Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry
-
摘要: 岩石中的痕量汞检测往往因内部晶胞结构复杂,使得热水浴酸解提取不彻底、挥发损失以及接触污染等引起结果偏差和不稳定。本文在前人研究的基础上,采用中国研制的双通道-原子荧光光谱仪和固体进样-冷原子吸收光谱仪分析岩石中的痕量汞,以探索最佳检测方案。双通道-原子荧光光谱分析中,优化的实验条件为:以80%王水溶液对样品沸水浴提取50min,灯电流30mA,负高压280V,载气流速600mL/min,屏蔽气流速1000mL/min。测定痕量汞浓度范围为0.05~2μg/L,线性相关系数r>0.999,取样量为0.2g下方法检出限为0.285μg/kg,相对标准偏差为7.3%~15.3%。固体进样-冷原子吸收法光谱分析中,避免了化学消解处理直接进样测定,主要实验条件为:载气流速180mL/min,裂解程序700℃保持60s。测定痕量汞浓度范围为0.05~5ng,线性相关系数r>0.999,取样量为0.1g下方法检出限为0.046μg/kg,相对标准偏差为1.3%~4.2%。通过实验结果对比表明,固体进样-冷原子吸收光谱法的操作性、检出限以及稳定性均优于双通道-原子荧光光谱法,更适用于岩石中的痕量汞测定。
-
关键词:
- 岩石 /
- 痕量汞 /
- 双通道-原子荧光光谱法 /
- 固体进样-冷原子吸收光谱法
要点(1) 双通道-原子荧光光谱法检出限相比常规单通道原子荧光光谱法改善了42%。
(2) 固体进样-冷原子吸收光谱法解决了样品不易处理、挥发以及接触污染等问题,显著改善了检出限、记忆效应和稳定性。
(3) 固体进样-冷原子吸收光谱法仪器和国外产品性能相当,为其普及应用提供了依据。
HIGHLIGHTS(1) The detection limit of dual-channel atomic fluorescence spectrometry was significantly improved by 42% compared to that of conventional single-channel atomic fluorescence spectrometry.
(2) The solid sampling-cold atomic absorption spectrometry overcame the issues of difficult sample handling, volatilization, and contact pollution by significantly improving the detection limit, memory effect, and stability.
(3) The performance of a domestic solid sampling-cold atomic absorption spectrometry instrument is equivalent to that of foreign products, thereby promoting its commercialization and expansion of application scope.
Abstract:BACKGROUNDThe detection of trace mercury in rocks typically provides biased and non-reliable results because of the complex internal unit cell structure, incomplete hot water bath acid hydrolysis extraction, volatilization loss, and contact pollution.OBJECTIVESTo establish a more effective method for the determination of trace mercury concentrations in rocks.METHODSDual-channel atomic fluorescence spectrometry (AFS) and domestic solid sampling-cold atomic absorption spectrometry (AAS) were used to detect the total concentration of trace mercury in rocks.RESULTSUnder the optimized conditions of dual-channel AFS, the samples were extracted in a boiling water bath with 80% aqua regia solution for 50min. The current was 30mA, the negative high voltage was 280V, the carrier gas flow was 600mL/min, and the shielding gas flow was 1000mL/min. The concentration range was 0.05-2μg/L, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.2g, method detection limit was 0.285μg/kg, and relative standard deviation was 7.3%-15.3%. For domestic solid sampling-cold AAS, the sample was determined by direct injection without chemical digestion. The carrier gas flow was 180mL/min, pyrolysis process was conducted for 60s at 700℃. The concentration range was determined to be 0.05-5ng, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.1g, method detection limit was 0.046μg/kg, and relative standard deviation was 1.3%-4.2%.CONCLUSIONSThe solid sampling-cold AAS was found to be more effective than dual-channel AFS in terms of operation, detection limit, and stability. It is more suitable for the determination of trace mercury in rocks. -
石油作为基础性能源产品,对现代国家经济的可持续发展有着重大影响[1]。但随着石油的开发与利用,发生了一些溢油事故[2-3]给环境造成了重大危害[4]。石油类的污染物成分复杂,主要为石油烃和多环芳烃[5],其中石油烃能通过食物链富集而对人体健康造成危害[6],多环芳烃包含危害人体健康的致癌物质[7-8]。因此,对石油类污染物的监测已是环境保护的关注重点之一。2018年国家颁布的《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600—2018)中将石油烃、多环芳烃等均列为监测项目,并制定了相应的风险筛选值和管控值,对土壤进行风险筛查和分类提供了依据,为生态环境修复提供了有力的技术支撑。
石油类污染物主要以烃类形式存在,碳、氢占比高达95%~99%[9],因此红外分光光度法相较于重量法[10]、紫外分光光度法[11-12]、气相色谱法[13-16]、荧光法[17-18]等,能更全面、准确地检测油类物质的总量,且灵敏度高、不受油品影响[19-20],对低含量油污染土壤测定更加适用[21-22]。石油类的官能团CH3、CH2和CH分别在红外光谱2930cm-1、2960cm-1和3030cm-1处存在伸缩振动,通过这三个波数处的吸光度可以计算出含CH3、CH2和CH基团的烃类含量[23]。现行环境标准《土壤石油类的测定红外分光光度法》(HJ 1051—2019)、《水质石油类和动植物油类的测定红外分光光度法》(HJ 637—2018)采用红外校正系数法计算石油类含量,通过测定正十六烷(CH3)、异辛烷(CH2)和苯(CH)三种烃类在三个波数下的吸光度,联立方程式计算校正因子X、Y、Z和F,利用校正因子来计算石油类含量[24],该计算方式相对复杂,手动计算费时费力;如采用软件计算虽可提高计算效率,但又因实际测试油品的红外光谱吸收峰的偏移,而造成计算结果偏差较大。在《生活饮用水标准检验方法有机物综合指标》(GB/T 5750.7—2006)、被代替的《水质石油类和动植物油的测定红外光度法》(GB/T 16488—1996)和杨斌等[25]、梁庆勋等[26]、马宏伟等[27]研究中均采用了标准曲线法,但国家标准中的标准曲线法采用非色散红外光谱单波数,因未考虑芳香烃的影响而存在局限性,从而导致标准曲线法的适用范围受限或被舍弃[28],而文献[25-27]中均未明确指出具体采用的波数,因此作为简单、方便的标准曲线法是否仍能使用,其计算结果是否具有代表性值得深究。
为解决校正系数法计算复杂、单波数计算范围受限等一系列问题,本文依据CH3、CH2和CH官能团在三个波数下产生的吸光度,组合成5种标准曲线法,计算已知含量的5种配制油品,通过计算结果的比对,确立最佳计算方法为三波数之和标准曲线法。再经过芳香烃占比试验对计算方法适用中国油品的范围进行验证。最后进行实际样品测定,并与校正系数法进行对比,验证其实用性。本文建立的三波数之和标准曲线法,为解决红外分光光度法测定石油类总量中标准曲线法的适用范围扩充提供了参考依据,同时也是对现行校正系数法的有益补充。
1. 实验部分
1.1 仪器和主要试剂
傅里叶变换红外光谱仪(FRONTIER型,美国PerkinElmer公司):扫描范围为2800~3200cm-1;配备4cm带盖石英比色皿。
四氯乙烯(红外光谱级,国药集团化学试剂有限公司)。
1.2 实验样品
标准物质:石油类标准溶液(1000mg/L)、正十六烷(10000mg/L)、异辛烷(10000mg/L)、苯(10000mg/L),均购自上海安谱实验科技股份有限公司。
其他油品:原油(华北油田);高温润滑油(长沙合轩化工科技有限公司);机油(壳牌全合成机油);0#柴油(中国石油化工集团有限公司);92#汽油(中国石油化工集团有限公司)。
实际样品:在工业园区调查项目中分别选取10个污染类型不同、污染程度不一的土壤和水质样品。土壤样品编号为T-1至T-10,水质样品编号为S-1至S-10。
1.3 标准曲线的绘制
将1000mg/L石油类标准溶液用四氯乙烯稀释成150、100、50、20、10、5、2mg/L标准系列,用4cm石英比色皿进行红外光谱扫描,记录2930cm-1、2960cm-1、3030cm-1处的吸光度值。
1.3.1 单波数标准曲线绘制
依据标准溶液浓度与2930cm-1、2960cm-1、3030cm-1处的吸光度分别绘制三条标准工作曲线。
1.3.2 两波数吸光度之和标准曲线绘制
依据标准溶液浓度与2930cm-1、2960cm-1处的吸光度之和绘制标准工作曲线。
1.3.3 三波数吸光度之和标准曲线绘制
依据标准溶液浓度与2930cm-1、2960cm-1、3030cm-1处的吸光度之和绘制标准工作曲线。
1.4 样品分析测试
1.4.1 配制油品
称取原油、润滑油、机油、柴油和汽油样品各0.50g,分别用四氯乙烯定容至50mL,配制成10000mg/L的储备液。再将上述各油品储备液用四氯乙烯稀释成100、50、20、10、5、2mg/L系列溶液,用4cm石英比色皿进行红外光谱扫描,得到红外光谱图,记录2930cm-1、2960cm-1、3030cm-1处的吸光度值。
1.4.2 配制不同浓度芳香烃的样品
以四氯乙烯为溶剂,吸取不同体积的正十六烷、异辛烷和苯标准溶液,按照不同比例配制成溶液,用4cm石英比色皿进行红外光谱扫描,使用三波数之和标准曲线法计算。
1.4.3 样品前处理和红外分光光谱分析
土壤样品:称取土壤样品10.0g于锥形瓶中,加入20mL四氯乙烯,置于振荡器中,振荡提取30min,静置10min后倾出提取液。再用20mL四氯乙烯提取一次,合并提取液并定容50mL。提取液流经填充硅酸镁吸附柱,弃去前5mL滤出液,保留剩余流出液,待测。
水质样品:取500mL水质样品于分液漏斗中,用50mL四氯乙烯分两次萃取,合并萃取液并定容至50mL。取适量萃取液过硅酸镁吸附柱,弃去前5mL滤出液,余下的接入25mL比色管中,用于测定石油类。
测定:以4cm石英比色皿加入四氯乙烯为参比,分别测量提取液的红外光谱图,记录2930cm-1、2960cm-1、3030cm-1处的吸光度值。
2. 结果与讨论
2.1 标准曲线、方法线性范围与检出限
按照1.3节标准曲线绘制步骤进行单波数、两波数吸光度之和与三波数吸光度之和绘制标准曲线,各标准曲线方程与相关系数见表 1,各浓度红外光谱图见图 1。
表 1 标准曲线方程与相关系数Table 1. Standard curve equations and correlation coefficients标准曲线名称 回归方程 相关系数(R) 2930cm-1标准曲线 y=0.0135x+0.015 0.9996 2960cm-1标准曲线 y=0.0078x-0.0041 0.9998 3030cm-1标准曲线 y=0.0011x-0.0013 0.9996 两波数吸光度之和标准曲线 y=0.0214x-0.008 0.9998 三波数吸光度之和标准曲线 y=0.0225x-0.0065 0.9999 如图 1所示,当标准溶液浓度为1mg/L时,红外吸收峰吸光度之和为0.083,虽满足3倍信噪比但峰不明显;当标准溶液浓度为150mg/L时,红外光谱图已出现平顶峰,因此石油类质量浓度在2~100mg/L时与其吸光度呈良好线性关系,相关系数如表 1所示全部大于0.999。以3倍信噪比(S/N)计算,最低检出浓度为1mg/L。
2.2 配制油品分析结果
浓度为100mg/L的5种油品的红外光谱图如图 2所示,不同产地和不同类型的油品,各种烃类的结构和所占比例相差很大,但主要属于CH2、CH3官能团组成的烷烃、环烷烃,CH官能团的芳香烃占比较少,与王玉纯等[23]采集中国不同油田的炼油厂废水进行测定得出芳香烃含量不高的结论相符。
读取上述5种油品各浓度相应波数的吸光度值,分别以2930cm-1、2960cm-1、3030cm-1的单波数标准曲线计算,以两波数吸光度之和标准曲线进行计算,以三波数吸光度之和标准曲线进行计算,得到其相应计算浓度。计算浓度(ρ计)与各油品配制浓度(ρ配)的相对误差(δ)按下列公式进行计算。
$$ \delta {\rm{ = }}\left( {{\rho _{计}} - {\rho _{配}}} \right)/{\rho _{配}} $$ 各油品单波数标准曲线计算结果的相对误差情况如图 3所示。由图 3a可知,原油和柴油的各浓度点相对误差较小,大致分布在20%之内,由此可知原油和柴油相较于其余油品更适合采用2930cm-1标准曲线进行计算。由图 3b可知,润滑油和机油的各浓度点相对误差较小,大致分布在20%之内,由此可知润滑油和机油的主要成分相较于其余油品更适合采用2960cm-1标准曲线进行计算。由图 3c可知,5种油品的各浓度点相对误差均在40%以上,计算浓度与配制浓度相差较大,表明5种油品中CH官能团为主的芳香烃含量较低或不存在[9],与图 2各油品的红外光谱图中3030cm-1峰较低或不存在的测试结果相符。单波数标准曲线的选择性强,不适用于多种类石油污染物的计算。
由图 4可知,两波数之和标准曲线法计算各油品结果的相对误差均小于30%,这是因为两波数吸光度之和标准曲线法包括了CH2、CH3两个官能团产生的吸光度(图 4a),三波数吸光度之和标准曲线法包括了CH2、CH3和CH三个官能团产生的吸光度(图 4b),较单波数标准曲线法更全面。两种方法相比较,三波数吸光度之和标准曲线法计算结果的相对误差更小,更接近于配制值,说明虽然芳香烃在石油类中含量较低,但其对总量还是存在一定的影响。所以5种标准曲线法中,三波数吸光度之和标准曲线法是更适合作为计算石油类总量的方法。
2.3 石油类污染适用范围验证结果
由2.2节可知单波数标准曲线法的选择性强,不能准确计算所有石油类污染。同样的,标准方法中的单波数非分散红外光度法由于没有考虑到芳香烃类化合物,当油品中芳烃含量超过25%时,该方法的计算结果便会产生较大误差,并不适用[28]。
为验证三波数吸光度之和标准曲线法是否存在这类问题,开展了芳香烃占比试验。表 2的计算结果表明:随着芳香烃占比的增加回收率逐渐降低,当芳香烃占比大于50%时,回收率低于70%。因为中国原油的特点是含蜡较多,属于以烷烃为主的石蜡基石油,芳香烃占比小于30%,通常油品中芳香烃含量一般不超过15%[9],所以三波数吸光度之和标准曲线法可适用于中国石油类污染的检测。
表 2 芳香烃占比试验结果Table 2. Results of the proportion test for aromatic hydrocarbons三种烃比例(正十六烷∶异辛烷∶苯) 芳香烃占比(%) 配制浓度(mg/L) 三波数之和标准曲线法 计算值(mg/L) 回收率(%) 7 ∶ 3 ∶ 0 0 50.00 59.98 119.96 6 ∶ 3 ∶ 1 10 50.00 55.42 110.83 6 ∶ 2 ∶ 2 20 50.00 52.93 105.86 5 ∶ 2 ∶ 3 30 50.00 46.70 93.39 5 ∶ 1 ∶ 4 40 50.00 43.66 87.32 3 ∶ 2 ∶ 5 50 50.00 36.55 73.10 3 ∶ 1 ∶ 6 60 50.00 33.47 66.94 2 ∶ 1 ∶ 7 70 50.00 28.24 56.48 1 ∶ 1 ∶ 8 80 50.00 22.43 44.86 1 ∶ 0 ∶ 9 90 50.00 18.65 37.29 0 ∶ 0 ∶ 10 100 50.00 13.85 27.69 2.4 方法精密度和准确度
对空白水和空白土壤(石英砂)进行加标试验,共三个浓度水平,每个浓度水平平行进行6次测定,按照1.4节进行样品前处理、三波数之和标准曲线法计算测定结果,计算其精密度与加标回收率,结果见表 3。方法精密度(RSD)在5.9%~8.0%之间,均小于10%,加标回收率在76.4%~98.2%之间,符合HJ 1051—2019、HJ 637—2018中回收率70%~110%的要求。
表 3 空白加标样品精密度结果Table 3. Precision results of blank spiked samples测定次数 土壤空白加标样品石油类物质含量(mg/kg) 水质空白加标样品石油类物质含量(mg/kg) 10mg/kg 50mg/kg 100mg/kg 0.10mg/L 0.50mg/L 2.50mg/L 1 9.11 47.6 93.4 0.0823 0.458 2.36 2 7.93 48.3 92.5 0.0764 0.403 2.13 3 9.29 47.4 91.6 0.0951 0.471 2.08 4 8.26 49.1 94.1 0.0876 0.427 2.41 5 8.74 45.7 95.7 0.0811 0.452 2.24 6 7.73 48.2 90.6 0.0798 0.485 2.33 平均值 8.51 47.7 93 0.0837 0.45 2.26 回收率(%) 77.3~92.9 91.4~98.2 91.6~95.7 76.4~95.1 80.6~97.0 83.2~96.4 RSD(%) 7.5 6.7 5.9 8.0 6.7 5.9 2.5 实际样品测定结果
按照本文的实验方法(三波数吸光度之和标准曲线法)对采集的土壤和水实际样品(1.2节)进行测定,将三波数吸光度之和标准曲线法计算结果与标准方法HJ 637—2018、HJ 1051—2019中的校正系数法计算结果进行对比。如表 4所示,对于实际土壤样品两种测试结果的相对偏差在0.5%~4.8%,水样品的相对偏差在-5.3%~6.7%,
表 4 实际样品的计算结果对比Table 4. Comparison of calculation results for actual samples土壤样品编号 土壤样品中石油类物质含量(mg/kg) 水样品编号 水样品中石油类物质含量(mg/L) 校正系数法
(标准方法)三波数之和标准曲线法
(本文方法)相对偏差
(%)校正系数法
(标准方法)三波数之和标准曲线法
(本文方法)相对偏差
(%)T-1 17.4 18.5 -3.1 S-1 0.08 0.07 6.7 T-2 9.73 9.82 -0.5 S-2 0.11 0.12 -4.3 T-3 87.9 90.9 -1.7 S-3 0.09 0.1 -5.3 T-4 104 94.8 4.6 S-4 0.67 0.65 1.5 T-5 374 393 -2.5 S-5 0.88 0.92 -2.2 T-6 646 689 -3.2 S-6 0.79 0.84 -3.1 T-7 1235 1304 -2.7 S-7 1.25 1.18 2.9 T-8 1647 1723 -2.3 S-8 1.34 1.26 3.1 T-9 5386 5839 -4.0 S-9 1.87 1.67 5.6 T-10 20880 22342 -3.4 S-10 2.07 2.14 -1.7 注:相对偏差=(推荐方法测定值-两次测定值的平均值)/两次测定值平均值×100%。 参考HJ 1051—2019中土壤平行样的相对偏差≤30%、HJ 637—2018中水样实验室内标准偏差的范围为0.8%~13%,测试结果满足要求,因此三波数吸光度之和标准曲线法可作为实际测定石油类总量的方法。
3. 结论
本文建立了三波数之和标准曲线法计算环境样品中石油类总量的方法。依据标准曲线法原理和常见油品红外谱图,对红外分光光度法测定石油类的三个波数处的吸光度进行排列组合,组建出5种标准曲线法计算已知含量的5种油品,并进行结果比对,表明三波数之和标准曲线法包含的波数全面,结果更接近实际配制值,是标准曲线法中的最佳计算方法。再经过芳香烃占比试验和实际样品验证,表明本文方法在芳香烃占比小于50%时,与校正系数法结果相一致,能满足石油类污染的测定需求。
三波数之和标准曲线法的建立,解决了标准曲线法在红外分光光度法测定石油类总量中的应用难题,突破了单波数标准曲线法的局限性,同时具有简单、方便、准确等特点,是对现行校正系数法的有益补充。但对于芳香烃占比大于50%的石油类污染,计算结果偏差较大,需进一步探讨研究。
-
表 1 方法精密度和准确度数据
Table 1 Precision and accuracy data of the methods
标准物质编号 银含量标准值(μg/kg) 固体进样-冷原子吸收光谱法 双通道-原子荧光光谱法 单通道-原子荧光光谱法 7次实测均值(μg/kg) RSD (%) 相对偏差(%) 7次实测均值(μg/kg) RSD (%) 相对偏差(%) 7次实测均值(μg/kg) RSD (%) 相对偏差(%) GBW07103 4.1±1.2 4.04 1.4 -1.5 3.87 9.9 -5.6 3.53 11.2 -13.9 GBW07106 8.0±2.0 8.41 3.3 5.1 7.55 8.6 -5.6 7.27 9.5 -9.1 GBW07108 16.0±2.0 15.8 1.3 -1.3 15.6 7.3 -2.5 16.8 10.3 5.0 GBW07122 3.3±0.8 3.37 4.2 2.1 3.45 15.3 4.5 2.81 14.8 -14.8 表 2 固体进样-冷原子吸收光谱仪和国外同类仪器测试汞含量情况对比
Table 2 Comparison of Hg content determined by domestic solid sampling-cold atomic absorption spectrometry instrument and imported similar instruments
仪器制造商 仪器型号 主要参数条件 测试对象 检出限(μg/kg) RSD (%) 文献来源 鲁美克斯(LUMEX) RA-915M 载气流速:0.8~1.2L/min
裂解温度:680~740℃载金碳 0.7 1.2~8.0 罗荣根[21] 迈尔斯通(MILESTONE) DMA-80 载气流速:0.2L/min
裂解温度:800℃/330s锌精矿 4.4 5.3 罗明贵等[22] 利曼(LEEMAN) Hydra-C 载气流速:0.35L/min
裂解温度:800℃/60s土壤 3 9 路新燕等[32] 利曼(LEEMAN) Hydra-C 载气流速:0.35L/min
裂解温度:800℃/150s土壤 0.06 2 孙有娥等[33] 迈尔斯通(MILESTONE) DMA-80 载气流速:0.2L/min
裂解温度:800℃/150s海洋底栖生物 0.9 1.77 宋永刚等[35] 开元弘盛 5E-HGT2321 载气流速:0.5L/min
裂解温度:350℃粮食 0.01 5.2 秦祎芳等[36] 迈尔斯通(MILESTONE) DMA-80 载气流速:0.2L/min
裂解温度:800℃/150s脉红螺 0.2 2.2 宋永刚等[37] 北京海光仪器 HGA-100 载气流速:0.18L/min
裂解温度:700℃/60s岩石 0.046 4.2 本文研究 -
赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014 Zhao B, Zhang D H, Yu L, et al. From Clarke value to geochemical properties or behavior of elements to mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014
周子俣, 罗先熔, 文美兰, 等. 河南洛宁县石龙山多金属金矿区土壤热释汞测量及找矿预测[J]. 矿物岩石, 2018, 38(2): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201802007.htm Zhou Z Y, Luo X R, Wen M L, et al. Soil thermomercury release survey and prospecting prediction of Shilongshan polymetallic gold deposit in Luoning County, Henan Province[J]. Mineralogy and Petrology, 2018, 38(2): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201802007.htm
边鹏. 汞的找矿指导作用[J]. 矿物学报, 2015, 35(增刊1): 566. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1405.htm Bian P. Guiding role of mercury in ore prospecting[J]. Acta Mineralogica Sinica, 2015, 35(Supplement 1): 566. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1405.htm
李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm Li H, Zhang G Y, Yu B, et al. Structural super imposed halos method for prospeting blind or body in the deep of districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm
迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013 Chi Q H. Distribution of mercury in the Earth's crust, rocks and loose sediments[J]. Geochimica, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013
梁斌, 詹蔚. 探讨环境中冷原子吸收法对汞的测定[J]. 环境与发展, 2018(2): 121, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201802069.htm Liang B, Zhan W. Determination of mercury by cold atomic absorption spectrometry in the environment[J]. Environment and Development, 2018(2): 121, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201802069.htm
张礼仲, 李文贵, 李岚, 等. ICP法与AA法测定铅、砷、汞的比对分析[J]. 食品安全导刊, 2017(6): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAQ201736053.htm Zhang L Z, Li W G, Li L, et al. Comparative analysis of ICP method and AA method for determination of lead, arsenic and mercury[J]. China Food Safety Magazine, 2017(6): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAQ201736053.htm
巧宁强, 薛志伟, 王刚峰, 等. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷[J]. 岩矿测试, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128 Qiao N Q, Xue Z W, Wang G F, et al. Soxhlet extract-atomic fluorescence spectrometry for the determination of mercury and arsenic in oil-bearing cores[J]. Rock and Mineral Analysis, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128
陆迁树, 段文, 李发刚, 等. 冷原子汞发生-原子荧光光谱法测定地球化学样品中痕量汞[J]. 理化检验(化学分册), 2019, 55(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201903022.htm Lu Q S, Duan W, Li F G, et al. Determination of trace mercury in geochemical samples by cold atomic mercury-atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2019, 55(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201903022.htm
王谦, 郑琳, 任飞, 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018, 46(4): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201804009.htm Wang Q, Zheng L, Ren F, et al. Determination of lead, arsenic and mercury in cream cosmetics by suspension sampling-total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201804009.htm
卢水淼, 李鹰, 李剑, 等. 电感耦合等离子体质谱法测定地表水中汞及其记忆效应的消除[J]. 理化检验(化学分册), 2019, 55(10): 1222-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201910022.htm Lu S M, Li Y, Li J, et al. Determination of mercury and its memory effects in surface water by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(10): 1222-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201910022.htm
林少美, 林彩琴, 郑三燕, 等. 电感耦合等离子体质谱法测定苦丁茶中的铅、镉、砷、汞和铬[J]. 中国卫生检验杂志, 2020(1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202001006.htm Lin S M, Lin C Q, Zheng S Y, et al. Determination of lead, cadmium, arsenic, mercury and chromium in Bittersweet tea by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2020(1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202001006.htm
林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1528-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202005043.htm Lin H L, Zhu R L, Yu L, et al. Water bath digestion-determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediment by atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1528-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202005043.htm
张宏康, 邵丹, 王中瑗, 等. 食品中痕量汞的检测方法研究进展[J]. 食品安全质量检测学报, 2019, 10(5): 1230-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201905030.htm Zhang H K, Shao D, Wang Z Y, et al. Research progress on determination methods of trace mercury in food[J]. Journal of Food Safety & Quality, 2019, 10(5): 1230-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201905030.htm
杨常青, 萧达辉, 康菲, 等. 氧弹分解-原子荧光法快速测定煤中汞方法的改进[J]. 分析试验室, 2017, 36(10): 1184-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201710015.htm Yang C Q, Xiao D H, Kang F, et al. An improved method for the rapid determination of mercury in coal by oxygen bomb decomposition and atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(10): 1184-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201710015.htm
颜巧丽, 李悟庆, 刘天一, 等. 电感耦合等离子体质谱法测定汞元素校准曲线线性探讨[J]. 安徽农业科学, 2020(11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056 Yang Q L, Li W Q, Liu T Y, et al. Determination of mercury calibration curve linearity by inductively coupled plasma mass spectrometry[J]. Journal of Anhui Agricultural Sciences, 2020(11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056
李耀磊, 金红宇, 韩笑, 等. 电感耦合等离子体质谱测定法中汞元素记忆效应与稳定性研究[J]. 中国药学杂志, 2019, 54(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201901009.htm Li Y L, Jin H Y, Han X, et al. Memory effects and stability of mercury in inductively coupled plasma mass spectrometry[J]. Chinese Pharmaceutical Journal, 2019, 54(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201901009.htm
Linsa S S, Virgensa C F, dos Santosa W N L, et al. On-line solid phase extraction system using an ion imprinted polymer based on dithizone chelating for selective preconcentration and determination of mercury(Ⅱ) in natural waters by CV-AFS[J]. Microchemical Journal, 2019, 150: 104075-104075. doi: 10.1016/j.microc.2019.104075
周慧君, 帅琴, 黄云杰, 等. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474-480, 449. doi: 10.15898/j.cnki.11-2131/td.201703010024 Zhou H J, Shuai Q, Huang Y J, et al. Determination of trace mercury in geological samples by solid phase extraction with modified GO/Chitosan composite microsphere[J]. Rock and Mineral Analysis, 2017, 36(5): 474-480, 449. doi: 10.15898/j.cnki.11-2131/td.201703010024
乔磊, 叶永盛, 李鹰, 等. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属[J]. 岩矿测试, 2020, 39(1): 99-107. doi: 10.15898/j.cnki.11-2131/td.201907170107 Qiao L, Ye Y S, Li Y, et al. Analysis of heavy metals in soil by electrothermal evaporation inductively coupled plasma mass spectrometry with direct solid injection[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107. doi: 10.15898/j.cnki.11-2131/td.201907170107
罗荣根. 应用固体测汞仪直接测定载金碳中的总汞[J]. 岩矿测试, 2016, 35(4): 420-424. doi: 10.15898/j.cnki.11-2131/td.2016.04.014 Luo R G. Direct determination of total mercury in gold-bearing carbon by solid mercury meter[J]. Rock and Mineral Analysis, 2016, 35(4): 420-424. doi: 10.15898/j.cnki.11-2131/td.2016.04.014
罗明贵, 谢毓群, 李通耀, 等. 固体进样直接测定法测定锌精矿中汞[J]. 冶金分析, 2020, 40(9): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202009013.htm Luo M G, Xie Y Q, Li T Y, et al. Determination of mercury in zinc concentrate by direct solid injection method[J]. Metallurgical Analysis, 2020, 40(9): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202009013.htm
陆建平, 覃梦琳, 布静龙, 等. 分散液液微萃取-原子荧光光度法测定大米中的汞[J]. 光谱学与光谱分析, 2017, 37(11): 3606-3609. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201711059.htm Lu J P, Qin M L, Bu J L, et al. Determination of mercury in rice by dispersive liquid-liquid microextraction atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3606-3609. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201711059.htm
李明章, 林建奇. 微波消解-原子荧光光谱法同时测定食醋中的砷和汞[J]. 理化检验(化学分册), 2016, 52(2): 222-225. Li M Z, Lin J Q. Simultaneous determination of arsenic and mercury in vinegar by microwave digestion and atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(2): 222-225.
李自强, 胡斯宪, 李小英, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J]. 理化检验(化学分册), 2018, 54(4): 480-483. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804024.htm Li Z Q, Hu S X, Li X Y, et al. Simultaneous determination of arsenic and mercury in soil pollution census samples by water bath extraction hydride generation atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 480-483. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804024.htm
谭丽娟, 唐玉霜, 黄利宁, 等. 氢化物发生-原子荧光光谱法测定1: 5万区域地质调查样品中的As、Sb、Bi、Hg等4种元素[J]. 中国无机分析化学, 2019, 9(1): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201904005.htm Tan L J, Tang Y S, Huang L N, et al. Determination of As, Sb, Bi and Hg in 1: 50000 regional geological survey samples by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201904005.htm
李丹, 于静, 钱玉萍. 氢化物发生原子荧光法测定陆地水中痕量汞[J]. 资源环境与工程, 2009(6): 867-869. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200906025.htm Li D, Yu J, Qian Y P. Determination of trace mercury in terrestrial water by hydride generation atomic fluorescence spectrometry[J]. Resources Environment & Engineering, 2009(6): 867-869. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200906025.htm
张馨予, 王劲榕. 氢化物发生-原子荧光光谱法测定纯铝中的痕量汞[J]. 云南冶金, 2011, 40(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201106015.htm Zhang X Y, Wang J R. Determination of trace mercury in pure aluminum by hydride generation-atomic fluorescence spectrometry[J]. Yunnan Metallurgy, 2011, 40(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201106015.htm
张锦茂, 张勤. 冷原子无色散原子荧光法测定地球化学样品中的微量汞[J]. 岩矿测试, 1986, 15(1): 37-41. http://www.ykcs.ac.cn/article/id/ykcs_19860112 Zhang J M, Zhang Q. Determination of trace mercury in geochemical samples by cold atom dispersion-free atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 1986, 15(1): 37-41. http://www.ykcs.ac.cn/article/id/ykcs_19860112
余文丽, 王振生, 王小强. 氢化物发生-原子荧光法测田螺中硒、汞[J]. 当代化工, 2020(1): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202001067.htm Yu W L, Wang Z S, Wang X Q. Determination of selenium and mercury in snails by hydride generation-atomic fluorescence method[J]. Contemporary Chemical Industry, 2020(1): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202001067.htm
林建奇. 直接进样测汞仪测定地质样品中汞的应用研究[J]. 地质装备, 2020, 21(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZB202002017.htm Lin J Q. Study on the application of direct injection mercury detector in the determination of mercury in geological samples[J]. Equipment for Geotechnical Engineering, 2020, 21(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZB202002017.htm
路新燕, 陈纯, 高勇, 等. 固体进样-冷原子吸收法直接测定土壤中总汞[J]. 中国环境监测, 2016, 32(3): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201603021.htm Lu X Y, Chen C, Gao Y, et al. Direct determination of total mercury in soil by solid sampling cold atomic absorption spectrometry[J]. Environmental Monitoring in China, 2016, 32(3): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201603021.htm
孙有娥, 李一辰, 程春艳, 等. 测汞仪固体直接进样测定土壤中总汞[J]. 化学分析计量, 2018, 27(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201806035.htm Sun Y E, Li Y C, Cheng C Y, et al. Determination of total mercury in soil by solid direct injection mercury analyzer[J]. Chemical Analysis and Meterage, 2018, 27(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201806035.htm
宋姗娟, 刘彬, 赵颖. 水浴消解-原子荧光法同时测定土壤中的汞、砷、硒、锑[J]. 土壤通报, 2020, 51(3): 630-633. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003017.htm Song S J, Liu B, Zhao Y. Simultaneous determination of mercury, arsenic, selenium and antimony in soil by water bath digestion atomic fluorescence spectrometry[J]. Soil Bulletin, 2020, 51(3): 630-633. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003017.htm
宋永刚, 于彩芬, 张玉凤, 等. 直接测汞仪与原子荧光法测定海洋底栖生物中痕量汞的对比研究[J]. 分析科学学报, 2016, 32(2): 288-290. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201602029.htm Song Y G, Yu C F, Zhang Y F, et al. Comparative study on the determination of trace mercury in marine benthos by direct mercury analyzer and atomic fluorescence spectrometry[J]. Journal of Analytical Science, 2016, 32(2): 288-290. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201602029.htm
秦祎芳, 张红云, 高敬铭, 等. 原子荧光光谱法和快速测汞仪法测定粮食中汞的对比研究[J]. 食品科技, 2020, 45(8): 282-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202008048.htm Qin Y F, Zhang H Y, Gao J M, et al. Comparative study on determination of mercury in grain by atomic fluorescence spectrometry and rapid mercury analyzer[J]. Food Science and Technology, 2020, 45(8): 282-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202008048.htm
宋永刚, 于彩芬, 张玉凤, 等. 脉红螺中痕量汞分析方法的研究[J]. 中国无机分析化学, 2016, 6(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201601001.htm Song Y G, Yu C F, Zhang Y F, et al. Study on the analysis method of trace mercury in red snail[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201601001.htm
-
期刊类型引用(6)
1. 卢碧翠,张修华,王智青,张红进,刘丽立,潘晓瑜,杨明生,黄中伟,陈奇志. 提高电解二氧化锰中间控制磨粉样铁含量检测效率的研究. 中国锰业. 2024(03): 60-63 . 百度学术
2. 杨精存,丁杭冰,施亚菁. 磁性固相萃取-电感耦合等离子体质谱(ICP-MS)法同时检测制革废水多种重金属元素. 皮革与化工. 2024(05): 20-25 . 百度学术
3. 冯先进,杨斐. 电感耦合等离子体串联质谱技术特点及国内应用现状. 冶金分析. 2023(09): 1-13 . 百度学术
4. 严煜,韩乃旭,卢水淼,夏晓峰,林黎,张秀丽. 工业在线-电感耦合等离子体发射光谱法分析湿法冶炼硫酸锌溶液中铜镉钴铁. 岩矿测试. 2022(01): 153-159 . 本站查看
5. 王干珍,彭君,李力,秦毅,曹健,田宗平. 锰矿石成分分析标准物质研制. 岩矿测试. 2022(02): 314-323 . 本站查看
6. 王凯凯. 等离子质谱在水环境重金属检测中的应用. 冶金管理. 2021(11): 163-164 . 百度学术
其他类型引用(0)