Evaluation of the Interlaboratory Comparison Results of the Chemical Composition of Copper Concentrates and Analysis of the Causes of Outliers
-
摘要: 铜精矿成分分析是判定其品质的重要手段,尤其是主元素铜的分析。目前,测定铜精矿中铜含量的主要分析方法有碘量法、电感耦合等离子体发射光谱法(ICP-OES)、火焰原子吸收光谱法(FAAS)、X射线荧光光谱法(XRF)、电解重量法等。为确保检测标准量值统一、准确、可靠,本文组织开展了铜精矿中铜镁铅锌的测定实验室间比对活动。通过对参加实验室的检测结果进行统计分析,评价参加实验室对铜精矿中铜镁铅锌测定的技术水平和能力。结果表明:大部分实验室的检测结果为满意,铜精矿中铜的满意率为92.9%,满意率较高;铜镁铅锌的满意率平均值为89.0%。少数实验室出现离群值主要在于样品前处理、检测人员对检测方法未能充分理解并熟练掌握、仪器状态等其他相关因素。碱浸法因样品分解不完全,不能作为铜精矿前处理方法;碱熔法因工序繁琐,易产生基体干扰,不适合作为铜精矿前处理方法。本文建议优先采用酸溶-滴定法测定铜精矿中的铜,而采用酸溶ICP-OES法测定铜精矿中的铜镁铅锌,该方法高效快捷,但其稳定性需要进一步的实验考察。要点
(1) 铜精矿中铜镁铅锌的平均满意率为89.0%,大部分实验室获得满意结果。
(2) 碱熔法处理铜精矿工序繁琐,易产生基体干扰,建议优先采用酸溶-滴定法测定铜精矿中的铜。
(3) 采用酸溶ICP-OES法同时测定铜精矿中的铜镁铅锌,需开展进一步研究。
HIGHLIGHTS(1) The average satisfactory rate of Cu, Mg, Pb, and Zn in the copper concentrate was 89.0%, and most laboratories obtained satisfactory results.
(2) Alkaline fusion method is cumbersome to process copper concentrates and is prone to matrix interference. It is recommended to use the acid dissolution titration method for the determination of copper in copper concentrates.
(3) Simultaneous determination of copper, magnesium, lead, and zinc in copper concentrates using acid-soluble ICP-OES requires further research.
Abstract:BACKGROUNDComposition analysis of copper concentrate is an important method to determine its quality, especially the analysis of the main element copper. Currently, the main analytical methods for the determination of copper content in copper concentrate include iodometry, inductively coupled plasma-optical emission spectrometry (ICP-OES), flame atomic absorption spectrometry (FAAS), X-ray fluorescence spectrometry (XRF), and electrolytic gravimetric methods.OBJECTIVESTo ensure the uniformity, accuracy, and reliability of the standard values, interlaboratory comparison activities for the determination of copper, magnesium, lead, and zinc in copper concentrate were organized.METHODSThrough the statistical analysis of the test results of the participating laboratories, the technical level and ability of the participating laboratories in the determination of copper, magnesium, lead, and zinc in copper concentrates were evaluated.RESULTSThe results showed that most laboratory results were satisfactory, the satisfaction rate of copper in the copper concentrate was 92.9%, and the average satisfaction rate of copper, magnesium, lead, and zinc was 89.0%. The outliers in a few laboratories were mainly attributed to sample pretreatment, lack of understanding and mastering of the analytical methods by the testing personnel, and other related factors, such as the instrument status.CONCLUSIONSBecause of incomplete sample decomposition, the alkali leaching method could not be used for pretreatment of copper concentrate. Additionally, the alkali fusion method is not recommended for copper concentrate pretreatment because of its complicated process and matrix interference. Acid dissolution titration is preferred as a pretreatment method for the determination of copper in the copper concentrate. The acid-dissolution ICP-OES method for simultaneous determination of Cu, Mg, Pb, and Zn in the copper concentrate is efficient and rapid with satisfactory results. However, further experiments are required to investigate their stabilities.-
Keywords:
- copper concentrate /
- interlaboratory comparison /
- proficiency testing /
- outlier /
- acid dissolution /
- iodometry
-
-
表 1 铜精矿中各元素结果的一致性检验
Table 1 Consistency check of analytical results for copper concentrate
元素 采用方法 测定平均值
(%)t值 t临界值 结论 Cu GB/T 3884.1—2012
ICP-OES法19.11
19.041.11 2.20 一致 Mg GB/T 3884.18—2014
GB/T 3884.4—20121.70
1.811.51 2.20 一致 Pb GB/T 3884.18—2014
GB/T 3884.6—20120.0191
0.01910 2.23 一致 Zn GB/T 3884.18—2014
GB/T 3884.6—20120.40
0.390.71 2.23 一致 表 2 铜精矿中各元素结果的统计量及相关信息
Table 2 Statistics and related information of analytical results in copper concentrate
元素 有效结果数(个) 平均值
(%)标准偏差
(%)变异系数
(%)最小值
(%)最大值
(%)极差
(%)Cu 13 19.10 0.083 0.43 18.94 19.23 0.29 Mg 13 1.73 0.12 6.94 1.48 1.87 0.39 Pb 12 0.0191 0.0014 7.33 0.0158 0.0206 0.0048 Zn 12 0.400 0.013 3.25 0.382 0.424 0.042 表 3 各实验室评价结果统计
Table 3 Statistics of analytical results for individual laboratory
Z值评价结果 实验室完成情况 实验室代码 实验室数量 所占比例
(%)全部|Z|≤2的实验室 全项 31、35、37、38、41、48、50、51、53、56 10 71.43 缺2项 08 1 7.14 无离群值但含有2<|Z|<3的实验室 全项 54 1 7.14 全部|Z|中有一项离群值的实验室 全项 36 1 7.14 全部|Z|中有三项离群值的实验室 全项 65 1 7.14 表 4 铜精矿各元素检测能力统计结果
Table 4 Statistics of analytical results for individual element of copper concentrate
Z比分数 Cu Mg Pb Zn 平均比例
(%)结果数(个) 比例(%) 结果数(个) 比例(%) 结果数(个) 比例(%) 结果数(个) 比例(%) |Z|≤2 13 92.9 12 92.3 11 78.6 12 92.3 89.0 2<|Z|<3 0 0 1 7.7 1 7.1 0 0 3.7 |Z|≥3 1 7.1 0 0 2 14.3 1 7.7 7.3 表 5 参加实验室采用的检测方法及标准
Table 5 Analysis methods and standards adopted by participating laboratories
元素 技术代码 采用方法 实验室数量 标准方法编号 Cu ATC-001 ICP-OES法 3 非标 ATC-021 滴定法 11 GB/T 3884.1—2012 Mg ATC-001 ICP-OES法 10 GB/T 3884.18—2014、非标 ATC-006 FAAS法 3 GB/T 3884.4—2012 Pb ATC-001 ICP-OES法 10 GB/T 3884.18—2014、GB/T 14353.18—2014、SN/T 2047—2008、非标 ATC-006 FAAS法 4 GB/T 3884.6—2012 Zn ATC-001 ICP-OES法 9 GB/T 3884.18—2014、非标 ATC-006 FAAS法 4 GB/T 3884.6—2012 -
吴学伟, 邢希霞. 碘量法测定铜精矿中铜含量不确定度的评定[J]. 山西冶金, 2019, 42(5): 44. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201905020.htm Wu X W, Xing X X. Evaluation of uncertainty in the determination of copper content in copper concentrate by iodometry[J]. Shanxi Metallurgy, 2019, 42(5): 44. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201905020.htm
廖波, 马丽. ICP-OES在火试金重量法分析铜精矿中金、银的研究和应用[J]. 化工管理, 2020, 35(6): 33. doi: 10.3969/j.issn.1008-4800.2020.06.022 Liao B, Ma L. Study and application of ICP-OES in the analysis of gold and silver in copper concentrate by fire assay gravimetric method[J]. Chemical Enterprise Management, 2020, 35(6): 33. doi: 10.3969/j.issn.1008-4800.2020.06.022
董天秋. 利用X射线荧光光谱法测定铜精矿中砷、铅和镉[J]. 化学工程与装备, 2019, 48(7): 286. https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201907129.htm Dong T Q. Determination of arsenic, lead and cadmium in copper concentrate by X-ray fluorescence spectrometry[J]. Chemical Engineering & Equipment, 2019, 48(7): 286. https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201907129.htm
董诚忠, 孙清. 碘量法测定铜精矿中的铜[J]. 黄金, 2020, 41(6): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202006019.htm Dong C Z, Sun Q. Determination of copper in copper concentrates by iodometry[J]. Gold, 2020, 41(6): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202006019.htm
杨荣清. 浅析短碘量法测定铜精矿中铜含量的影响因素[J]. 科学技术创新, 2018, 22(29): 9-10. doi: 10.3969/j.issn.1673-1328.2018.29.005 Yang R Q. Analysis of the factors affecting the determination of copper content in copper concentrate by short iodometry[J]. Scientific and Technological Innovation, 2018, 22(29): 9-10. doi: 10.3969/j.issn.1673-1328.2018.29.005
刘奇, 严静, 王丽丽, 等. 重量法与能量色散X射线荧光光谱法测定铜精矿中硫含量的比较[J]. 世界有色金属, 2020, 35(4): 162. doi: 10.3969/j.issn.1002-5065.2020.04.096 Liu Q, Yan J, Wang L L, et al. Comparison of gravimetric and energy dispersive X-ray fluorescence spectrometry for the determination of sulfur in copper concentrates[J]. World Nonferrous Metals, 2020, 35(4): 162. doi: 10.3969/j.issn.1002-5065.2020.04.096
邹游. 铜精矿中铜品位化验结果产生偏差的原因分析[J]. 世界有色金属, 2018, 33(19): 241. doi: 10.3969/j.issn.1002-5065.2018.19.142 Zou Y. Cause analysis of deviation of copper grade test results in copper concentrates[J]. World Nonferrous Metals, 2018, 33(19): 241. doi: 10.3969/j.issn.1002-5065.2018.19.142
黎香荣, 罗明贵, 黄园, 等. 光度滴定法测定铜精矿中铜[J]. 冶金分析, 2020, 40(5): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202005008.htm Li X R, Luo M G, Huang Y, et al. Determination of copper in copper concentrate by photometric titration[J]. Metallurgical Analysis, 2020, 40(5): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202005008.htm
刘久苗, 许敏. ICP光谱法测定铜精矿中砷含量的不确定度评定[J]. 工业技术创新, 2018, 5(5): 68. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201805015.htm Liu J M, Xu M. Evaluation of uncertainty in determination of arsenic in copper concentrate using ICP spectrophotometry[J]. Industrial Technology Innovation, 2018, 5(5): 68. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201805015.htm
张涛. 矿石中金、银含量能力验证结果分析与方法评价[J]. 科技创新与应用, 2017, 7(17): 142-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201717123.htm Zhang T. Analysis and method evaluation from the results of proficiency testing of gold and silver content in ores[J]. Technology Innovation and Application, 2017, 7(17): 142-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201717123.htm
李晓璐. 实验室间比对情况分析及效果评价[J]. 河北水利, 2019, 31(3): 46-47. doi: 10.3969/j.issn.1004-7700.2019.03.033 Li X L. Analysis and effect evaluation of interlaboratory comparison[J]. Hebei Water Resources, 2019, 31(3): 46-47. doi: 10.3969/j.issn.1004-7700.2019.03.033
Carlos G, Elena C L, Joerg S. Determination of tropane alkaloids in cereals, tea and herbal infusions: Exploiting proficiency testing data as a basis to derive interlaboratory performance characteristics of an improved LC-MS/MS method[J]. Food Chemistry, 2020, 331: 127260. doi: 10.1016/j.foodchem.2020.127260
刘梅, 尹相余. 浅谈能力验证的选择及结果应用[J]. 中国检验检测, 2020, 28(4): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJL202004019.htm Liu M, Yin X Y. Discussion on the selection and result application of proficiency testing[J]. China Inspection Body & Laboratory, 2020, 28(4): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJL202004019.htm
庞喜斌, 李寅彦, 唐凌天. 从能力验证结果看我国土壤重金属元素检测情况[J]. 冶金分析, 2019, 39(12): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912006.htm Pang X B, Li Y Y, Tang L T. Viewing the detection of heavy metals in soil in China from the results of proficiency testing[J]. Metallurgical Analysis, 2019, 39(12): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912006.htm
姜瀛洲, 王忠, 陈迪. 稳健统计方法崩溃点对能力验证结果评价的影响[J]. 质量与认证, 2018, 12(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-RZJU201801021.htm Jiang Y Z, Wang Z, Chen D. Impact of collapse point of robust statistical methods on evaluation of proficiency testing results[J]. China Quality Certification, 2018, 12(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-RZJU201801021.htm
刘攀. 主成分分析方法在煤灰特性分析能力验证结果综合评价中的应用[J]. 分析仪器, 2019, 50(2): 77-81. doi: 10.3969/j.issn.1001-232x.2019.02.015 Liu P. Comprehensive evaluation of proficiency testing results for characteristics analysis of coal ash based on principle component analysis method[J]. Analytical Instrumentation, 2019, 50(2): 77-81. doi: 10.3969/j.issn.1001-232x.2019.02.015
Metody K, Nikolaya V, Olga V, et al. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 119: 76-82. doi: 10.1016/j.sab.2016.03.011
毛燕. 四分位法和迭代法对数据分散的能力验证检测数据统计分析结果的比较[J]. 冶金分析, 2016, 36(5): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605015.htm Mao Y. Statistical analysis results comparison of quartile and iteration used in proficiency testing for data dispersion inspection[J]. Metallurgical Analysis, 2016, 36(5): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605015.htm
高文工, 白伟东, 郭娟, 等. 中低合金钢化学成分能力验证样品制备及均匀性检验流程探讨[J]. 冶金分析, 2019, 39(1): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901014.htm Gao W G, Bai W D, Guo J, et al. Preparation of middle-low alloy steel chemical composition sample for proficiency testing and discussion on homogeneity test procedures[J]. Metallurgical Analysis, 2019, 39(1): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901014.htm
甘露, 罗代洪, 吴淑琪. 钨矿石和锡矿石化学成分分析能力验证结果评价和离群值原因[J]. 岩矿测试, 2015, 34(1): 111-116. doi: 10.15898/j.cnki.11-2131/td.2015.01.015 Gan L, Luo D H, Wu S Q. Evaluation of the analytical results of tungsten and tine ores in the proficiency testing program[J]. Rock and Mineral Analysis, 2015, 34(1): 111-116. doi: 10.15898/j.cnki.11-2131/td.2015.01.015
蒋宗莉, 郑超, 吴丽慧. 应对实验室能力验证活动探讨[J]. 环境保护与循环经济, 2013, 35(5): 53-55. doi: 10.3969/j.issn.1674-1021.2013.05.018 Jiang Z L, Zheng C, Wu L H. Discussion on coping with laboratory proficiency testing activities[J]. Environmental Protection and Circular Economy, 2013, 35(5): 53-55. doi: 10.3969/j.issn.1674-1021.2013.05.018
臧慕文, 柯瑞华. 成分分析中的数理统计及不确定度评定概要[M]. 北京: 中国质检出版社&中国标准出版社, 2012. Zang M W, Ke R H. Summary of mathematical statistics and uncertainty evaluation in component analysis[M]. Beijing: China Quality Inspection Press & China Standard Press, 2012.
马捷, 关淑君, 茅祖兴. 能力验证及其结果处理与评价[M]. 北京: 中国质检出版社&中国标准出版社, 2016. Ma J, Guan S J, Mao Z X. Processing and evaluation of proficiency testing and its results[M]. Beijing: China Quality Inspection Press & China Standard Press, 2016.
吕庆成, 任利华, 栾雪枫. 自动电位滴定法测定铜精矿中的铜[J]. 冶金与材料, 2020, 40(4): 69. doi: 10.3969/j.issn.1674-5183.2020.04.040 Lv Q C, Ren L H, Luan X F. Determination of copper in copper concentrate by automatic potentiometric titration[J]. Metallurgy and Materials, 2020, 40(4): 69. doi: 10.3969/j.issn.1674-5183.2020.04.040
赵财昌. X射线荧光光谱法在铜精矿元素测定中的应用分析[J]. 当代化工研究, 2018, 18(7): 152-153. doi: 10.3969/j.issn.1672-8114.2018.07.089 Zhao C C. Application analysis of X-ray fluorescence spectrometry in elements determination of copper concentrate[J]. Modern Chemical Research, 2018, 18(7): 152-153. doi: 10.3969/j.issn.1672-8114.2018.07.089
颜立新, 刘金优, 杨琛, 等. 铜精矿中铜的电解重量法测定及其与碘量法测定的比较[J]. 中国无机分析化学, 2019, 9(4): 31-35. doi: 10.3969/j.issn.2095-1035.2019.04.008 Yan L X, Liu J Y, Yang C, et al. Determination of copper content in copper concentrates by electro gravimetric method and its comparison with iodometric method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 31-35. doi: 10.3969/j.issn.2095-1035.2019.04.008
张艳, 郝辉, 雒虹. 电感耦合等离子体质谱(ICP-MS)法测定矿石中的铼——三种前处理方法比较[J]. 中国无机分析化学, 2016, 6(1): 34-35. doi: 10.3969/j.issn.2095-1035.2016.01.009 Zhang Y, Hao H, Luo H. Comparison of three sample pretreatment methods in determination of rhenium in ores by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 34-35. doi: 10.3969/j.issn.2095-1035.2016.01.009
雷占昌, 韩斯琴图, 蒋常菊, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326-330. doi: 10.15898/j.cnki.11-2131/td.201812030127 Lei Z C, Han S Q T, Jiang C J, et al. Determination of tin in primary ores by inductively coupled plasma-mass spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-330. doi: 10.15898/j.cnki.11-2131/td.201812030127
姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1031-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by inductively coupled plasma atomic emission spectrometry combined with alkali fusion and separation using ion exchange resin[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1031-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm
门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-60. doi: 10.15898/j.cnki.11-2131/td.201905100060 Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-60. doi: 10.15898/j.cnki.11-2131/td.201905100060
石岭. ICP-AES法测定铜精矿中铅含量[J]. 新疆有色金属, 2019, 28(2): 97-98. Shi L. Determination of lead in copper concentrate by inductively coupled plasma atomic emission spectrometry[J]. Xinjiang Nonferrous Metals, 2019, 28(2): 97-98.