• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

表面接触角的测量及表面张力在宝玉石鉴定中的应用

鲍雪, 陆太进, 魏然, 张勇, 李海波, 陈华, 柯捷

鲍雪, 陆太进, 魏然, 张勇, 李海波, 陈华, 柯捷. 表面接触角的测量及表面张力在宝玉石鉴定中的应用[J]. 岩矿测试, 2014, 33(5): 681-689.
引用本文: 鲍雪, 陆太进, 魏然, 张勇, 李海波, 陈华, 柯捷. 表面接触角的测量及表面张力在宝玉石鉴定中的应用[J]. 岩矿测试, 2014, 33(5): 681-689.
Xue BAO, Tai-jin LU, Ran WEI, Yong ZHANG, Hai-bo LI, Hua CHEN, Jie KE. Application of Surface Contact Angle and Surface Tension Measurements in the Identification of Gem Materials[J]. Rock and Mineral Analysis, 2014, 33(5): 681-689.
Citation: Xue BAO, Tai-jin LU, Ran WEI, Yong ZHANG, Hai-bo LI, Hua CHEN, Jie KE. Application of Surface Contact Angle and Surface Tension Measurements in the Identification of Gem Materials[J]. Rock and Mineral Analysis, 2014, 33(5): 681-689.

表面接触角的测量及表面张力在宝玉石鉴定中的应用

详细信息
    作者简介:

    鲍雪, 助理研究员, 主要从事珠宝玉石评估管理和宝玉石表面物性研究工作.E-mail:baoxue1229@163.com

  • 中图分类号: P619

Application of Surface Contact Angle and Surface Tension Measurements in the Identification of Gem Materials

  • 摘要: 表面张力是固体表面重要的物理化学参数之一,其大小与温度和界面两相物质的性质有关。基于Young方程的推导,使用接触角测量法计算固体表面张力已被广泛应用于表面科学和工程领域。宝玉石材料大多具有光洁的表面,在接触角测量的准确性方面较其他表面不均一的固体材料具有明显的技术优势。本文运用现代仪器(FTA200动态接触角测量仪)测量了15个天然和合成宝玉石品种(钻石、合成碳硅石、合成立方氧化锆、碧玺、托帕石、翡翠、琥珀等),以及经覆膜和充填2种处理方法的宝玉石样品(镀膜钻石、覆膜托帕石、覆膜翡翠、覆膜琥珀、充填碧玺)的表面接触角,并运用公式计算其表面张力。测试数据表明,不同品种宝玉石的接触角数值存在差异,如钻石的接触角值为56.68°,其仿制品立方氧化锆的接触角值为37.79°;覆膜处理与未经覆膜处理的天然宝玉石的接触角数值差异明显,如琥珀的接触角值为92.49°,覆膜琥珀的接触角值为66.49°;充填处理宝玉石接触角的测试由于控制液滴的大小受条件限制操作难度较大,测试结果不能准确表达为裂隙中充填物的接触角数值,故充填处理的宝石不宜采用此方法进行区分。研究表明,对于部分宝玉石品种和覆膜处理宝玉石,其表面接触角及表面张力数值差异显著,可以作为宝玉石品种的辅助鉴定依据;尤其是运用接触角的差异对于宝玉石鉴定具有较好的判别性,能够对不同品种的天然宝玉石与表面覆膜的宝玉石样品进行有效区分。与常规宝石检测方法(如红外光谱、折射率测量方法)对比,接触角测量方法具有测量准确、操作简便,不破坏样品的特点,符合宝玉石无损鉴定的基本原则,且能够安全快速地测量高折射率宝石,可以解决宝玉石表面覆膜等与表面物性相关的检测疑难问题。
  • 矿产品堆场由于堆存量大、堆放时间久、堆存条件简陋,且土壤具有吸附富集作用,造成土壤中重金属含量较高,危害人类健康[1, 2, 3]。环境中重金属的迁移性主要取决于它们的化学形态或元素的结合形式,许多研究表明:只用总量分析重金属元素在环境中的活性、生物可用性、毒性等生态效应是不确切的[4, 5, 6],对重金属元素的研究不仅要关注其总量,更要关注其形态分量,特别是有效态和可交换态[7, 8, 9]

    为了研究土壤中重金属化学形态,国内外学者大多采用单独或连续提取法,其中应用最广泛的是Tessier五步提取法[10],然而该方法存在分析结果的可比性差,无法进行数据的验证和比对等缺点。为了克服以上缺点,欧共体标准局提出了BCR连续提取法[11],将土壤重金属化学形态划分为酸可交换态、可还原态和可氧化态,在后来的实践应用中,Rauret等[12]又在该方案的基础上进一步修正,提出了改进的BCR顺序提取方案,目前该方法已被广泛应用于底泥和土壤样品的金属形态分析[13, 14, 15, 16]。本实验采用改进的BCR顺序提取方案[17],结合Cd、As、Pb的物理化学性质,将港口矿产品堆场土壤中Cd、As、Pb分为可交换态、可还原态、可氧化态和残渣态,确定了电感耦合等离子体发射光谱法(ICP-AES)测定Cd、As、Pb的最佳测试条件,将改进的BCR法应用于堆场土壤样品中Cd、As、Pb的形态分析。

    Prodigy全谱直读原子发射光谱仪(美国利曼公司)。工作条件:功率1.1 kW;辅助气流量0.2 L/min;载气压力221 kPa;冷却气流量18 L/min;泵速1.2 mL/min;进样时间40 s;读数时间30 s。

    THZ-82水浴恒温振荡器(常州市恒久仪器公司)。

    L-550台式离心机(湖南湘仪公司)。

    湖底沉积物重金属顺序提取形态分析标准物质GBW 07436(中国地质科学院地球物理地球化学勘查研究所)。

    镉、砷、铅标准储备液(国家钢铁材料测试中心冶金部钢铁研究总部):1.000 mg/mL,使用时按要求稀释成标准溶液。

    冰乙酸、盐酸羟胺、硝酸、双氧水、醋酸铵、醋酸钠等试剂均为分析纯,实验用水为去离子水。

    在确定的矿产品堆场采样点上,先用小土铲去掉表层覆盖有矿物的3 cm土壤,然后倾斜向下去一片片的土壤,采取约1 kg的土壤试样。样品风干后,用玻璃棒压碎,过841 μm尼龙筛,将筛下的样品置于研钵中研磨后,再过147 μm尼龙筛,储存于塑料瓶中备用。

    称取试样1.00 g于聚四氟乙烯烧杯中,加入30 mL王水,低温消解30 min,再加入2 mL氢氟酸,加热至白烟冒尽,冷却后,加入10 mL双氧水,蒸发至约5 mL,冷却至室温转移至100 mL容量瓶中,用ICP-AES测定Cd、As、Pb含量[18]

    按照改进的BCR连续提取法进行提取,提取过程如下。

    第一步(可交换态):称取土壤试样1.0 g于100 mL塑料烧杯中,加20 mL 4 mol/L的乙酸,30℃恒温水浴中振荡2 h,取下,于离心机上4000 r/min离心20 min。上层清夜经0.45 μm微孔滤膜过滤,用ICP-AES测定可交换态。

    第二步(可还原态):向第一步提取后的残余物中加入20 mL 0.4 mol/L盐酸羟胺溶液(盐酸羟胺溶液用硝酸调节pH=2),30℃恒温水浴中振荡6 h,离心分离。其余操作同第一步,测定可交换态。

    第三步(可氧化态):向第二步提取后的残余物中加入10 mL水和10 mL 30%的过氧化氢溶液(30%的双氧水溶液用硝酸溶液调pH值至2~3),室温振荡浸取1 h,后于85℃水浴中振荡2 h,冷却后加入10 mL 1 mol/L的乙酸铵溶液,持续震荡1 h,离心分离取其上清液。其余操作同第一步,测定可氧化态。

    将经过第三步提取后的残渣置于100 mL聚四氟乙烯烧杯中,加入10 mL浓硝酸和5 mL氢氟酸,加热煮沸10 min后,加入2.5 mL高氯酸,电热板低温加热至冒浓白烟,加盖,使黑色有机碳化物分解。加热至近干后再加入2.5 mL高氯酸,蒸至近干,取下坩埚,冷却后,加入25 mL 2%的稀硝酸并加热,使白色残渣溶解,最终消解后的样品定容至50 mL或100 mL容量瓶,用ICP-AES测定残渣晶格结合态。

    ICP-AES测定样品时主要存在基体干扰和背景干扰。土壤样品中含有大量的Fe、Al、K、Na、Ca、Mg等基体元素,为此,本实验采用了基体匹配法来消除基体干扰,具体做法是先测定样品基体元素的浓度,后在Cd和Pb的浓度范围为0~25.0 mg/L、As的浓度范围为0~50.0 mg/L的系列标准溶液中加入基体元素的参考浓度;同时在配制各系列标准溶液时,用相应的提取剂溶液来定容,以便使待测样品溶液与标准溶液的基体大体保持一致,从而消除基体干扰。

    ICP-AES测试中的背景干扰主要来自非分析物自身的发射光产生的干扰。本实验通过仪器自带软件,采用离峰扣背景法消除此干扰。具体方法:分别对空白溶液、标准溶液及代表性的待测溶液进行波长扫描,观察扫描得到的叠加峰形图,本实验对Cd和Pb进行了单侧的背景扣除,对As进行了双侧的背景扣除。

    用1.0 mg/mL的镉、砷、铅标准储备液配制标准曲线,使得Cd和Pb的浓度范围为0~25.0 mg/L,As的浓度范围为0~50.0 mg/L,通过仪器测试混合标准溶液,测定不同元素的线性方程,如表 1所示,各元素的相关系数为0.99996~0.99999。

    表  1  标准工作曲线
    Table  1.  Calibration curves of elements

    待测元素
    线性范围
    ρ/(mg·L-1)
    线性方程相关系数
    Cd0~25.0y=53578x-0.59970.99999
    As0~50.0y=1531.7x+7.26540.99996
    Pb0~25.0y=3125x+21.540.99998
    下载: 导出CSV 
    | 显示表格

    按各形态的浸取流程,分别做11次空白试验,以测定值的3倍标准偏差,并考虑试样的称样量及稀释倍数作为方法的检出限。表 2结果显示,各形态测试方法的检出限(3σ)Cd为0.026~0.147 μg/g,As为0.015~0.219 μg/g,Pb为0.017~0.108 μg/g。

    表  2  方法检出限
    Table  2.  Detection limits of the method
    元素形态检出限/(μg·g-1)
    CdAsPb
    可交换态0.0230.0150.017
    可还原态0.0260.0240.031
    可氧化态0.0430.0330.022
    残渣态0.1470.2190.108
    下载: 导出CSV 
    | 显示表格

    取天津港口矿产品堆场土壤样品共3份,按各形态的提取流程分别进行6次提取实验,取其平均值。由表 3结果可见,Cd的相对标准偏差(RSD)在0.41%~7.31%之间,As的RSD在0.18%~4.99%之间,Pb的RSD在0.57% ~9.28%之间,表明该方法的精密度较好。

    表  3  方法精密度
    Table  3.  Precision tests of the method
    元素
    形态
    样品
    编号
    Cd As Pb
    w/(μg·g-1) RSD/% w/(μg·g-1) RSD/% w/(μg·g-1) RSD/%
    可交
    换态
    12.12.95.21.01.42.7
    21.24.81.35.00.47.8
    318.10.416.20.40.74.5
    可还
    原态
    14.52.17.10.40.55.6
    20.93.71.63.70.39.3
    33.61.721.20.20.65.2
    可氧
    化态
    11.15.289.40.215.90.6
    24.70.815.70.61.93.7
    38.30.4199.11.24.52.4
    残渣
    10.67.2221.21.728.10.8
    20.57.360.13.55.52.0
    35.60.5679.82.313.40.6
    下载: 导出CSV 
    | 显示表格

    为验证三步提取过程中测试元素的化学存在形态的准确性,本实验采用了湖底沉积物形态分析标准物质GBW 07436进行了验证,将每次提取形态的测定值与标准值进行了比较,从表 4可以看出,Cd、As、Pb的测定值与标准值吻合较好。

    表  4  改进BCR法分析GBW 07436标准物质中Cd、As、Pb的测定值与标准值(n=5)
    Table  4.  Certified and determined contents of extractable contents of Cd, As and Pb in certified reference material of GBW 07436 (n=5)w/(μg·g-1)
    测试
    元素
    可交换态可还原态可氧化态
    测试值标准值测试值标准值测试值标准值
    Cd1.53±0.251.46±0.200.94±0.070.86±0.030.15±0.020.12±0.03
    As0.23±0.040.25±0.031.52±0.051.48±0.040.47±0.040.44±0.03
    Pb1.61±0.221.58±0.1748.4±4.649.1±5.55.1±0.345.4±0.23
    下载: 导出CSV 
    | 显示表格

    采用本方法分析6个堆场土壤样品中不同化学形态的Cd、As、Pb的含量,结合样品总量进行综合评价,结果见表 5。由表 5可以看出,样品各元素的各个浸取形态之和其总量基本相符,回收率在84.54%~102.88%,表明提取方法具有较好的可行性。

    表  5  土壤样品Cd、As、Pb形态分析
    Table  5.  Analytical results of Cd, As and Pb in soil samples
    样品
    编号
    测试
    元素
    w/(μg·g-1)回收率
    /%
    可交
    换态
    可还
    原态
    可氧
    化态
    残渣态四形态
    之和
    总量
    1Cd2.14.51.10.68.29.488.2
    As5.27.189.4221.2322.8333.696.8
    Pb1.340.515.928.145.947.995.9
    2Cd1.91.342.50.76.57.191.9
    As7.910.2116.8428.4563.4600.593.8
    Pb0.30.24.413.718.619.098.1
    3Cd1.20.94.70.57.28.584.5
    As1.31.615.760.178.779.898.6
    Pb0.40.31.95.58.19.089.8
    4Cd1.72.22.50.56.97.296.6
    As1.31.619.069.991.795.596.1
    Pb2.31.217.434.155.055.199.7
    5Cd22.117.420.53.363.361.5102.9
    As16.918.9300.7687.41024.01077.095.1
    Pb1.81.723.040.667.268.498.1
    6Cd18.13.68.35.635.536.597.2
    As16.1221.2199.1679.8916.4954.196.1
    Pb0.70.64.513.419.222.186.7
    下载: 导出CSV 
    | 显示表格

    表 6为土壤中Cd、As、Pb四种化学形态含量占总量的百分比。由表 6可知,堆场土壤中Cd主要以可交换态、可还原态和可氧化态存在,占总量的70%~90%,残渣态占比很小。As和Pb以残渣态占绝对优势,占总量的60%以上,其他三种存在形态所占比例较小。在这四种化学形态中,当环境酸度发生变化时,可交换态的金属元素容易被生物体吸收,表明该形态的迁移性强;可还原态和可氧化态主要为氧化物、硫化物和有机物的结合态,可被生物间接吸收,其环境迁移型较弱;残渣态主要是硅酸盐类,迁移性很小并且很难被生物体吸收利用,因此,在自然条件下,Cd、As、Pb进入生物体中的几率取决于可交换态、可还原态、可氧化态含量的多少。由表 6提供的数据可见,矿产品堆场土壤中Cd、As、Pb的可交换态、可还原态和可氧化态三种形态总量顺序为Cd(79.40%~94.94%)>Pb(24.27%~37.73%)>As(22.89%~31.51%),其溶解性顺序Cd>Pb>As,表明堆场土壤中Cd易被生物吸收和累积。

    表  6  堆场土壤中Cd、As、Pb各种化学形态所占比例
    Table  6.  Species distribution of Cd, As and Pb in soil samples
    样品编号测试元素各形态含量的比例/%
    可交换态可还原态可氧化态残渣态
    1Cd23.147.811.86.1
    As1.62.127.567.9
    Pb2.71.132.056.4
    2Cd26.719.334.510.3
    As1.51.720.675.6
    Pb1.61.021.768.6
    3Cd14.410.256.75.7
    As1.62.019.474.0
    Pb4.63.622.566.3
    4Cd24.130.235.26.7
    As1.41.620.173.8
    Pb4.12.231.060.4
    5Cd34.528.432.15.1
    As1.61.828.264.4
    Pb2.72.432.57.5
    6Cd47.89.721.914.9
    As1.72.221.172.0
    Pb3.32.622.164.9
    下载: 导出CSV 
    | 显示表格

    本实验采用改进的BCR和ICP-AES提取测定了6个堆场土壤样品中不同化学形态的Cd、As、Pb的含量,并通过形态分析标准物质和回收率实验证明了改进的BCR三步提取程序的可行性,该提取和检测方法可以在全国各口岸矿产品堆场进行土壤重金属形态的调查,为受污染土壤治理提供了科学依据。

  • 图  1   液体在固体表面的接触角

    Figure  1.   The contact angle of liquid on the solid surface

    图  2   FTA200表面张力仪

    Figure  2.   FTA200 dynamic surface tension meter

    图  3   控制液滴大小的针头(针头标准:27 Gauge)

    Figure  3.   The needle for controlling the droplet size

    图  4   样品019天然棕红色琥珀样品,其中一面具有光滑的平面

    Figure  4.   The brownish red amber sample (No.019)

    图  5   样品020黄色琥珀底面覆蓝绿色膜

    Figure  5.   The yellow amber with green coated bottom (No.020)

    图  6   样品021黄色琥珀覆棕红色膜

    Figure  6.   The brownish red amber with brownred coated bottom (No.021)

    图  7   样品013上半部分(013-2) 有裂隙出露,下半部分(013-1) 没有裂隙出露面

    Figure  7.   A crack in the upper part of sample No.013, no in the lower part

    图  8   样品019、020、021的红外吸收光谱(KBr粉末法)

    a—样品021琥珀覆棕红色膜;b—样品020琥珀覆蓝绿色膜;c—样品019天然琥珀。

    Figure  8.   Infrared spectra of No.019, No.020, No.021

    表  1   测试样品信息及其接触角测量值

    Table  1   The basic information of test samples and their measured contact angles

    样品编号 样品名称 颜色 琢型 接触角测量值(°) 接触角测量图片 备注
    001 钻石 无色 圆形刻面 56.68 天然
    002 钻石 无色 圆形刻面 33.33 镀膜处理
    003 合成碳硅石 绿色 圆形刻面 52.63 合成
    004 CZ 无色 椭圆刻面 37.79 合成
    005 红宝石 红色 椭圆弧面 73.99 天然
    006 合成红宝石 红色 椭圆刻面 77.41 合成
    007 蓝宝石 蓝色 椭圆刻面 74.95 天然
    008 合成蓝宝石 蓝色 水滴形刻面 74.42 合成
    009 橄榄石 黄绿色 椭圆刻面 59.14 天然
    010 透辉石 绿色 方形刻面 44.28 天然
    011 长石 黄色 特殊切工 39.91 天然
    012 黄水晶 橙黄色 特殊切工 37.33 天然
    013-1 碧玺 粉红色 椭圆弧面 58.08 天然
    013-2 碧玺 粉红色 椭圆弧面 45.80 充填处理
    014 托帕石 粉红色 三角形刻面 29.48 天然
    015 托帕石 蓝色 椭圆刻面特殊切工 55.49 覆膜处理
    016 托帕石 无色 椭圆刻面特殊切工 54.04 覆膜处理
    017 翡翠 绿色 水滴形弧面 44.40 天然
    018 翡翠 绿色 随形 50.21 覆膜处理
    019 琥珀 棕红色 半球形 92.49 天然
    020 琥珀 黄色 圆盘形 63.35 覆膜,膜为蓝绿色
    021 琥珀 黄色 花形 69.48 覆膜,膜为棕红色
    下载: 导出CSV
  • doi: 10.3969/j.issn.1671-1815.2007.19.042
    http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200713003.htm
    http://www.cnki.com.cn/Article/CJFDTOTAL-LHJW200802010.htm
    陈晓磊. 固体聚合物表面接触角的测量及表面能研究//长沙: 中南大学, 2012.
    doi: 10.3969/j.issn.1671-1815.2009.13.003
    王民民, 李海波, 李梅, 丁佩. 琥珀及其相似品实验室检测方法探讨//北京: 国土资源部珠宝玉石首饰管理中心, 2013: 136-138.
图(8)  /  表(1)
计量
  • 文章访问数:  1023
  • HTML全文浏览量:  401
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-26
  • 修回日期:  2014-05-04
  • 录用日期:  2014-06-19
  • 发布日期:  2014-05-24

目录

/

返回文章
返回