总共4份带回实验室测试。顶空样品瓶带回实验室后在平衡18 h后开始测量。
1.3 水样溶解性无机碳同位素检测
碳同位素测试仪器为GasBenchⅡ-IRMS系统(美国Thermo Fisher公司)。GasBenchⅡ前处理装置包括:GC-PAL自动进样器;PoraPlot Q色谱柱(25 m×0.32 mm);恒温样品盘(控制温度±0.1℃)。IRMS为MAT-253同位素质谱仪(美国Thermo Finnigan公司)。
δ13C分析计算公式为:
水样和粉末沉淀物样品的碳同位素测试结果均为相对于V-PDB标准,水样品和粉末沉淀物的碳同位素分析精度小于0.2‰。为了避免人为因素所产生的误差对实验结果造成影响,每个样品均有平行对比样品。平行对比样品测试数据均有较好的重现性。所有样品均由中国地质科学院岩溶地质研究所测试中心测定。
2. 结果与讨论
2.1 前处理方法测试结果对比
所有水样的DIC的碳同位素测试结果列于表 2。通过BaCl2沉淀法测定不纯BaCO3粉末的碳同位素,P地为-14.30‰,P6为-16.06‰,平行样品之间的测试结果偏差小于0.06‰。医用聚乙烯瓶采集水样测定的DIC的碳同位素P地为-14.54‰,P6为-16.39‰,平行样品之间的测试结果偏差小于0.03‰。顶空样品瓶采集水样的DIC的碳同位素P地为-14.61‰,P6为-16.41‰,平行样品之间的测试结果偏差小于0.06‰。
表 2 不同前处理方法的碳同位素分析结果Table 2. Analytical results of carbon isotope determined with different sample pretreatment methods样品编号 δ13CV-PDB/‰ BaCl2沉淀法 医用聚乙烯瓶采样 顶空样品瓶采样 P地 -14.30 -14.54 -14.67 P地-平行样品 -14.36 -14.52 -14.61 P6 -16.06 -16.39 -16.41 P6-平行样品 -16.05 -16.36 -16.39 本次研究所采集的两种岩溶区域富含DIC的水样的测试结果分布图如图 2所示。图 2数据分布指示了医用聚乙烯瓶和顶空样品瓶采集样品测试的DIC碳同位素值均有良好的重现性,并且两种前处理方法的重现性偏差均小于0.1‰;而BaCl2沉淀法测定的碳同位素值明显偏正于后两种处理方法:地下河样品(P地)碳同位素值偏正0.24‰,平行样品偏正0.26‰;洞穴滴水样品(P6)的碳同位素值偏正0.33‰,平行样品偏正0.29‰,主要由于沉淀法前处理过程中只是将水体中碳同位素值相对偏重的HCO3-和CO32-沉淀,水体中碳同位素值相对偏轻的游离CO2脱气逸出。已有学者指出DIC中游离CO2的碳同位素值明显偏负于水中剩余成分DIC的碳同位素值[17],为本次研究的BaCl2沉淀偏正于其他的前处理方法提供了实验数据支持。
BaCl2沉淀法中加入NaOH溶液使得HCO3-转化为CO32-便于沉淀,这种方法使得水中DIC平衡方程式:CO2+H2O↔H2CO3↔H++HCO3-↔2H++CO32-的动态平衡破坏,CO2、HCO3-的溶解度发生改变,导致相对富集12C的溶解性游离CO2逸出,或大气中相对富集13C的CO2溶解进入水体,引起碳同位素分馏。
2.2 水体中DIC碳同位素最佳前处理方法的确定
通过对比三种前处理方法的碳同位素结果显示,BaCl2沉淀法明显偏正于医用聚乙烯瓶和顶空样品瓶采集水样方法。由此可见,BaCl2沉淀法引起了岩溶水体中相对富集12C的溶解性游离CO2逸出,使得DIC的碳同位素测试结果偏正。由于医用聚乙烯瓶采集的水样带回实验室及时测试,并且野外水样采集环境的温度与实验室的温度仅仅相差1℃,大气压强的差异也仅为2.3 Pa,在短时间存于细微改变的外界环境中并未引起CO2、HCO3-的溶解度发生变化。但是,如果实验室环境温度(例如夏季和冬季采集样的样品,温差超过10℃)和大气压强相对于野外样品采集环境发生较大改变时,肯定会导致医用聚乙烯瓶开盖的瞬间水中CO2、HCO3-的溶解度改变,发生脱气作用,引起碳同位素分馏。由此可见,针对不同季节的样品采集,医用聚乙烯瓶采集水样并不是最好的前处理方法。
上述研究表明,医用聚乙烯瓶和顶空样品瓶采集样品都能满足DIC碳同位素的测试要求。顶空样品瓶在野外将样品在高纯氦气的背景下酸化,使DIC全部组分转化为CO2气体,以免采集、运输、保存过程中由于人为操作等多种外界因素影响各组分的动态平衡导致的同位素分馏;并且,顶空样品瓶为硼硅玻璃制成,能防止游离和酸化生成的CO2气体在采集、运输、保存过程中通过样品瓶壁“渗出”所引起的同位素分馏。可见,用顶空样品瓶采集水样的方法能够避免由于外界环境条件变化引起CO2、HCO3-的溶解度发生改变,避免发生CO2逸出或大气中CO2溶解入水体引起碳同位素分馏,因此最佳的水样前处理方法是利用GasBenchⅡ顶空样品瓶直接产生CO2气体,可为高分辨率监测水体中DIC的碳同位素变化提供精确的前处理方法。
3. 结语
通过对比传统BaCl2沉淀法、医用无菌高密度聚乙烯瓶、GasBenchⅡ顶空样品瓶装样的DIC碳同位素前处理方法的实验数据,综合分析总结出以下结论。
(1) 对于pH值在7~8,HCO3-浓度在4~7 mmol/L的岩溶水体,传统BaCl2沉淀法的测试结果明显偏正于医用无菌高密度聚乙烯瓶装样品、GasBenchⅡ顶空样品瓶直接产气的测试结果。地下河(P地)和洞穴滴水(P6)的碳同位素值分别偏正0.26‰、0.33‰,主要是由于水中相对富集12C,溶解性游离CO2逸出,使得BaCl2沉淀法测试结果相对偏于其他前处理方法。
(2) 应用GasBenchⅡ顶空样品瓶采集样品,能够避免外界环境条件变化导致CO2、HCO3-的溶解度发生变化所引起的碳同位素分馏,确保测试结果的准确性。GasBenchⅡ顶空样品瓶直接产生CO2气体,能够高分辨率监测水中DIC的碳同位素变化,精确地反映其时间演化规律。
-
表 1 抗生素分类
Table 1 Type of antibiotics
抗生素种类 代表性的抗生素 结构特点 抗菌机理 青霉素类
(Penicillins)青霉素G、氨苄青霉素、羟氨苄青霉素(阿莫西林、阿莫仙)、苯唑青霉素等 天然青霉素是从青霉菌培养液中提取获得,半合成青霉素是在中间体6-氨基青霉烷酸(6-APA)侧链上加入不同基团 最早用于临床的抗生素,疗效高,毒性低。主要作用是使易感细菌的细胞壁发育失常,致其死亡 头孢菌素类
(Cephalosporins)头孢氨苄(先锋霉素Ⅳ)、头孢唑啉(先锋霉素Ⅴ)、头孢拉定(先锋霉素Ⅵ)、头孢呋辛(西力欣)、头孢曲松(罗氏芬)、头孢噻肟(凯福隆)、头孢哌酮(先锋必)等 含有头孢烯的半合成抗生素,7-氨基头孢烷酸(7-ACA)的衍生物 该类抗生素可破坏细菌的细胞壁,并在繁殖期杀菌 氨基糖苷类
(Aminoglycosides)链霉素、庆大霉素、霉卡那素、丁胺卡那霉素等 氨基糖与氨基环醇通过氧桥连接而成的苷类抗生素 在有氧情况下,对敏感细菌起杀灭作用,其治疗指数(治疗剂量/中毒剂量)较其他抗生素为低 大环内酯类
(Macrolides)红霉素,阿奇霉素(泰力特、希舒美),克拉霉素,罗它霉素,麦迪霉素,螺旋霉素,交沙霉素等 本类抗生素均含有一个12~16碳的大内酯环,为抑菌剂,仅适用于轻中度感染,但是为目前最安全的抗生素之一 为抑菌剂,仅适用于轻中度感染,但是为目前最安全的抗生素之一 四环素类
(Tetracyclines)四环素、土霉素、金霉素、强力霉素等 其结构均含并四苯基本骨架 广泛用于多种细菌及立克次氏体、衣原体、支原体等所致之感染 氯霉素类
(Chloramphenicols)氯霉素、琥珀氯霉素等 含有对硝基苯基、丙二醇与二氯乙酰胺三个部分 该类抗生素脂溶性高,易进入脑脊液和脑组织,并对很多病原体有效,但可诱发再生障碍性贫血,其应用受到一定限制 林可酰胺类
(Lincosamides)林可霉素、克林霉素等 含有氨基酸和糖苷部分,并通过肽键相连 易与核糖体上的50S核糖体结合,阻碍原核翻译的进行,从而使细菌死亡 磺胺类
(Sulfonamides)磺胺噻唑、磺胺甲基嘧啶、磺胺甲氧哒嗪、磺胺氯哒嗪等 临床常用的磺胺类药物都是以对位氨基苯磺酰胺为基本结构的衍生物,磺酰胺基上的氢可被不同杂环取代,形成不同种类的磺胺药 该类抗生素通过竞争性抑制叶酸代谢循环中的对氨基苯甲酸而抑制细菌性增殖 喹诺酮类
(Quinolones)萘啶酸、环丙沙星、司帕沙星、西他沙星等 目前已有四代喹诺酮类抗生素,结构中均含有羧酸基团,第三代药物分子中均有氟原子,第四代药物在第三代基础上引入8-甲氧基 该类抗生素以细菌的脱氧核糖核酸(DNA)为靶,抑制DNA回旋酶,进一步造成细菌DNA的不可逆损害,达到抗菌效果 表 2 不同国家地下水中检出的抗生素种类及其浓度
Table 2 Occurrence of antibiotics and their concentration in groundwater of different countries
国家 检出成分 类别 检测的最高浓度
ρ/(ng·L-1)采样地 参考
文献美
国磺胺甲基异恶唑 磺胺类 1110 美国大范围 [36] 甲氧苄氨嘧啶 磺胺增效剂 18 加利福尼亚州
饮用水水源地下水[37] 磺胺甲基嘧啶 磺胺类 54 畜牧养殖场
附近地下水[38] 磺胺二甲基嘧啶 磺胺类 616 磺胺二甲恶唑 磺胺类 40 磺胺噻唑 磺胺类 305 红霉素 大环内酯类 2380 林可霉素 大环内酯类 416 莫能菌素 大环内酯类 350 泰妙菌素 大环内酯类 29 中
国四环素 四环素类 5.2 天津市蔬菜种植地
地下水[39] 磺胺甲基异恶唑 磺胺类 9.5 磺胺邻二甲氧嘧啶 磺胺类 78.3 氯霉素 酰胺醇类 28.1 环丙沙星 喹诺酮类 42.5 林可霉素 大环内酯类 8.3 磺胺间二甲氧嘧啶 磺胺类 128 广西省养猪场
地下水[40] 磺胺嘧啶 磺胺类 1.47 磺胺间甲氧嘧啶 磺胺类 19 甲氧苄氨嘧啶 磺胺增效剂 1.16 瑞
典环丙沙星 喹诺酮类 14000 制药厂附件村庄井
地下水[15] 依诺沙星 喹诺酮类 1900 恩诺沙星 喹诺酮类 67 洛美沙星 喹诺酮类 35 诺氟沙星 喹诺酮类 31 氧氟沙星 喹诺酮类 160 甲氧苄氨嘧啶 磺胺增效剂 55 德
国脱水红霉素 大环内酯类 49 巴符洲
地下水[26] 磺胺甲恶唑 磺胺类 410 法
国磺胺甲恶唑 磺胺类 3.0 罗纳-阿尔卑斯
区域地下水[41] 甲氧苄氨嘧啶 磺胺增效剂 1.4 罗红霉素 大环内酯类 1.3 西
班
牙四环素 四环素类 141 西班牙东北部
巴塞罗那[42] 土霉素 四环素类 41.0 多西霉素 四环素类 188 金霉素 四环素类 34.2 脱水红霉素 大环内酯类 1.68 阿奇霉素 大环内酯类 1620 罗红霉素 大环内酯类 3.23 克拉霉素 大环内酯类 5.11 交沙霉素 大环内酯类 3.8 螺旋霉素 大环内酯类 2980 替米考星 大环内酯类 820 磺胺甲恶唑 磺胺类 16.6 磺胺嘧啶 磺胺类 37.1 磺胺二甲基嘧啶 磺胺类 29.1 氧氟沙星 喹诺酮类 367 环丙沙星 喹诺酮类 443 诺氟沙星 喹诺酮类 462 单诺沙星 喹诺酮类 543 依诺沙星 喹诺酮类 323 恩诺沙星 喹诺酮类 264 氟甲喹 喹诺酮类 4.3 甲氧苄氨嘧啶 磺胺增效剂 9.4 -
Daughton C H, Ternes T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? [J]. Environmental Health Perspectives, 1999, 107(6): 907-938. http://cn.bing.com/academic/profile?id=2053322034&encoded=0&v=paper_preview&mkt=zh-cn
Luo Y, Xu L, Rysz M, Wang Y Q, Zhang H, Alvarez P J J.Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J].Environmental Science & Technology, 2011, 45(5): 1827-1833. http://cn.bing.com/academic/profile?id=2001240188&encoded=0&v=paper_preview&mkt=zh-cn
Li W H, Shi Y L, Gao L H, Liu J M, Cai Y Q.Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J].Chemosphere, 2012, 89(11): 1307-1315. doi: 10.1016/j.chemosphere.2012.05.079
Kumar R R, Lee J T, Cho J Y.Fate, occurrence, and toxicity of veterinary antibiotics in environment [J].Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(6): 701-709. doi: 10.1007/s13765-012-2220-4
Silva B F D, Jelic A, Rebeca L S, Mozeto A A, Petrovic M, Barceló D.Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro River Basin, Spain [J].Chemosphere, 2011, 85(8): 1331-1339. doi: 10.1016/j.chemosphere.2011.07.051
王路光,朱晓磊,王靖飞,田在锋.环境水体中的残留抗生素及其潜在风险[J].工业水处理, 2009, 29(5): 11-14. http://mall.cnki.net/magazine/article/gysc200905006.htm
Hoa P T P, Managaki S, Nakada N, Takada H, Shimizu A, Anh D H, Viet P H, Suzuki S.Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam [J].Science of the Total Environment, 2011, 409(15): 2894-2901. doi: 10.1016/j.scitotenv.2011.04.030
Oluyege J O, Dada A C, Odeyemi A T.Incidence of multiple antibiotic resistant gram-negative bacteria isolated from surface and underground water sources in south western region of Nigeria [J].Water Science and Technology, 2009, 59(10): 1929-1934. doi: 10.2166/wst.2009.219
Sanderson H, Brain R A, Johnson D J, Wilson C J, Solomon K R.Toxicity classification and evaluation of four pharmaceuticals classes: Antibiotics, antineoplastics, cardiovascular, and sex hormones [J].Toxicology, 2004, 203: 27-40. doi: 10.3969/j.issn.1002-3127.2004.01.011 Lascowski K M S, Guth B E C, Martins F H, Rocha S P D, Irino K, Pelayo J S.Shiga toxin-producing Escherichia coli in drinking water supplies of north Parana State, Brazil [J].Journal of Applied Microbiology, 2013, 114(4): 1230-1239. doi: 10.1111/jam.2013.114.issue-4
Ivone V M, Olga C N, Célia M M.Diversity and antibiotic resistance in Pseudomonas spp. from drinking water [J].Science of the Total Environment, 2012, 426: 366-374. doi: 10.1016/j.scitotenv.2012.03.046
Emmanuelle V, Cécile C O, Marie F G L.Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters [J].Environmental Chemistry Letters, 2011, 9(1): 103-114. doi: 10.1007/s10311-009-0253-7
Jones O A, Lester J N, Voulvoulis N.Pharmaceuticals: A threat to drinking water? [J].Trends in Biotechnology, 2005, 23(4): 163-167. doi: 10.1016/j.tibtech.2005.02.001
Sim W J, Lee J W, Lee E S, Shin S K, Hwang S R, Oh J E.Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures [J].Chemosphere, 2011, 82(2): 179-186. doi: 10.1016/j.chemosphere.2010.10.026
Fick J, Soederstrom H, Lindberg R H, Phan C, Tysklind M, Larsson D G J.Pharmaceuticals and personal care products in the environment: Contamination of surface, ground, and drinking water from pharmaceutical production [J].Environmental Toxicology and Chemistry, 2009, 28(12): 2522-2527. doi: 10.1897/09-073.1
Verlicchi P, Aukidy M A, Galletti A, Petrovic M, Barceló D.Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment [J].Science of the Total Environment, 2012, 430: 109-118. doi: 10.1016/j.scitotenv.2012.04.055
Brown K D, Kulis J, Thomson B, Chapman T H, Mawhinney D B.Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico [J].Science of the Total Environment, 2006, 366(2-3): 772-783. doi: 10.1016/j.scitotenv.2005.10.007
Sarmahet A K, Meyer M T, Boxall A B A.A global perspective on the use, sales exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J].Chemosphere, 2006,65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
Zhao L, Dong Y H, Wang H.Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China [J].Science of the Total Environment, 2010, 408(5): 1069-1075. doi: 10.1016/j.scitotenv.2009.11.014
Li Y X, Zhang X L, Li W, Lu X F, Liu B, Wang J.The residues and environmental risks of multiple veterinary antibiotics in animal faeces [J].Environmental Monitoring and Assessment, 2013, 185(3): 2211-2220. doi: 10.1007/s10661-012-2702-1
Zheng Q, Zhang R J, Wang Y H, Pan X H, Tang J H, Zhang G.Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities [J].Marine Environmental Research, 2012, 78: 26-33. doi: 10.1016/j.marenvres.2012.03.007
Lalumera G M, Calamari D, Galli P, Castiglioni S, Crosa G, Fanelli R.Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy [J].Chemosphere,2004,54(5): 661-668. doi: 10.1016/j.chemosphere.2003.08.001
Gao P P, Mao D Q, Luo Y, Wang L M, Xu B J, Xu L.Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment [J].Water Research, 2012, 46(7): 2355-2364. doi: 10.1016/j.watres.2012.02.004
Kumar K, Thompson A, Singh A K, Chander Y, Gupta S C.Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples [J].Journal of Environmental Quality, 2004, 33(1): 250-256. doi: 10.2134/jeq2004.2500
Shelver W L, Shappell N W, Franek M, Rubio F R.ELISA for sulfonamides and its application for screening in water contamination [J].Journal of Agricultural and Food Chemistry, 2008, 56(15): 6609-6615. doi: 10.1021/jf800657u
Sacher F, Lange F T, Brauch H J, Blankenhorn I.Pharmaceuticals in groundwaters analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany [J].Journal of Chromatography A, 2001, 938(1-2): 199-210. doi: 10.1016/S0021-9673(01)01266-3
Wen Y Y, Li J H, Zhang W W, Chen L X.Dispersive liquid-liquid microextraction coupled with capillary electrophoresis for simultaneous determination of sulfonamides with the aid of experimental design [J].Electrophoresis, 2011, 32(16): 2131-2138. doi: 10.1002/elps.v32.16
García-Campaa A M, Gámiz-Gracia L, Lara F J, del Olmo Iruela M, Cruces-Blanco C.Applications of capillary electrophoresis to the determination of antibiotics in food and environmental samples [J].Analytical and Bioanalytical Chemistry, 2009, 395(4): 967-986. doi: 10.1007/s00216-009-2867-9
Suárez B, Santos B, Simonet B M, Cárdenas S, Valcárcel M.Solid-phase extraction-capillary electrophoresis-mass spectrometry for the determination of tetracyclines residues in surface water by using carbon nanotubes as sorbent material [J].Journal of Chromatography A, 2007, 1175(1): 127-132. doi: 10.1016/j.chroma.2007.10.033
Blackwell P A, Lützhft H C H, Ma H P, Halling-Srensen B, Boxall A B A, Kay P.Fast and robust simultaneous determination of three veterinary antibiotics in groundwater and surface water using a tandem solid-phase extraction with high-performance liquid chromato-graphy-UV detection [J].Journal of Chromatography A, 2004, 1045(1-2): 111-117. doi: 10.1016/j.chroma.2004.05.063
Xu X, Su R, Zhao X, Liu Z, Zhang Y P, Li D, Li X Y, Zhang H Q, Wang Z M.Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma [J].Analytica Chimica Acta, 2011, 707(1): 92-99. http://cn.bing.com/academic/profile?id=2028891153&encoded=0&v=paper_preview&mkt=zh-cn
Herrera-Herrera A V, Hernández-Borges J, Borges-Miquel T M, Rodríguez-Delgado M A.Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples [J].Journal of Pharmaceutical and Biomedical Analysis, 2013, 75: 130-137. doi: 10.1016/j.jpba.2012.11.026
López-Serna R, Petrovic M, Barceló D.Development of a fast instrumental method for the analysis of pharmaceuticals in environmental and wastewaters based on ultra high performance liquid chromatography (UHPLC)-tandem mass spectrometry(MS/MS) [J].Chemosphere, 2011, 85(8): 1390-1399. doi: 10.1016/j.chemosphere.2011.07.071
Le Fur C, Legeret B, de Sainte Claire P, Wong-Wah-Chung P, Sarakha M.Liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry for the analysis of sulfaquinoxaline byproducts formed in water upon solar light irradiation [J].Rapid Communications in Mass Spectrometry, 2013, 27(6): 722-730. doi: 10.1002/rcm.v27.6
Gros M, Petrovic M, Barceló D.Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching [J].Analytical Chemistry, 2009, 81: 898-912. doi: 10.1021/ac801358e
Barnes K K, Kolpin D W, Furlong E T, Zaugg S D, Meyer M T, Barber L B.A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States— Ⅰ) Groundwater [J].Science of the Total Environment, 2008, 402(2-3): 192-200. doi: 10.1016/j.scitotenv.2008.04.028
Fram M S, Belitz K.Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California [J].Science of the Total Environment, 2011,409(18): 3409-3417. doi: 10.1016/j.scitotenv.2011.05.053
Bartelt-Hunt S, Snow D D, Damon-Powell T, Miesbach D.Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities [J].Journal of Contaminant Hydrology, 2011, 123(3-4): 94-103. doi: 10.1016/j.jconhyd.2010.12.010
Hu X G, Zhou Q X, Luo Y.Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J].Environmental Pollution, 2010, 158(9): 2992-2998. doi: 10.1016/j.envpol.2010.05.023
Zhou L J, Ying G G, Liu S, Zhao J L, Chen F, Zhang R Q, Peng F Q, Zhang Q Q.Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry [J].Journal of Chromatography A, 2012, 1244: 123-138. doi: 10.1016/j.chroma.2012.04.076
Vulliet E, Cren-Olivé C.Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption [J].Environmental Pollution,2011,159(10): 2929-2934. doi: 10.1016/j.envpol.2011.04.033
López-Serna R, Jurado A, Vázquez-Sué A, Carrera J, Petrovic M, Barceló D.Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain [J].Environmental Pollution, 2013, 174: 305-315. doi: 10.1016/j.envpol.2012.11.022
Navrátilová P, Borkovc I O, Dracková M, Jantová B, Vorlová L.Occurrence of tetracycline, chlortetracyclin, and oxytetracycline residues in raw cow’s milk [J].Czech Journal of Food Sciences, 2009, 27(5): 379-385. http://cn.bing.com/academic/profile?id=1919142982&encoded=0&v=paper_preview&mkt=zh-cn
Hurtado D M J, Maggi L, Bonetto L, Carmena B R, Lezana A, Mocholí F A, Carmona M.Validation of antibiotics in catfish by on-line solid phase extraction coupled to liquid chromatography tandem mass spectrometry [J].Food Chemistry, 2012, 134(2): 1149-1155. doi: 10.1016/j.foodchem.2012.02.108
Vragovic N, Baulic D, Njari B.Risk assessment of streptomycin and tetracycline residues in meat and milk on Croatian market [J].Food and Chemical Toxicology, 2011, 49(2): 352-355. doi: 10.1016/j.fct.2010.11.006
Kim Y K, Lim S J, Han M H, Cho J Y.Sorption characteristics of oxytetracycline, amoxicillin, and sulfathiazole in two different soil types [J].Geoderma, 2012, 185-186: 97-101. http://cn.bing.com/academic/profile?id=1975475997&encoded=0&v=paper_preview&mkt=zh-cn
Huang C H, Renew J E, Smeby K L, Pinkston K, Sedlak D L.Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis [J].Journal of Contemporary Water Research and Education, 2001, 120(1): 30-40. http://cn.bing.com/academic/profile?id=579019369&encoded=0&v=paper_preview&mkt=zh-cn
Xuan R C, Arisi L, Wang Q Q, Yates S R, Biswas K C.Hydrolysis and photolysis of oxytetracycline in aqueous solution [J]. Journal of Environmental Science and Health: Part B, 2010, 45(1): 73-81. http://cn.bing.com/academic/profile?id=2039723964&encoded=0&v=paper_preview&mkt=zh-cn
Kümmerer K.Antibiotics in the aquatic environment—A review Part Ⅰ [J].Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
Biak-Bielinska A, Stolte S, Matzke M, Fabianska A, Maszkowska J, Koodziejska M, Liberek B, Stepnowski P, Kumirsk J.Hydrolysis of sulphonamides in aqueous solutions [J].Journal of Hazardous Materials, 2012, 221-222 : 264-274. http://cn.bing.com/academic/profile?id=2080371442&encoded=0&v=paper_preview&mkt=zh-cn
Werner J J, Arnold W A, McNeill K.Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH [J].Environmental Science & Technology, 2006, 40(23): 7236-7241. http://cn.bing.com/academic/profile?id=2009140198&encoded=0&v=paper_preview&mkt=zh-cn
Pouliquen H, Delépée R, Larhantec-Verdier M, Morvan M L, Bris H L.Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water, freshwater and seawater under abiotic conditions [J].Aquaculture, 2007, 262(1): 23-28. doi: 10.1016/j.aquaculture.2006.10.014
Wammer K H, Korte A R, Lundeen R A,Sundberg J E, McNeill K, Arnold W A.Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin [J].Water Research, 2013, 47(1): 439-448. doi: 10.1016/j.watres.2012.10.025
Lai H T, Wang T S, Chou C C.Implication of light sources and microbial activities on degradation of sulfonamides in water and sediment from a marine shrimp pond [J].Bioresource Technology,2011,102(8): 5017-5023. doi: 10.1016/j.biortech.2011.01.070
Werner J J, McNeill K, Arnold W A.Photolysis of chlortetracycline on a clay surface [J].Journal of Agricultural and Food Chemistry, 2009, 57(15): 6932-6937. doi: 10.1021/jf900797a
Di Paola A, Addamo M, Augugliaro V, García-López E, Loddo V, Marcì G, Palmisano L.Photodegradation of lincomycin in aqueous solution [J].International Journal of Photoenergy, 2006, 1: 1-6. http://cn.bing.com/academic/profile?id=2016859560&encoded=0&v=paper_preview&mkt=zh-cn
Tong L, Eichhorn P, Pérez S, Wang Y X, Barceló D.Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts [J].Chemosphere, 2011, 83(3): 340-348. doi: 10.1016/j.chemosphere.2010.12.025
Tong L, Pérez S, Gonalves C, Alpendurada F, Wang Y X, Barceló D.Kinetic and mechanistic studies of the photolysis of metronidazole in simulated aqueous environmental matrices using a mass spectrometric approach [J].Analytical and Bioanalytical Chemistry, 2011, 399(1): 421-428. doi: 10.1007/s00216-010-4320-5
Wammer K H, Slattery M T, Stemig A M, Ditty J L.Tetracycline photolysis in natural waters: Loss of antibacterial activity [J].Chemosphere, 2011, 85(9): 1505-1510. doi: 10.1016/j.chemosphere.2011.08.051
Maki T, Hasegawa H, Kitami H, Fumoto K, Munekage Y, Ueda K.Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences [J].Fisheries Science, 2006, 72(4): 811-820. doi: 10.1111/fis.2006.72.issue-4
Girardi C, Greve J, Lamshft M, Fetzer I, Miltner A, Schffer A, Kstner M.Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities [J].Journal of Hazardous Materials, 2011, 198: 22-30. doi: 10.1016/j.jhazmat.2011.10.004
-
期刊类型引用(6)
1. 周成英,刘美子,张华,李宝城,满旭光,刘英,臧慕文. 铜精矿化学成分分析实验室间比对结果评价和离群值原因分析. 岩矿测试. 2021(04): 619-626 . 本站查看
2. 贺基文,韦光,胡欣欣. 钨矿石和锡矿石化学成分分析能力验证结果评价和离群值原因. 世界有色金属. 2017(07): 195-196 . 百度学术
3. 杨纳庆花. 矿石中金属元素化学分析方法分析. 世界有色金属. 2017(22): 217-218 . 百度学术
4. 廖沈阳. 钨矿石和锡矿石化学成分分析能力验证结果评价. 低碳世界. 2017(06): 64 . 百度学术
5. 王勇. 岩矿分析质量要求和检查办法探讨. 世界有色金属. 2016(19): 162-163 . 百度学术
6. 童晓民,王楠. 熔片X射线荧光光谱法测定锡矿石中八种重金属元素. 分析试验室. 2016(01): 97-101 . 百度学术
其他类型引用(1)