• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征

李玉芳, 潘萌, 顾涛, 佟玲, 宋淑玲

李玉芳, 潘萌, 顾涛, 佟玲, 宋淑玲. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. DOI: 10.15898/j.cnki.11-2131/td.201912040167
引用本文: 李玉芳, 潘萌, 顾涛, 佟玲, 宋淑玲. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. DOI: 10.15898/j.cnki.11-2131/td.201912040167
LI Yu-fang, PAN Meng, GU Tao, TONG Ling, SONG Shu-ling. Exposure of Mother and Infants to Polycyclic Aromatic Hydrocarbons during Lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. DOI: 10.15898/j.cnki.11-2131/td.201912040167
Citation: LI Yu-fang, PAN Meng, GU Tao, TONG Ling, SONG Shu-ling. Exposure of Mother and Infants to Polycyclic Aromatic Hydrocarbons during Lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. DOI: 10.15898/j.cnki.11-2131/td.201912040167

北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征

基金项目: 

国家自然科学基金面上项目(41473008)

国家自然科学基金面上项目 41473008

详细信息
    作者简介:

    李玉芳, 硕士研究生, 分析化学专业。E-mail:1012584280@qq.com

    通讯作者:

    宋淑玲, 博士, 研究员, 主要从事有机污染物分析技术及人体暴露研究。E-mail:songshuling163@163.com

  • 中图分类号: O625.1

Exposure of Mother and Infants to Polycyclic Aromatic Hydrocarbons during Lactation, Beijing

  • 摘要: 多环芳烃(PAHs)是一类普遍存在于水圈、生物圈、岩石圈和大气圈的持久性有机污染物,并在各种环境介质中交换、迁移,从而影响人体健康。以母乳为介质,评价哺乳期女性和婴幼儿PAHs暴露风险具有重要意义。早期研究表明,北京母乳中PAHs浓度在全球范围内处于较高水平。本文项目组在2012-2016年间,连续采集北京地区30位哺乳期女性6个月母乳,并检测其中PAHs浓度,旨在掌握该地区母乳中PAHs残留水平、婴幼儿的暴露量,以及哺乳期母体和婴幼儿暴露风险的变化趋势与特征。通过对30位女性分娩后连续6个月内180个母乳中15种PAHs的监测,采用气相色谱-质谱法(GC-MS)测定其含量,初步研究结果表明:①15种PAHs都有检出,其中检出浓度和检出率高的单体化合物包括菲、芴、苊烯、蒽、苊和荧蒽。母乳样品中Σ15PAHs的浓度均值为348μg/kg脂质,与2005年该地区的报道值相比有下降趋势。②15种PAHs和7种高致癌活性PAHs的苯并[a]芘的等效致癌活性(BaPeq)浓度分别为8.53μg/kg脂质和7.89μg/kg脂质,婴幼儿每日暴露估算值分别为1.51μg/day/kg b.w.和0.19μg/day/kg b.w.,均比2005年有所下降,但高于捷克、美国、土耳其等国家婴幼儿在母乳喂养期的暴露量,低于我国兰州等重工业城市最新暴露量研究结果。③整个哺乳期,母乳中PAHs的总浓度没有明显下降趋势,但冬季可能由于采暖增加了大气中PAHs的排放,使得母乳样品中15种PAHs总浓度明显高于夏季、秋季和春季。SPSS双变量相关分析结果表明,母乳中15种PAHs的总浓度与母体年龄、身体质量指数和母乳脂肪含量不存在相关性。未来工作中需要更加充足的样品分析数据进一步证实以上研究结果。
    要点

    (1) 北京哺乳期女性及婴幼儿PAHs暴露量和暴露风险与早期相比呈下降趋势。

    HIGHLIGHTS

    (1) For mother and breast-feeding infants, the exposure dose and risk to PAHs were decreasing.

  • 江西西北部是我国重要的铌钽铍锂稀有金属成矿区之一,该地区锂及稀有金属矿成矿地质条件优越,区内产有闻名全国的宜春414、同安等超大型稀有金属矿床及众多含锂瓷石矿床[1],且矿床类型较多。赣西北地区的稀有金属成矿作用主要集中于两个地区[2-4]:①武功山成矿带,414特大型稀有金属矿床就产于其中,该成矿带的稀有金属成矿作用与雅山花岗岩有关,岩体位于武功山复背斜的北东端南东翼;②九岭成矿带,稀有金属矿化发生在燕山期花岗岩浆活动晚阶段形成的碱长花岗岩及更晚期的细晶花岗岩脉中,这类矿化岩体进一步可分为铁锂云母-(锂)白云母碱长花岗岩、锂云母碱长花岗岩和花岗细晶岩脉等。自2012年以来,中国地质调查局设立三稀项目,继续把这一带作为重点工作区,开展综合研究和重点评价,期望取得找矿新进展。

    华南重点矿集区稀有稀散和稀土矿产调查项目组对位于江西九岭山东南侧的宜丰、上高等地的二云母碱长花岗岩、锂(白)云母碱长花岗岩、黄玉锂云母碱长花岗岩开展了野外调查,并结合实验室综合研究尤其是镜下鉴定、电子探针和化学分析,发现了磷锂铝石、锂云母、绿柱石、富钽锡石、铌钽铁矿-钽铌铁矿系列矿物,初步证明了可利用工业矿物的存在。

    磷锂铝石是一种含锂和铝的磷酸盐矿物,标准化学式为LiAl[PO4](F),其中Li可被Na置换,F可被(OH)置换而逐渐变为羟磷锂铝石[5]。磷锂铝石在稀有金属花岗伟晶岩中较常见[6],晶体粗大,有的以米来度量。这种矿物的特点之一是Li2O含量很高,一般可达10%,高于常见的锂矿物锂辉石(Li2O含量7%),因而是一种重要的工业锂矿物。本次工作在九岭成矿带首次发现的磷锂铝石,在二云母碱长花岗岩、锂(白)云母碱长花岗岩、黄玉-锂云母碱长花岗岩中均有出现,其在黄玉-锂云母碱长花岗岩中的含量更是高达4%~5%,可列为造岩矿物。镜下观察磷锂铝石多为半自形板柱状,晶体一般在0.2~0.8 mm,有时可见极细密的聚片双晶,正突起低至中度,正交偏光下干涉色均在一级顶部。电子探针和LA-ICP-MS分析表明其主要成分Al2O3含量变化于35.90%~39.09%,平均值37.59%;P2O5含量变化于45.34%~50.95%,平均值48.81%;Li2O含量变化于7.41%~11.55%,平均值9.58%。

    锂(白)云母在九岭成矿带也是广泛分布的一种矿物,镜下观察呈片状,形成晚于长石,数量在9%左右,最高可达15%。LA-ICP-MS分析表明锂(白)云母中的Li2O含量约4.5%,因其在岩石中的含量较高,因而也是九岭地区重要的锂工业矿物。

    绿柱石又称“绿宝石”,是铍-铝硅酸盐矿物,在九岭成矿带稀有金属花岗岩中属首次发现,主要见于二云母碱长花岗岩和黄玉锂云母碱长花岗岩中。在薄片中矿物的切面恰好垂直于C轴方向而呈均质体,属岩浆结晶产物。本次九岭地区绿柱石的发现表明本地区铍矿可能也具有一定找矿潜力。

    锡石在九岭地区也普遍存在,主要见于黄玉-锂云母碱长花岗岩中。晶体较铌钽矿物粗大,分布于长石、云母粒间,有时也与黄玉关系密切。本地区含锂花岗岩中的锡石的Fe、Mn、Mg和Ti含量均不高,但Nb、Ta含量较高,尤其是Ta含量高达8.68%。锡石的发现不但为进一步寻找钽矿提供了线索,也为九岭山乃至区域上寻找锡矿提供了依据。

    铌钽矿物主要见于黄玉-锂云母碱长花岗岩中,含量不高,但普遍存在;据电子探针分析,属于铌钽氧化物中的铌钽铁矿族,既有富钽矿物,也有富铌矿物,总体上Ta和Mn呈正相关,所以富钽矿物均为铌钽锰矿。富铌矿物既有钽铌锰矿,也有钽铌铁矿,属于岩浆晚期富挥发组分结晶分异的成因。

    图  1  江西九岭山上高—宜丰一带稀有金属矿物的镜下特征
    Figure  1.  Arthroscopic characteristics of the rare metal minerals in the Jiuling area, Jiangxi Province

    赣西北地区的稀有金属成矿作用主要集中于武功山成矿带和九岭成矿带,以往的工作多集中在武功山成矿带,相对来说九岭成矿带的研究程度较低,尤其是矿物学的认识少。本次工作对九岭成矿带与稀有金属成矿关系密切且广泛分布的二云母碱长花岗岩、锂(白)云母碱长花岗岩、黄玉锂云母碱长花岗岩开展研究,发现了重要含锂矿物——磷锂铝石的大量存在,以及绿柱石、富钽锡石、铌钽铁矿、钽铌铁矿等工业稀有金属矿物及相关金属矿物的普遍存在,为该地区Li、Be、Ta及Sn的找矿工作部署提供了直接依据。另外,研究表明黄玉、萤石等富含B、P络合剂元素的矿物在九岭成矿带也常见,可作为找矿标志矿物。

    近两年来国内外对硬岩型锂矿的研究与勘查高度关注[7-9],而磷锂铝石型锂矿类型的查证及开发利用将有助于改变锂矿资源的格局,为新兴产业的发展提供新的资源保障。

  • 图  1   不同月份(a)与季节(b)母乳中PAHs的浓度均值和相对偏差

    Figure  1.   Average concentration of total PAHs in breast milk collected in (a) different month and (b) season. Error bars represent the standard deviation (SD)

    表  1   志愿者和母乳采样信息

    Table  1   Main information of breast milk in the donors

    参数 范围
    志愿者数量(名) 30
    样品量(个) 180
    样品采集时间(年) 2012—2016
    年龄(岁) 26~36 (30±2.3)a
    BMI(kg/m2) 22.0~28.5 (26.1±2.9)a
    身高(cm) 152~172 (161±4.7)a
    春季样品量(3月~5月,个) 44
    夏季样品量(6月~8月,个) 36
    秋季样品量(9月~10月,个) 35
    冬季样品量(11月~次年2月,个) 65
    注:a为年龄等的均值,BMI为身体体重指数(体重/身高2, kg/m2)。
    下载: 导出CSV

    表  2   样品中PAHs浓度分析结果

    Table  2   Concentrations of target compounds in 180 human breast milk samples

    PAHs化合物 均值(μg/kg脂质) 中位值(μg/kg脂质) 最小值(μg/kg脂质) 最大值(μg/kg脂质) 检出率(%) 占比(%)
    26.4 18.8 NDa 110 68.9 7.59
    苊烯 49.9 47.2 ND 180 77.2 14.3
    63.0 62.0 ND 151 96.7 18.1
    91.2 90.4 8.66 245 100 26.2
    35.3 26.8 2.15 110 100 10.1
    荧蒽 21.3 15.5 ND 90.7 93.9 6.11
    16.4 12.3 ND 113 77.2 4.71
    苯并[a]蒽 7.56 6.02 ND 50.7 58.3 2.17
    11.7 8.86 ND 64.0 66.7 3.37
    苯并[b]荧蒽 9.26 5.17 ND 88.4 60.6 2.66
    苯并[k]荧蒽 8.46 3.21 ND 79.8 49.4 2.43
    苯并[a]芘 1.98 ND ND 17.7 25.0 0.57
    茚苯(1, 2, 3-cd)芘 1.95 ND ND 14.6 30.6 0.56
    二苯并[a, h]蒽 2.69 ND ND 13.6 38.9 0.77
    苯并[ghi]苝 1.20 ND ND 10.5 23.3 0.34
    Σ PAHs 348 296 70.3 745 - -
    注:ND表示未检出。
    下载: 导出CSV

    表  3   不同地区母乳样品中15种PAHs和7种PAHs的BaPeq

    Table  3   BaPeq values of 15 PAHs and 7 PAHs in human milk from different areas

    采样地区 BaPeq(μg/kg脂质) 7种PAHs的占比(%) 样品量(个) 参考文献
    15种PAHs 7种PAHs
    北京 8.53 7.89 92.5 180c 本文
    北京 9.08a 8.60a 94.6 40 [35]
    日本 1.45b 1.44b 99.3 51 [34]
    西班牙(初乳) 7.53b 7.07b 93.9 18 [33]
    香港 13.6 12.1 89.8 29 [38]
    捷克 0.41a 0.38a 92.7 188 [32]
    兰州 54.2a 53.7a 99.1 98 [39]
    土耳其 0.59 0.54 91.5 47 [10]
    意大利 201a, b 187a, b 93.0 30 [31]
    美国 0.02 0 0 12 [37]
    注:a为根据文献中报道的均值计算所得;b为根据文献中单位体积PAHs浓度,以3.6%的脂肪含量计算;c为本文180个样品的测定均值。
    下载: 导出CSV
  • Gilio A D, Ventrella G, Giungato P, et al.An intensive monitoring campaign of PAHs for assessing the impact of a steel plant[J].Chemosphere, 2017, 168:171-182. doi: 10.1016/j.chemosphere.2016.10.019

    Abdel-Shafy H I, Mansour M S M.A Review on polycyclic aromatic hydrocarbons:Source, environmental impact, effect on human health and remediation[J].Egyptian Journal of Petroleum, 2015, 25:107-123. http://cn.bing.com/academic/profile?id=0e0a26cb6754153c7b24b2cc0b99ecd0&encoded=0&v=paper_preview&mkt=zh-cn

    Amodio M, Andriani E, Dambruoso P R, et al.A monitoring strategy to assess the fugitive emission from a steel plant[J].Atmosphere Environment, 2013, 79:455-461. doi: 10.1016/j.atmosenv.2013.07.001

    Cakmak S, Hebbern C, Cakmak J D, et al.The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population[J].Envirnmental Pollution, 2017, 228:1-7. doi: 10.1016/j.envpol.2017.05.013

    Yang J, Qadeer A, Liu M, et al.Occurrence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai[J].Applied Geochemistry, 2019, 106:17-25. doi: 10.1016/j.apgeochem.2019.04.023

    Qu C S, Li B, Wu H S.Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons[J].Environmental Geochemistry and Health, 2015, 37:587-601. doi: 10.1007/s10653-014-9675-7

    Ruby M V, Lowney Y W, Bunge A L, et al.Oral bioavail-ability, bioaccessibility, and dermal absorption of PAHs from soil-State of the science[J].Environmental Science & Technology, 2016, 50:2151-2164. doi: 10.1021/acs.est.5b04110

    Tang J, An T C, Xiong J K, et al.The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J].Environmental Geochemistry and Health, 2017, 39(6):1487-1499. doi: 10.1007/s10653-017-9936-3

    Sun H W, An T C, Li G Y, et al.Distribution, possible sources, and health risk assessment of SVOC pollution in small streams in Pearl River Delta, China[J].Environmental Science and Pollution Research, 2014, 21(17):10083-10095. doi: 10.1007/s11356-014-3031-4

    Çok I, Mazmanci B, Mazmanci M A, et al.Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey[J].Environment International, 2012, 40:63-69. doi: 10.1016/j.envint.2011.11.012

    Hou J, Yin W J, Li P, et al.Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J].Journal of Hazardous Materials, 2020, 386:121663. doi: 10.1016/j.jhazmat.2019.121663

    Ye X Q, Pan W Y, Li C M, et al.Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J].Journal of Environmental Sciences, 2020, 91:1-9. doi: 10.1016/j.jes.2019.12.015

    Wang F D, Zhang H J, Geng N B, et al.A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs)[J].Environmental Pollution, 2018, 234:572-580. doi: 10.1016/j.envpol.2017.11.073

    Pinto M, Rebola M, Louro H, et al.Chlorinated polycyclic aromatic hydrocarbons associated with drinking water disinfection:Synthesis, formation under aqueous chlorination conditions and genotoxic effects[J].Polycyclic Aromatic Compounds, 2014, 34:356-371. doi: 10.1080/10406638.2014.891143

    Farzan S F, Chen Y, Trachtman H, et al.Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents:NHANES 2003-2008[J].Environmental Research, 2016, 144:149-157. doi: 10.1016/j.envres.2015.11.012

    IARC.Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[R]//IARC monographs on the evaluation of carcinogenic risks to humans.WHO IARC, 2010:92.

    Bae S, Pan X C, Kim S Y, et al.Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in school children[J].Environmental Health Perspectives, 2010, 118:579-583. doi: 10.1289/ehp.0901077

    Ohura T.Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons[J].Scientific World Journal, 2007, 7:372-380. doi: 10.1100/tsw.2007.75

    Armstrong B G, Gibbs G.Exposure-response relationship between lung cancer and polycyclic aromatic hydrocarbons (PAHs)[J].Occupational and Environ-mental Medicine, 2009, 66:740-746. doi: 10.1136/oem.2008.043711

    Zhou Y, Sun H, Xie J, et al.Urinary polycyclic aromatic hydrocarbon metabolites and altered lung function in Wuhan, China[J].American Journal of Respiratory and Critical Care Medicine, 2016, 193:835-846. doi: 10.1164/rccm.201412-2279OC

    Jedrychowski W A, Perera F P, Maugeri U, et al.Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow[J].Science of the Total Environment, 2015, 502:502-509. doi: 10.1016/j.scitotenv.2014.09.051

    Padula A M, Balmes J R, Eisen E A, et al.Ambient polycyclic aromatic hydrocarbons and pulmonary function in children[J].Journal of Exposure Science and Environmental Epidemiology, 2015, 25:295-302. doi: 10.1038/jes.2014.42

    Barraza-Villarreal A, Escamilla-Nunez M C, Schilmann A, et al.Lung function, airway inflammation, and polycyclic aromatic hydrocarbons exposure in Mexican school children:A pilot study[J].Journal of Occupational and Environmental Medicine, 2014, 56:415-419. doi: 10.1097/JOM.0000000000000111

    Mu G, Fan L Y, Zhou Y, et al.Personal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and lung function alteration:Results of a panel study in China[J].Science of the Total Environment, 2019, 684:458-465. doi: 10.1016/j.scitotenv.2019.05.328

    Wang L, Li C M, Jiao B N, et al.Halogenated and parent polycyclic aromatic hydrocarbons in vegetables:Levels, dietary intakes, and health risk assessments[J].Science of the Total Environment, 2018, 616-617:288-295. doi: 10.1016/j.scitotenv.2017.10.336

    Sun J L, Zeng H, Ni H G.Halogenated polycyclic aromatic hydrocarbons in the environment[J].Chemosphere, 2013, 90:1751-1759. doi: 10.1016/j.chemosphere.2012.10.094

    Sun J L, Ni H G, Zeng H.Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons in surface sediments in Shenzhen, South China and its relationship to urbanization[J].Journal of Environmental Monitoring, 2011, 13:2775-2781. doi: 10.1039/c1em10465a

    Hong Q, Li W L, Zhu N Z, et al.Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China[J].Science of the Total Environment, 2014, 491-492:100-107. doi: 10.1016/j.scitotenv.2014.01.119

    Sun J L, Jing X, Chang W J, et al.Cumulative health risk assessment of halogenated and parent poly-cyclic aromatic hydrocarbons associated with particulate matters in urban air[J].Ecotoxicology and Environmental Safety, 2015, 113:31-37. doi: 10.1016/j.ecoenv.2014.11.024

    Ding C, Ni H G, Zeng H.Parent and halogenated polycyclic aromatic hydrocarbons in rice and implications for human health in China[J].Environmental Pollution, 2012, 168:80-86. doi: 10.1016/j.envpol.2012.04.025

    Santonicola S, Felice A D, Cobellis L, et al.Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment[J].Chemosphere, 2017, 175:383-390. doi: 10.1016/j.chemosphere.2017.02.084

    Pulkrabova J, Stupak M, Svarcova A, et al.Relationship between atmospheric pollution in the residential area and concentrations of polycyclic aromatic hydrocarbons (PAHs) in human breast milk[J].Science of the Total Environment, 2016, 562:640-647. doi: 10.1016/j.scitotenv.2016.04.013

    Luzardo P O, Ruiz-Suárez N, Almeida-González M, et al.Multi-residue method for the determination of 57 persistent organic pollutants in human milk and colostrum using a QuEChERS-based extraction procedure[J].Analytical and Bioanalytical Chemistry, 2013, 405:9523-9536. doi: 10.1007/s00216-013-7377-0

    Kishikawa N, Wada M, Kuroda N, et al.Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluore-scence detection[J].Journal of Chromatography B, 2003, 789:257-264. doi: 10.1016/S1570-0232(03)00066-7

    Yu Y X, Wang X L, Wang B, et al.Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China[J].Environmental Science & Technology, 2011, 45:10235-10242. http://cn.bing.com/academic/profile?id=07d3d63d9a4e3540ccac27f5ba7cf378&encoded=0&v=paper_preview&mkt=zh-cn

    Song S L, Ma X D, Pan M, et al.Excretion kinetics of three dominant organochlorine compounds in human milk within the first 6 months postpartum[J].Environmental Monitoring and Assessment, 2018, 190:457. doi: 10.1007/s10661-018-6850-9

    Kim S, Halden R, Buckley T J.Polycyclic aromatic hydrocarbons in human milk of nonsmoking U.S.women[J].Environmental Science & Technology, 2008, 42:2663-2667. http://cn.bing.com/academic/profile?id=09787672ec142bf97eff606204a62cf4&encoded=0&v=paper_preview&mkt=zh-cn

    Tsang H L, Wu S C, Leung C K M, et al.Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum[J].Environment International, 2011, 37:142-151. doi: 10.1016/j.envint.2010.08.010

    Wang L, Liu A P, Zhao Y, et al.The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, northwest China[J].Environmental Science and Pollution Research, 2018, 25(9):1-13. http://cn.bing.com/academic/profile?id=45e9082850e046c8f00946dcc24dede4&encoded=0&v=paper_preview&mkt=zh-cn

    Xu S, Liu W, Tao S.Emission of polycyclic aromatic hydrocarbons in China[J].Environmental Science & Technology, 2006, 40:702-708. http://cn.bing.com/academic/profile?id=5eb2f34aa43ee1edd015c800ca3a2adb&encoded=0&v=paper_preview&mkt=zh-cn

    Yu Y X, Li Q, Wang H, et al.Risk of human exposure to polycyclic aromatic hydrocarbons:A case study in Beijing, China[J].Environmental Pollution, 2015, 205:70-77. doi: 10.1016/j.envpol.2015.05.022

    Zhang Y J, Lin Y, Cai J, et al.Atmospheric PAHs in North China:Spatial distribution and sources[J].Science of the Total Environment, 2016, 565:994-1000. doi: 10.1016/j.scitotenv.2016.05.104

    王英锋, 张姗姗, 李杏茹, 等.北京大气颗粒物中多环芳烃浓度季节变化及来源分析[J].环境化学, 2010, 29(3):369-375. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201003006.htm

    Wang Y F, Zhang S S, Li X R, et al.Seasonnal variation and source identification of polycyclic aromatic hydrocarbons (PAHs) in airborne particulates of Beijing[J].Environmental Chemistry, 2010, 29(3):369-375. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201003006.htm

    董雪玲, 刘大锰, 袁杨鬙, 等.北京市大气PM10和PM2.5中有机物的时空变化[J].环境科学, 2009, 30(2):328-332. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ200902004.htm

    Dong X L, Liu D M, Yuan Y S, et al.Spatial-temporal variations of extractable organic matters in atmospheric PM10 and PM2.5 in Beijing[J].Environmental Science, 2009, 30(2):328-332. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ200902004.htm

    张秀川, 赵健, 王婷, 等.2014年北京市某区不同空气质量下大气颗粒物中多环芳烃的特征与来源分析[J].环境卫生学杂志, 2019, 9(2):97-102. http://www.cnki.com.cn/Article/CJFDTotal-GWYX201902023.htm

    Zhang X C, Zhao J, Wang T, et al.Characteristics and sources analysis of polycyclic aromatic hydrocarbons in atmosphere particulate matters under different air quality in a district of Beijing in 2014[J].Journal of Environmental Hygiene, 2019, 9(2):97-102. http://www.cnki.com.cn/Article/CJFDTotal-GWYX201902023.htm

    Achary N, Gautam B, Subbiah S, et al.Polycyclic aromatic hydrocarbons in breast milk of obese vs normal women:Infant exposure and risk assessment[J].Science of the Total Environment, 2019, 668:658-667. doi: 10.1016/j.scitotenv.2019.02.381

    US EPA.Polycyclic organic matter.http://www.epa.gov/ttnatw01/hlthef/polycycl.html[EB/OL]. Washington D.C.: Environmental Protection Agency, 2002.

    Tue N M, Sudaryanto A, Minh T B, et al.Kinetic differences of legacy organochlorine pesticides and polychlorinated biphenyls in Vietnamese human breast milk[J].Chemosphere, 2010, 81(8):1006-1011. doi: 10.1016/j.chemosphere.2010.09.013

    van Oostdam J, Gilman A, Dewailly E, et al.Human health implications of environmental contaminants in Arctic Canada:A review[J].Science of the Total Environment, 1999, 230:1-82. doi: 10.1016/S0048-9697(99)00036-4

  • 期刊类型引用(21)

    1. 郭春丽,张斌武,郑义,许箭琪,赵迁迁,闫金禹,周睿,符伟,黄可. 中国花岗岩型锂矿床:重要特征、成矿条件及形成机制. 岩石学报. 2024(02): 347-403 . 百度学术
    2. 姜军胜,郭欣然,徐净,田立明,熊光强,王力圆,陈素余,黄维坤. 江西甘坊洞上稀有金属花岗岩中铷矿化特征及成因机制. 地质通报. 2024(01): 86-100 . 百度学术
    3. 刘金宇,王成辉,刘善宝,秦锦华,陈振宇,刘泽,赵晨辉. 赣西北狮子岭花岗岩型锂矿床成因:来自岩石地球化学和锆石U-Pb年代学的约束. 矿床地质. 2024(01): 195-214 . 百度学术
    4. 徐喆,张芳荣,张福神,王光辉,吴俊华,唐维新,楼法生,谢春华,高原,董菁,陈军,况二龙,周宾. 江西九岭南缘蚀变花岗岩型锂矿床成矿地质特征及找矿方向. 矿床地质. 2024(02): 244-264 . 百度学术
    5. 吴福元,郭春丽,胡方泱,刘小驰,赵俊兴,李晓峰,秦克章. 南岭高分异花岗岩成岩与成矿. 岩石学报. 2023(01): 1-36 . 百度学术
    6. 陈振宇,李建康,周振华,高永宝,李鹏. 硬岩型锂-铍-铌-钽资源工艺矿物学评价指标体系. 岩石学报. 2023(07): 1887-1907 . 百度学术
    7. 刘泽,陈振宇,王成辉. 赣西北狮子岭花岗岩型锂-钽矿床的矿物学特征及成矿机制. 岩石学报. 2023(07): 2045-2062 . 百度学术
    8. 徐净,侯文达,王力圆,赵太平,陈素余,田立明. 稀有金属花岗岩结晶分异过程中铷的富集与成矿:来自江西甘坊岩体的矿物学证据. 地质学报. 2023(11): 3766-3792 . 百度学术
    9. 聂晓亮,王水龙,刘爽,徐林. 江西茜坑锂矿床地质地球化学特征与锂云母~(40)Ar/~(39)Ar年代学研究. 矿物学报. 2022(03): 285-294 . 百度学术
    10. 邓红云,钟盛文,刘雨鑫,彭卫发,张绍军. 硫酸法从锂磷铝石中提取锂工艺研究及优化. 有色金属科学与工程. 2022(04): 35-43 . 百度学术
    11. 王水龙,王大钊,刘爽,廖生万,聂晓亮,李凯旋,徐林,周宾. 江西甘坊岩体发现罕见的含铍矿物——红磷锰铍石. 岩矿测试. 2022(04): 688-690 . 本站查看
    12. 甘德清,田晓曦,刘志义,高锋. 循环冲击状态下砂岩力学及损伤特性研究. 中国矿业. 2021(03): 203-211 . 百度学术
    13. 黄传冠,贺彬,夏明,周渝,胡为正. 赣南地区伟晶岩型锂矿资源禀赋特征与找矿新进展. 中国矿业. 2021(03): 212-216+223 . 百度学术
    14. 李超,王登红,屈文俊,孟会明,周利敏,樊兴涛,李欣尉,赵鸿,温宏利,孙鹏程. 关键金属元素分析测试技术方法应用进展. 岩矿测试. 2020(05): 658-669 . 本站查看
    15. 张勇,潘家永,马东升. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报. 2020(11): 3321-3342 . 百度学术
    16. 刘善宝,杨岳清,王登红,代鸿章,马圣钞,刘丽君,王成辉. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义. 地质学报. 2019(06): 1309-1320 . 百度学术
    17. 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报. 2019(06): 1189-1209 . 百度学术
    18. 王成辉,王登红,陈晨,刘善宝,陈振宇,孙艳,赵晨辉,曹圣华,凡秀君. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义. 地质学报. 2019(06): 1359-1373 . 百度学术
    19. 屈文俊,王登红,朱云,樊兴涛,李超,温宏利. 稀土稀有稀散元素现代仪器测试全新方法的建立. 地质学报. 2019(06): 1514-1522 . 百度学术
    20. 王登红,郑绵平,王成辉,高树学,商朋强,杨献忠,樊兴涛,孙艳. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果. 中国地质调查. 2019(06): 1-11 . 百度学术
    21. 夏明,贺彬. 江西省宁都县三坑地区新发现磷锂铝石富锂矿物. 世界有色金属. 2018(22): 222-223 . 百度学术

    其他类型引用(3)

图(1)  /  表(3)
计量
  • 文章访问数:  3590
  • HTML全文浏览量:  1046
  • PDF下载量:  36
  • 被引次数: 24
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-02-13
  • 录用日期:  2020-04-19
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回