Microstructure Characterization and Mineral Morphology of Tea-Dust Glaze Made in the Ding Kiln of the Northern Song Dynasty
-
摘要:
茶叶末釉古瓷作为最早出现的结晶釉之一,开展深入研究可明确其矿物晶体特征、呈色机理以及古代烧制工艺,丰富古陶瓷数据库。目前相关研究多来源于二十世纪末,样本稀少且囊括的年代和窑口严重不足,所用科学仪器多已淘汰,亟需更多实验分析与数据支撑。本文采用光学显微镜(OM)、激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)、扫描电镜-能谱(SEM-EDS)、激光共聚焦拉曼光谱(LRS)、飞行时间二次离子质谱(ToF-SIMS)等现代科学仪器对北宋定窑茶叶末釉样本中矿物晶体开展了分析和表征。结果表明,釉中主晶相与辽金龙泉务窑一致,为钙长石和辉石;釉面整体表现为酱-黑色釉基质富铁(Fe2O3含量均值9.73%)和矿物结晶富铁(Fe2O3含量均值11.33%),除α-Fe2O3和Fe3O4晶体等熔后重结晶矿物,还有铁镁尖晶石、残余高岭石等未融熔矿物,反演出制釉原料中有镁的加入以及烧成温度可能低于1200℃,异于前人高温烧制的观点。SIMS离子成像揭示了胎釉交界处为厚约20~80μm的钙长石晶体层,而非化妆土或玻璃态的致密反应层。研究揭示了茶叶末古瓷中Fe元素不均匀富集,部分区域过饱和而析出含铁矿物晶体,釉面颜色则主要由黄褐色的矿物晶体斑点和酱-黑色玻璃基质共同组成,同时ToF-SIMS在古瓷微区原位的形貌结构和元素分析上效果显著,能够辨别钙长石、碱性长石等微米级矿物。
要点(1)茶叶末釉属铁系结晶釉,表现为黄褐色矿物晶体和酱-黑色釉基质富铁。
(2)釉面原料残余的高岭石反演出本研究样本烧成温度可能低于1200℃。
(3) ToF-SIMS在古陶瓷微区原位上能够实现微米级矿物辨别。
HIGHLIGHTS(1) Tea-dust glaze belongs to the iron system of crystallization glaze, which is manifested as tan mineral crystals and sauce-black glaze matrix rich in iron.
(2) The residual kaolinite of glazed raw materials shows that the firing temperature of the samples in this study was most likely below 1200℃.
(3) ToF-SIMS can distinguish micron-level mineral discrimination in situ on ancient ceramics.
Abstract:The tea-dust glaze ancient porcelain is one of the earliest crystalline glazes, which is rarely studied deeply because of its rarity. In this study, the mineral crystals in tea-dust glaze made in the Ding Kiln of the Northern Song Dynasty were analyzed by optical microscope (OM), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), scanning electron microscopy coupled with an X-ray energy dispersive spectrometer (SEM-EDS), laser confocal Raman spectrometer (LRS), and high-resolution time of flight-secondary ion mass spectrometry (ToF-SIMS). The results show that the main crystal phase in the glaze is the same as that of the Longquanwu Kiln in the Liao and Jin Dynasty, which is anorthite and augite. The overall performance of the glaze is that the sauce-black glaze matrix is rich in iron (Fe2O3 mean 9.73%) and the mineral crystal is rich in iron (Fe2O3 mean 11.33%). In addition to α-Fe2O3 crystals, Fe3O4 crystals and other recrystallized minerals after melting, the glaze also has pleonaste, residual kaolinite and other unmelted minerals from raw glaze materials. The residual kaolinite shows that the firing temperature of the samples in this study was most likely below 1200℃. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202401290011.
-
Keywords:
- tea-dust glaze /
- minerals /
- element imaging /
- ToF-SIMS /
- LA-ICP-MS
BRIEF REPORTSignificance: Modern scientific research on ancient ceramics encompasses numerous aspects, such as the mineral crystal characteristics of the glaze[2], the color mechanism of the glaze[3], the ancient firing process and raw materials[5], and the reproduction and restoration of ancient ceramics[6]. The utilization of modern cutting-edge analytical instruments to conduct in-depth and detailed research on ancient ceramics, such as tea-dust porcelain, can enhance the understanding of the production process, color mechanism, layered structure and other aspects of ancient ceramics. It cannot only offer methods, principles, research data and other supports for the imitation and restoration, identification, protection and restoration of ancient ceramics, but also promote and inherit the outstanding ancient porcelain culture and advance the progress of related intangible cultural heritage.
As one of the earliest crystallized glazes, to date, 12 samples of tea-dust glaze from ancient kilns have been systematically investigated, including the Huangbao Kiln in the Tang Dynasty, the Hunyuan Kiln, the Guantai Kiln and the Longquanwu Kiln in the Liao and Jin Dynasties[7-9]. With the deepening of research on ancient ceramics, the importance of minerals has become increasingly prominent, but there is still a lack of directional classification of minerals in this field. At the same time, the majority of the scientific instruments employed have been phased out, and more experimental analysis and data support are urgently needed to establish a more comprehensive database of tea-dust glaze characteristics.
In this research, tea-dust glaze pieces of the Ding Kiln in the Northern Song Dynasty were studied by LA-ICP-MS, ToF-SIMS, SEM-EDS and LRS. Drawing on the mineral crystallization and weathering processes of igneous rocks and previous mineral related research results, for the first time, mineral crystals in ceramic glazes were classified into three categories based on their genesis system: post melting recrystallized minerals, unmelted minerals, and weathering minerals. The different classification minerals were revealed to have different indicative meanings for ceramic research. The tea-dust glaze belonged to the iron system of crystallization glaze, which was manifested as tan mineral crystals and sauce-black glaze matrix rich in iron. The residual kaolinite of glazed raw materials shows that the firing temperature of the sample was most likely below 1200℃, which was different from the current view that the tea-dust glaze of Tang and Song such as the Yaozhou Kiln belonged to high-temperature glaze.
Methods: (1) Sample information. The sample is the waist fragment of a pot from the Ding Kiln of the Northern Song Dynasty. The exterior is coated with tea glaze (Fig.1a), while the interior is unglazed (Fig.1b). The body, approximately 5mm thick and white in color (Fig.1c), exhibits distinct spots of rust and other colors (Fig.1e). This is in accordance with the fundamental characteristics of direct tire production by Dingyao, using weathered coal gangue (white dirt) as a raw material[31]. The cross section of the glaze layer, approximately 1mm thick, presents a sauce-black glaze matrix (Fig.1e). A 1.5cm×1.5cm rectangular block was fabricated by cutting the sample fragments and thinned to a thickness of 0.5cm, while the original glaze was retained as test sample A (Fig.1d). Another 1.5cm×1.5cm rectangular block was produced and beveled at an angle of approximately 60° from the normal of the enamel surface to “extend” the matrix of the measured glaze, and then polished as test sample B (Fig.1e). Additionally, a 3cm×0.5cm rectangular block was made to smooth the tire base and the section was fabricated into an optical slice (Fig.1f).
(2) LA-ICP-MS analyses. LA-ICP-MS consists of a 193nm deep ultraviolet laser denudation system (Applied Spectra’s Resolution SE) and an inductively coupled plasma mass spectrometer (Agilent’s Agilent 7900). Laser parameters are set as follows: spot diameter 50μm, denudation frequency 10Hz, energy density 3.5J/cm, scanning speed 3μm/s. Detailed equipment tuning parameters can be found in Thompson et al[32]. NIST610, NIST612, BCR-2G and BHVO-2G were used as standard samples, and the standard sample was inserted after every 10 sample points for analysis. The data were corrected by the “3D Trace Element” method using Iolite software without an internal standard method, and the valence state of iron was bivalent.
(3) ToF-SIMS analyses. ToF-SIMS (TOF SIMS 5-100, ION-TOF GmbH, Germany) was set with a cycle time of 100μm (0−1000amu). A sputtering gun was used to remove sample surface contamination, and an electron gun (±20keV) was used to neutralize the charge effect on the sample surface. Spe mode parameters: an ion beam Bi1+, energy 30keV, beam (pulsed) 0.8pA; fast mode parameters: an ion beam Bi1+, energy 30keV, beam (pulsing) 1.0pA. Sputtering parameters: the sputtering gun chooses Arn+ cluster ions to avoid surface oxidation caused by the sputtering beam, with an energy of 10keV and a beam current of about 9nA. SurfaceLab 7.2 software was used to correct and analyze the ToF-SIMS experimental data.
(4) SEM-EDS analyses. Before the use of SEM-EDS (Phenom ProX), the sample glaze was wiped and cleaned with analytical grade ethanol, and then sprayed with platinum. The accelerated voltage was 15kV and the electron beam current was 0.6nA.
(5) LRS analyses. Mineral phase identification was completed by using LRS (HORIBA XploRA Plus). The test point was selected under a high-magnification objective (×100). The laser wavelength was 638nm, the laser power was 25mW, the spot diameter was 1μm, the scanning range was 100−1800cm−1, and the exposure time was 10-100s. Each location was scanned twice.
Data and Results: The sample is of a high calcium glaze (CaO content>10%), and also an iron crystalline glaze. The overall performance of the glaze matrix is a sauce-black iron-enriched (Fe2O3 content mean of 9.73%) and yellow-brown mineral crystal iron-enriched (Fe2O3 content mean of 11.33%). The mineral clusters can be classified into three types based on their elemental composition and morphological characteristics. The main crystalline minerals are anorthite and augite formed through recrystallization after melting, which are consistent with those of the Longquanwu Kiln in the Liao and Jin Dynasties. The Raman spectra of α-Fe2O3 crystals precipitated by saturated iron elements are in accordance with those of the black glaze Huabei oil in the Song Dynasty and the Linfen Kiln in Shanxi[30,37]. Residual kaolinite as an unmelted mineral was detected in the glaze, which indicates that the sintering temperature is lower than 1200℃. SIMS ion imaging indicated that Fe was not uniformly enriched near the glaze bubble, and there was a 20−80μm thick anorthite crystal layer at the fetal glaze junction, rather than a dense reaction layer in the makeup clay or glass state.
-
锑(Sb)是一种重要的战略金属,应用领域包括阻燃塑料、缩聚催化剂、铅酸电池、玻璃、橡胶、颜料、陶瓷、半导体等[1-2]。同时,锑也是一种对动植物有害的非必需类金属,其毒性、迁移性受到锑存在形式的影响[3]。环境中锑主要存在形式为Sb(OH)3和Sb(OH)−6,其中三价锑Sb(Ⅲ)的毒性明显高于五价锑Sb(Ⅴ)[4]。世界卫生组织规定饮用水中锑的最大允许浓度为20μg/L,中国规定饮用水中的最大允许浓度为5μg/L,锑及含锑化合物已被欧盟(EU)和美国环境保护署(USEPA)列为新兴污染物或优先关注的污染物[5]。中国锑资源丰富,锑矿主要集中在广西、湖南、云南和贵州地区[6-7]。中国也是锑资源开采大国,锑产能约占全球的78%[8]。锑矿的大量开采和冶炼,产生的尾矿废渣和矿山废石中锑含量较高。同时,有色金属冶炼、燃烧化石燃料等活动也会产生大量含锑废物,经雨水冲刷和地表径流等因素进入土壤[9]。例如某射击场和燃煤电厂附近的土壤中锑含量高达67.48mg/kg和39.29mg/kg[10-11],造成了严重的污染。地表土壤中的锑除直接污染地表、地下水以外,还可能经由植物根部吸收富集,威胁动物和人类健康[12]。因此,厘清锑在土壤中的吸附、迁移行为对准确预测锑的环境风险具有重要意义。
进入土壤的锑可能被吸附、解吸,甚至发生氧化还原反应,自然状况下锑可以通过与金属氢氧化物发生吸附或者共沉淀形成稳定的次生锑矿物[13],而锑矿物中的锑也可转变为溶解态,扩散至周边环境乃至地下水中。土壤中吸附锑的活性成分主要为铁、铝和锰氧化物和黏土矿物等,其中广泛存在于土壤和沉积物中的铁氧化物[14],如针铁矿、赤铁矿和水铁矿等,对锑的固定占比可达40%~75%[15]。有研究表明,锑在铁氧化物表面的吸附、沉淀行为与矿物晶面的暴露情况及其浓度有复杂依赖关系[16],可在氧化铁表面形成多种配位构型的内球配合物[17],基于零价铁的锑污染土壤修复技术也有报道[18]。锰氧化物是自然界中常见的天然氧化剂,可通过氧化和吸附机制在降低锑的毒性和影响锑的迁移行为方面发挥至关重要的作用[19],如有研究报道了天然存在的锰氧化物会降低锑的流动性和生物利用度[20]。氧化锰不同的暴露晶面对锑的吸附行为也有差异,如Sb(Ⅲ)优先吸附于α-MnO2的{310}、γ-MnO2(斜方锰矿)的{131}和δ-MnO2的{111}晶面[21]。铝氧化物和黏土材料虽然对锑的吸附量较低,但自然界中氧化铝和黏土矿物相对含量可能较高,对锑的影响也不可忽视[22]。研究发现Sb(Ⅴ)在γ-Al2O3可形成外配球络合物[23],膨润土对Sb(Ⅲ)和Sb(Ⅴ)的最大吸附量分别为370~555μg/g和270~500μg/g[24]。上述材料通过改性可提高对锑的吸附能力,因而可以构建锑污染的修复材料[25]。尽管目前已有文献关注天然矿物对锑的吸附、解吸行为[26-27],但锑在天然矿物界面处形态的原位表征、其形态与锑浓度的相关性仍未见报道,了解这些基本信息将有助于深入了解锑的地球化学循环及环境风险。
因此,为探究进入土壤中不同价态锑的吸附迁移行为,有必要对土壤中典型矿物吸附锑的性能及吸附机制进行比较与研究。本文基于土壤的主要成分及相关文献中已证实的对锑的吸附迁移行为有显著影响的组分,选择了土壤中代表性的5种金属氧化物(赤铁矿、针铁矿、水铁矿、斜方锰矿、氧化铝)和一种黏土矿物(高岭石),系统地比较了这6类矿物对Sb(Ⅲ)和Sb(Ⅴ)的吸附性能,获得吸附速率、吸附容量、pH值对吸附的影响等热力学、动力学参数,并结合拉曼光谱对锑在矿物表面的吸附、沉积行为进行原位表征。通过分析吸附机制,总结了上述土壤中典型矿物对锑环境迁移行为的影响,研究结果可为土壤中锑污染风险预警及阻控提供参考。
1. 实验部分
1.1 材料及表征
为尽可能地反映实际土壤成分的特征,本研究除水铁矿外,其他材料均直接采用商品化的矿物材料,包括:斜方锰矿(γ-MnO2,90%,上海麦克林生化科技有限公司);赤铁矿(α-Fe2O3,99.8%,上海麦克林生化科技有限公司);针铁矿(FeHO2,99%,上海贤鼎生物科技有限公司);氧化铝(α-Al2O3,99.99%,艾览化工科技有限公司);高岭石(A12O3·2SiO2·2H2O,分析纯,上海麦克林生化科技有限公司)。水铁矿由于稳定性较差,为保证实际存在形态的一致性,采用实验室方法合成。合成方法[28]如下:配制0.2mol/L硝酸铁(分析纯,国药集团化学试剂有限公司)溶液,在不断搅拌情况下滴加浓氨水至溶液pH=7.0,再搅拌30min。离心、超声洗涤3次,真空干燥12h。
采用X射线衍射仪(XRD,SmartLab SE,日本Rigaku公司)和比表面积测试仪(BET,ASAP2460,美国麦克仪器公司)对材料进行表征。样品处理如下:将赤铁矿、针铁矿、水铁矿、斜方锰矿、氧化铝、高岭石于真空烘箱60℃干燥12h后手动研磨后进行测试。
采用Zeta电位测试(ZEN3690,英国Malvern公司)表征材料的表面电位。样品处理如下:将材料超声分散后,采用盐酸和氢氧化钠将分散液调至不同pH值,取上清液测试样品的Zeta电位。
采用电感耦合等离子体发射光谱仪(ICP-OES,EXPEC6000,杭州谱育科技发展有限公司)测定溶液中锑浓度。仪器工作条件:功率1150W,蠕动泵转速50r/min,辅助气流速0.6L/min,雾化器气体流速0.5L/min(转子流量计测量),冲洗时间30s,积分时间15s,重复次数3次。锑元素的特征谱线为:206.8、231.1、259.8nm。
采用拉曼光谱仪(Raman,QEPRO,蔚海光学仪器(上海)有限公司)对界面吸附态锑进行原位表征。测试方法及仪器条件如下:取吸附后的矿物分散液10μL滴加至玻片,直接进行拉曼光谱测试。激光波长780nm,激光功率100mW,积分时间10s,积分次数10次,光谱分辨率2cm−1。拉曼测试时每个样品至少随机选取10个不同的位置进行光谱采集,计算平均光谱进行后续分析。
1.2 Sb(Ⅲ)/Sb(Ⅴ)的吸附热力学实验
将焦锑酸钾、酒石酸锑钾溶解配制成1000mg/L的储备溶液,实验前按照一定比例稀释到目标浓度。进行吸附实验前,先使用0.1mol/L盐酸或0.1mol/L氢氧化钠将10mL不同浓度的Sb(Ⅲ)和Sb(Ⅴ)初始溶液pH调节至7.0,同时加入硝酸钾控制离子强度为10mmol/L。向溶液中加入一定量的矿物材料,并在25℃下振荡吸附24h。取上层清液通过0.22μm水系滤头过滤,酸化,稀释10倍后,使用ICP-OES测定吸附后锑的浓度,计算吸附量qe(mg/g)。土壤铁锰氧化物和黏土矿物的用量分别为:赤铁矿10mg、针铁矿10mg、水铁矿5mg、氧化铝20mg、斜方锰矿10mg、高岭石50mg。实验中每组样品均平行测定3次,取平均值进行分析。
1.3 Sb(Ⅲ)/Sb(Ⅴ)的吸附动力学实验
取30mL浓度为15mg/L的Sb(Ⅲ)和Sb(Ⅴ)溶液,pH调节至7.0,加入硝酸钾保持离子强度为10mmol/L。加入一定量矿物后于25℃下振荡吸附,在吸附不同时间后,取上层清液通过0.22μm水系滤头过滤,酸化、稀释,ICP-OES检测。土壤铁锰氧化物和黏土矿物的用量分别为:赤铁矿60mg、针铁矿30mg、水铁矿7.5mg、氧化铝150mg、斜方锰矿30mg、高岭石600mg。实验中每组样品均平行测定3次,取平均值进行分析。
1.4 pH值对Sb(Ⅲ)/Sb(Ⅴ)吸附的影响实验
分别将30mL浓度为15mg/L的Sb(Ⅲ)和Sb(Ⅴ)溶液的初始溶液pH调节为4.0、7.0、9.0,加入硝酸钾保持离子强度为10mmol/L。加入一定量矿物材料后,于25℃下振荡吸附。吸附24h后,取上层清液通过0.22μm水系滤头过滤,酸化、稀释,ICP-OES检测。矿物用量同1.2节。实验中每组样品均平行测定3次,计算平均值进行分析。
2. 结果与讨论
2.1 六种矿物材料表征
为了解矿物的晶型及物相类型,采用X射线衍射谱分析矿物,其谱图见图1。6种矿物的XRD谱图与标准卡片对照,除水铁矿无明显晶型以外,另外5种矿物的XRD谱图与矿物标准谱图吻合较好,且无其他杂相;水铁矿为无定型矿物,其XRD谱图与文献报道结果[29]一致。矿物的比表面积采用Brunauer-Emmett-Teller法(BET)进行测定,分别测定了6种材料的氮气吸脱附曲线,结果如图2所示。经计算,6种矿物材料赤铁矿、针铁矿、斜方锰矿、氧化铝、高岭石和水铁矿的比表面积分别为6.6、18.9、32.3、6.1、10.5、335.6m2/g。其中,赤铁矿、针铁矿、斜方锰矿、氧化铝、高岭石的氮气吸附-解吸等温线符合Ⅳ类型吸附等温线,说明这5种材料具有介孔结构(孔直径为2~50nm);水铁矿的氮气吸附-解吸等温线符合Ⅰ类型吸附等温线,说明水铁矿具有微孔结构(孔直径<2nm)。
2.2 六种矿物材料对锑的吸附动力学研究
中性条件下6种矿物材料对Sb(Ⅲ)/Sb(Ⅴ)的吸附动力学如图3所示,吸附数据拟合均更符合准二级动力学模型(表1),表明化学吸附是主要的速率控制步骤。Sb(Ⅲ)和Sb(Ⅴ)在吸附初始阶段即前2h内吸附速率较快;随着吸附时间进一步延长,矿物表面的活性吸附位点逐渐饱和,吸附速率在2~6h内逐渐下降;除斜方锰矿吸附Sb(Ⅲ)外,其他材料均在24h左右达到吸附平衡。斜方锰矿吸附Sb(Ⅲ)在吸附初期(约5min)迅速达到较高的吸附量,该过程可能与其对Sb(Ⅲ)的氧化作用有关,反应方程式如以下(1)和(2)所示,氧化反应[30]以及生成Sb(Ⅴ)的吸附共同作用导致前期吸附速率较快[31];在斜方锰矿氧化Sb(Ⅲ)的过程中,可能破坏其表面结构,导致少部分吸附态锑的溶出[25],因此20min后Sb(Ⅲ)的吸附量有一定程度地下降。随吸附时间的继续延长,Sb(Ⅲ)的吸附逐步达到平衡。
表 1 Sb(Ⅲ)和Sb(Ⅴ)的吸附动力学拟合参数Table 1. Fitting parameters of adsorption kinetics for Sb(Ⅲ) and Sb(Ⅴ)矿物材料 Sb(Ⅲ)准一级动力学 Sb(Ⅲ)准二级动力学 Sb(Ⅴ)准一级动力学 Sb(Ⅴ)准二级动力学 K1
(h−1)qe
(mg/g)R2 K2
[g/(mg·h)]qe
(mg/g)R2 K1
(h−1)qe
(mg/g)R2 K2
[g/(mg·h)]qe
(mg/g)R2 赤铁矿 2.58 7.35 0.750 0.88 7.45 0.911 1.15 1.05 0.721 1.52 1.13 0.913 针铁矿 0.53 7.83 0.896 0.12 8.22 0.986 1.75 2.74 0.721 1.05 2.86 0.924 水铁矿 4.74 33.7 0.645 0.40 34.4 0.957 3.33 24.1 0.946 0.33 24.8 0.999 斜方锰矿 82.1 7.03 0.716 41.9 7.22 0.940 0.75 4.90 0.832 0.20 5.30 0.921 氧化铝 6.58 0.71 0.958 15.5 0.73 0.976 4.49 0.59 0.631 16.1 0.61 0.933 高岭石 6.45 0.08 0.927 132.8 0.08 0.973 0.34 0.09 0.894 9.17 0.06 0.939 $$ \mathrm{MnO}_{ \mathrm{2}} \mathrm{+Sb(OH)}_{ \mathrm{3}} \mathrm{+H}^{ \mathrm+} \mathrm{+H}_{ \mathrm{2}} \mathrm{O\rightarrow Mn}^{ \mathrm{2+}} \mathrm{+Sb(OH)}_{ \mathrm{6}}^{ \mathrm-} $$ (1) $$ \mathrm{2MnO}_{ \mathrm{2}} \mathrm{+Sb(OH)}_{ \mathrm{3}} \mathrm{+5H}^{ \mathrm+}\rightarrow \mathrm{2Mn}^{ \mathrm{3+}} \mathrm{+Sb(OH)}_{ \mathrm{6}}^{ \mathrm-} \mathrm{+H}_{ \mathrm{2}} \mathrm{O} $$ (2) 2.3 六种矿物对锑的吸附等温线
为了比较6种矿物材料对锑的吸附能力,分别测得中性条件下Sb(Ⅲ)/Sb(Ⅴ)在6种矿物表面吸附的吸附等温线,结果如图4所示,随着Sb(Ⅲ)/Sb(Ⅴ)初始浓度的增加,矿物对锑的吸附量增加。分别采用Langmuir和Freundlich等温线模型对吸附等温线进行了拟合,相关拟合参数列于表2。结果表明,Freundlich模型拟合结果的R2值均大于Langmuir模型,表明锑在上述6种矿物表面主要发生多层吸附。Freundlich系数(KF)反映了吸附质在吸附剂表面的吸附程度,KF越高,表示吸附越有效,因此对于矿物吸附锑而言,铁氧化物和锰氧化物对锑的KF较大,表明上述材料与锑的亲和性较强[32]。
表 2 Sb(Ⅲ)和Sb(Ⅴ)的吸附等温线拟合参数Table 2. Fitting parameters of adsorption isotherms of Sb(Ⅲ) and Sb(Ⅴ)材料 Sb(Ⅲ)-Langmuir Sb(Ⅲ)-Freundlich Sb(Ⅴ)-Langmuir Sb(Ⅴ)-Freundlich KL
(L/mg)qm
(mg/g)R2 n KF
[(mg/g)(mg/L)−1/n]R2 KL
(L/mg)qm
(mg/g)R2 n KF
[(mg/g)(mg/L)−1/n]R2 赤铁矿 0.48 5.13 0.961 2.90 1.90 0.996 0.11 3.70 0.925 2.43 0.70 0.997 针铁矿 0.21 13.30 0.834 2.22 3.05 0.997 0.14 5.67 0.987 2.79 1.30 0.994 水铁矿 1.01 101.4 0.980 2.09 45.3 0.979 1.00 55.9 0.789 4.62 31.7 0.987 斜方锰矿 0.15 16.52 0.964 2.19 3.19 0.993 0.76 7.58 0.950 4.62 3.56 0.995 氧化铝 0.08 1.66 0.961 1.84 0.20 0.993 0.10 1.69 0.871 2.75 0.36 0.983 高岭石 0.21 0.27 0.967 2.96 0.08 0.957 0.12 0.51 0.990 2.27 0.09 0.921 6种矿物对不同价态锑的吸附能力不同,整体而言,同种矿物材料对Sb(Ⅲ)的吸附容量大于该矿物对Sb(Ⅴ)的吸附容量,表明进入土壤的Sb(Ⅲ)相较于Sb(Ⅴ)更容易被土壤矿物吸附固定。对比吸附容量,单位质量土壤矿物对Sb(Ⅲ)和Sb(Ⅴ)的最大吸附容量(mg/g)分别为:水铁矿(101.4、55.9)>斜方锰矿(16.52、7.58)>针铁矿(13.30、5.67)>赤铁矿(5.13、3.70)>氧化铝(1.66、1.69)>高岭石(0.27、0.51)。土壤中的铁氧化物一般具有较大的比表面积、高孔隙率和表面电荷高等特点,而且对锑有较强的化学亲和力,因此是控制锑元素迁移和生物利用度的关键成分[33]。相比于晶型的针铁矿和赤铁矿,水铁矿的比表面积更大,吸附活性位点更多,因此对锑的吸附能力更强[34]。土壤中锰氧化物尽管含量较低,但由于锰具有丰富的价态和较强的氧化能力,因此可介导锑等变价金属发生氧化还原反应[21]。此外,锰氧化物对锑的亲和作用也会参与锑的吸附固定,因此锰氧化物在控制锑的迁移和形态转化行为方面发挥着重要的作用。斜方锰矿对Sb(Ⅲ)的吸附量大于Sb(Ⅴ),说明在介导Sb(Ⅲ)的氧化过程中,斜方锰矿自身的晶体结构可能发生改变,从而提供更多的活性位点,使得Sb(Ⅲ)的吸附量提高[21]。氧化铝和黏土矿物高岭石对锑的吸附量较低,原因是这类矿物对锑的化学亲和性较弱[22],同时比表面积也较小。但由于某些土壤中,如岩石矿床风化沉积土壤、河流沉积土壤,氧化铝和高岭石的含量可能远高于铁氧化物或锰氧化物,因此对于这类情况,上述矿物对土壤中锑迁移行为的影响也不容忽视。
2.4 pH值对六种矿物材料吸附Sb(Ⅲ)/Sb(Ⅴ)行为的影响
为了探究可能的吸附机制,对pH值对矿物材料吸附锑性能的影响进行了实验,结果如图5所示。6种矿物材料对Sb(Ⅲ)的吸附在实验的pH条件下吸附量变化不大(0.3%~14%),而随着pH值的升高,6种矿物材料对Sb(Ⅴ)的吸附量均有所下降(24%~78%),表明偏碱性不利于Sb(Ⅴ)的吸附。相较Sb(Ⅲ)而言,Sb(Ⅴ)的吸附量下降程度更大。矿物材料的Zeta电位表征结果(图5c)显示,赤铁矿、针铁矿、水铁矿、斜方锰矿、氧化铝、高岭石的等电点分别为3.1、4.4、7.2、4.5、7.8和1.6;根据锑在水溶液中的形态分布曲线,实验条件下Sb(Ⅲ)、Sb(Ⅴ)主要存在形态分别为Sb(OH)3和Sb(OH)6−。由于Sb(Ⅲ)主要以分子形式存在,因此受静电吸附作用的影响较小,说明矿物对Sb(Ⅲ)的吸附主要依靠化学吸附等机制;对于Sb(Ⅴ),尽管静电吸附作用有一定的贡献,例如酸性条件下,水铁矿、针铁矿、斜方锰矿、氧化铝带正电荷,有利于带负电的Sb(Ⅴ)的吸附,但整体而言,静电吸附的贡献有限,矿物对Sb(Ⅴ)的吸附主要通过化学吸附等形式完成。类似的现象也在砷、镉等重金属的吸附中观测到[35-36]。由于高岭石在研究的pH范围内均带负电荷,不利于Sb(Ⅴ)的吸附,这与观测到的低吸附量一致。
2.5 Sb(Ⅲ)/Sb(Ⅴ)在矿物表面吸附沉积后拉曼检测
有文献报道,当平衡浓度较低时,土壤矿物对锑吸附主要通过表面化学吸附,而随着表面浓度的增加,超过饱和浓度后,锑可能在矿物表面发生沉积现象[37]。为了验证上述现象,采集了更高平衡浓度下锑的吸附等温线,结果如图6所示。结果表明,随着平衡浓度的进一步增大,矿物对锑的吸附容量会进一步增大;吸附等温线拟合数据表明,锑在矿物表面吸附符合Freundlich多层吸附模型;特别是对于Sb(Ⅲ)吸附于针铁矿和赤铁矿表面,还观测到吸附量激增的现象,推测发生了表面沉积现象。
由于Sb(Ⅲ)沉积后可能以Sb2O3形式存在,拉曼光谱是一种分子指纹光谱,不仅对矿物材料的结构敏感,同时锑的氧化物也有特征拉曼谱峰,非常适合于这类表面沉积现象的原位表征,因此本实验采用拉曼光谱对吸附锑后的矿物进行表征,结果如图7和图8所示。可见除水铁矿外,其他5种矿物具有明显的特征峰。结合已有相关文献报道,对获得的特征拉曼峰的归属进行了归纳,相应的峰位及归属列于表3。对于高浓度的Sb(Ⅴ)吸附后的矿物材料,并没有获得Sb(Ⅴ)氧化物Sb2O5的特征峰,表明并没有明显的沉积现象出现,主要以吸附作用为主;而对于Sb(Ⅲ),如图8所示,出现了明显的Sb2O3特征峰。位于190cm−1和452cm−1的拉曼峰可归属于Sb—O—Sb间的弯曲振动,而256、357、374和715cm−1的拉曼峰则可归属于Sb—O—Sb间的伸缩振动[38]。上述特征峰与矿物立方晶型α-Sb2O3的特征谱峰一致,表明表面沉积主要形成α型Sb2O3。上述结果证实,高浓度条件下,Sb(Ⅲ)可能在矿物材料发生沉积现象,生成α型Sb2O3,与化学吸附态Sb(Ⅲ)相比,这类Sb可能具有更高的环境迁移性,因此具有更高的环境风险,值得关注。
表 3 Sb(Ⅲ)或Sb(Ⅴ)氧化物和相关矿物的拉曼光谱特征峰位及归属Table 3. The characteristic Raman peaks of Sb(Ⅲ) or Sb(Ⅴ) oxides and the minerals and their assignment材料 特征峰
(cm−1)归属 材料 特征峰
(cm−1)归属 Sb2O3[38-39] 190 F2g振动 针铁矿[40-41] 224 Fe—O拉伸振动 374 F2g振动 405 Fe—OH 拉伸振动 452 Ag振动 666 Fe—O拉伸振动 Sb2O5[42-43] 495 Sb-O伸缩振动 斜方锰矿[44-45] 575 Mn—O拉伸振动 635 Sb-O伸缩振动 645 Mn—O对称伸缩振动 赤铁矿[46-47] 227 A1g振动 高岭石[48-49] 189 A1g(ν1)AlO6振动 293 Eg振动 409 ν2(e)SiO4振动 413 Eg振动 460 ν2(e)SiO4振动 499 Eg振动 640 Si-O-Al伸缩振动 614 Eg振动 717 Si-O-Al伸缩振动 氧化铝[50-51] 378 Eg振动 787 OH伸缩振动 417 A1g振动 从上述结果可见,拉曼光谱可以较为简便地对Sb(Ⅲ)的沉积行为进行原位表征。但拉曼光谱的检测灵敏度较低,因此对于浓度较低的吸附态的Sb(Ⅴ)和Sb(Ⅲ),难以直接检测,结合表面增强拉曼光谱等技术,有望提高检测的灵敏度。
3. 结论
选取6种土壤中典型矿物(赤铁矿、针铁矿、水铁矿、氧化铝、斜方锰矿和高岭石),研究了Sb(Ⅲ)和Sb(Ⅴ)在上述矿物表面的吸附热、动力学行为,并采用拉曼光谱对吸附界面的锑进行了原位表征。研究结果表明,选取的矿物对锑的吸附量有以下顺序:水铁矿>斜方锰矿>针铁矿>赤铁矿>氧化铝>高岭石;铁氧化物对锑有较强的吸附性,其中水铁矿由于其较大的比表面积,吸附贡献较大;斜方锰矿由于具有较强的氧化能力,可通过氧化作用氧化Sb(Ⅲ),该过程中矿物结构可能发生改变,从而进一步增强对锑的吸附能力;氧化铝和高岭石由于与锑的亲和力较弱,对锑的吸附贡献较小。pH影响实验证实,静电吸附作用对Sb(Ⅴ)的吸附有一定的贡献,但整体而言Sb(Ⅴ)和Sb(Ⅲ)主要依靠化学吸附在矿物表面进行吸附。高浓度吸附等温线实验和拉曼光谱表征结果证实,在较高平衡浓度下,Sb(Ⅴ)主要发生化学吸附,而Sb(Ⅲ)可能在矿物表面发生沉积,生成α型Sb2O3,从而产生与化学吸附态Sb(Ⅲ)不同的环境迁移行为。
拉曼光谱可方便地用于矿物表面吸附态和沉积态锑的原位光谱表征。但实际土壤中各矿物组分的含量可能有显著差异,要准确评价锑在实际土壤中的吸附、迁移行为,还需要系统地表征各组分的含量、粒度信息,同时结合实际土壤的理化条件(如pH、离子强度、水分和有机质等),综合分析锑的环境行为。
-
表 1 茶叶末釉表面不同颜色斑点元素分析结果
Table 1 Analytical results of elements in different color spots of the tea-dust glaze
不同颜色斑点 元素含量(%) Na2O MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 P2O5 MnO 黄褐色斑点 0.93 1.74 13.99 53.94 3.25 12.09 1.65 11.33 0.88 0.20 酱-黑色基质 0.96 1.58 12.44 58.96 4.03 10.32 1.28 9.73 0.53 0.17 整体 0.94 1.66 13.22 56.43 3.64 11.21 1.47 10.54 0.71 0.18 表 2 茶叶末瓷釉层中元素分析结果
Table 2 Analytical results of elements in glaze layer of tea-dust porcelain
釉面至釉底
行号元素含量(%) Na2O MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 P2O5 MnO 第1行 0.87 1.28 18.36 57.44 3.62 10.29 0.94 6.92 0.16 0.11 第2行 0.84 1.68 13.36 59.79 3.84 9.94 1.16 9.05 0.19 0.16 第3行 0.87 1.55 13.13 61.50 4.37 9.34 0.92 8.03 0.12 0.15 第4行 0.84 1.65 12.59 61.53 4.42 9.18 0.88 8.60 0.14 0.16 第5行 0.86 1.65 13.51 60.63 3.88 9.66 0.93 8.60 0.12 0.16 表 3 EDS下矿物晶体元素组成
Table 3 Elemental composition of mineral crystals under EDS
EDS所取点位 元素原子占比(at%) Si Al Ca Fe Mg K Na Cr Ti Mn 1 63.67 13.8 8.14 3.97 3.61 4.85 1.96 / / / 2 60.59 21.39 7.99 2.08 2.48 1.07 4.22 / / 0.18 3 51.53 25.74 13.82 3.83 1.6 1.13 2.35 / / / 4 5.61 2.18 1.26 89.71 / 0.98 / / / / 5 41.2 34.14 3.26 4.79 4.37 2.78 3.03 / 5.87 / 6 1.85 / 0.43 65.59 29.93 0.23 / 1.96 / / 7 11.78 6.5 / 77.79 / / / / 3.92 / 注:元素原子占比低于0.10at%以“/”表示。 -
[1] 陈代璋, 袁家铮, 刘光辉. 结晶釉的绿辉石研究[J]. 地质论评, 1996, 42(2): 129−135. doi: 10.3321/j.issn:0371-5736.1996.02.005 Chen D Z, Yuan J Z, Liu G H. Green pyroxene studies of crystalline glazes[J]. Geological Review, 1996, 42(2): 129−135. doi: 10.3321/j.issn:0371-5736.1996.02.005
[2] Tao S, Liu S, Yuan Y, et al. Micro-structural and compositional study: ε-Fe2O3 crystals in the Hare’s Fur Jian Ware[J]. Crystals, 2022, 12(3): 367−371. doi: 10.21203/rs.3.rs-1130777/v1
[3] Wen R, Wang D, Wang L H, et al. The colouring mechanism of the Brown glaze porcelain of the Yaozhou Kiln in the Northern Song Dynasty[J]. Ceramics International, 2019, 45(8): 10589−10595. doi: 10.1016/j.ceramint.2019.02.125
[4] Chen X Y, Li W D, Xu C S, et al. Angle dependence of Jian bowl color and its coloring mechanism[J]. Journal of the European Ceramic Society, 2022, 42(2): 693−706. doi: 10.1016/j.jeurceramsoc.2021.10.057
[5] Wu B, Zhao W, Ren X, et al. Firing process and colouring mechanism of black glaze and brown glaze porcelains from the Yuan and Ming dynasties from the Qingliang Temple kiln in Baofeng, Henan, China[J]. Ceramics International, 2021, 47(23): 32817−32827. doi: 10.1016/j.ceramint.2021.08.178
[6] Li X Y, Lu J H, Yu X L, et al. Imitation of ancient black-glazed Jian bowls (Yohen Tenmoku): Fabrication and characterization[J]. Ceramics International, 2016, 42(14): 15269−15273. doi: 10.1016/j.ceramint.2016.06.027
[7] 黄瑞福, 陈显求, 陈士萍, 等. 唐代茶叶末瓷的物理化学基础研究[J]. 陶瓷学报, 1993, 14(2): 11−20. Huang R F, Chen X Q, Chen S P, et al. The physico-chemistry investigation on Tang Dynasty tea dust porcelain[J]. Journal of Ceramics, 1993, 14(2): 11−20.
[8] 张福康. 中国古陶瓷的科学[M]. 上海: 上海人民美术出版社, 2000: 82−91. [9] 陈尧成, 张筱薇, 黄秀纯, 等. 北京龙泉务窑辽金代黑瓷的制作工艺和显微结构研究[J]. 中国陶瓷, 1999, 35(6): 38−42. Chen Y C, Zhang X W, Huang X C, et al. Study on microstructure and technology of black porcelain of Beijing Longouanwu Kiln in Liao and Jin Dynasties[J]. China Ceramics, 1999, 35(6): 38−42.
[10] Bao Z A, Yuan H L, Wen R, et al. The fast and direct characterization of blue-and-white porcelain glaze from Jingdezhen by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(12): 5034−5040. doi: 10.1039/C5AY00875A
[11] 何旭科, 栾燕, 孙晓辉, 等. 辽宁弓长岭铁矿床蚀变围岩中石榴石LA-ICP-MS面扫描分析及元素分布特征[J]. 岩矿测试, 2023, 42(4): 707−720. doi: 10.15898/j.ykcs.202211070212 He X K, Luan Y, Sun X H, et al. LA-ICP-MS Mapping and element distribution characteristics of garnet from the altered wall-rock of the Gongchangling iron deposit in Liaoning Province[J]. Rock and Mineral Analysis, 2023, 42(4): 707−720. doi: 10.15898/j.ykcs.202211070212
[12] 何焘, 张晨西, 张文, 等. 高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素[J]. 岩矿测试, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134 He T, Zhang C X, Zhang W, et al. Determination of 42 trace elements in silicate glass reference materials by high spatial resolution LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134
[13] 陈晓峰, 胡芳菲, 张煦, 等. 激光剥蚀-电感耦合等离子体质谱法测定纯铜中铁锌砷锡锑铅铋[J]. 冶金分析, 2018, 38(12): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010363 Chen X F, Hu F F, Zhang X, et al. Determination of iron, zinc, arsenic, tin, antimony, lead and bismuth in pure copper by laser ablation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(12): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010363
[14] 付东旭, 郑令娜, 刘金辉, 等. 激光剥蚀-电感耦合等离子体质谱定量分析单细胞中的银纳米颗粒[J]. 分析化学, 2019, 47(9): 1390−1394. doi: 10.19756/j.issn.0253-3820.191283 Fu D X, Zheng L N, Liu J H, et al. Quantitative analysis of silver nanoparticles in single cell by laser ablation inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1390−1394. doi: 10.19756/j.issn.0253-3820.191283
[15] 赵峰, 王占明, 王挺, 等. 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)法测定涂层氧化锆颗粒铌层中24种微量杂质元素[J]. 中国无机分析化学, 2023, 13(4): 374−381. doi: 10.3969/j.issn.2095-1035.2023.04.012 Zhao F, Wang Z M, Wang T, et al. Determination of 24 trace impurities in niobium coating of zirconia particles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(4): 374−381. doi: 10.3969/j.issn.2095-1035.2023.04.012
[16] 周帆, 李明, 柴辛娜, 等. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成[J]. 岩矿测试, 2021, 40(1): 33−41. doi: 10.15898/j.cnki.11-2131/td.202005240075 Zhou F, Li M, Chai X N, et al. In-situ non-destructive determination of major and trace elements in large size ceramic samples by open laser ablation inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 33−41. doi: 10.15898/j.cnki.11-2131/td.202005240075
[17] 李展平. 飞行时间二次离子质谱(TOF-SIMS)分析技术[J]. 矿物岩石地球化学通报, 2020, 39(6): 1173−1190. doi: 10.19658/j.issn.1007-2802.2020.39.104 Li Z P. Time-of-flight secondary ion mass spectro-metry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1173−1190. doi: 10.19658/j.issn.1007-2802.2020.39.104
[18] 阿尔弗来德·贝宁豪文, 查良镇. 飞行时间二次离子质谱—强有力的表面、界面和薄膜分析手段[J]. 真空, 2002(5): 10−14. doi: 10.3969/j.issn.1002-0322.2002.05.001 Benninghoven A, Zha L Z. TOF-SIMS—A powerful tool for practical surface, interface and thin film analysis[J]. Vacuum, 2002(5): 10−14. doi: 10.3969/j.issn.1002-0322.2002.05.001
[19] Timms N E, Kirkland C L, Cavosie A J, et al. Shocked titanite records Chicxulub hydrothermal alteration and impact age[J]. Geochimica et Cosmochimica Acta, 2020, 281: 12−30. doi: 10.1016/j.gca.2020.04.031
[20] 梁汉东. 金/硫团簇非共价键相互作用的研究与意义[J]. 中国矿业大学学报, 2001, 30(6): 593−599. doi: 10.3321/j.issn:1000-1964.2001.06.016 Liang H D. Investigation into non-covalent interaction between gold and sulfur clusters by TOF-SIMS[J]. Journal of China University of Mining & Technology, 2001, 30(6): 593−599. doi: 10.3321/j.issn:1000-1964.2001.06.016
[21] 梁汉东, 刘敦一. 金硫团簇负离子组成特征的探讨[J]. 物理化学学报, 2001, 17(9): 859−864. doi: 10.3866/PKU.WHXB20010921 Liang H D, Liu D Y. Compositional and constitutional characterization of Au-S cluster ions[J]. Acta Physico-Chimica Sinica, 2001, 17(9): 859−864. doi: 10.3866/PKU.WHXB20010921
[22] Liang H D. Secondary ion mass spectrometry of high-sulfur coal: Observation and interpretation of polysulfur ions[J]. Chinese Science Bulletin, 1999, 44(13): 1242−1245. doi: 10.1007/BF02885975
[23] Liang H D, Liang Y C, Gardella J A, et al. Potential release of hydrogen fluoride from domestic coal in endemic fluorosis area in Guizhou, China[J]. Chinese Science Bulletin, 2011, 56(22): 2301−2303. doi: 10.1007/s11434-011-4560-6
[24] Zhang T, Meng X, Bai Y, et al. Profiling the organic cation-dependent degradation of organolead halide pero-vskite Solar cells[J]. Journal of Materials Chemistry A, 2017, 5(3): 1103−1111. doi: 10.1039/C6TA09687E
[25] White L J, Taylor A J, Faulk D M, et al. The impact of detergents on the tissue decellularization process: A ToF-SIMS study[J]. Acta Biomaterialia, 2017, 50: 207−219. doi: 10.1016/j.actbio.2016.12.033
[26] 刘婕, 陈相龙, 梁汉东, 等. 新疆汉代羊毛织物染料的飞行时间二次离子质谱表征[J]. 质谱学报, 2024, 45(3): 386−395. doi: 10.7538/zpxb.2024.1009 Liu J, Chen X L, Liang H D, et al. Characterization of dyes for Han Dynasty wool fabrics in Xinjiang by time-of-flight secondary ion mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(3): 386−395. doi: 10.7538/zpxb.2024.1009
[27] Ingo G M, Riccucci C, Pascucci M, et al. Combined use of FE-SEM plus EDS, ToF-SIMS, XPS, XRD and OM for the study of ancient gilded artefacts[J]. Applied Surface Science, 2018, 446: 168−176. doi: 10.1016/j.apsusc.2018.01.278
[28] Kaluzna-czaplinska J, Rosiak A, Grams J, et al. The studies of archaeological pottery with the use of selected analytical techniques[J]. Critical Reviews in Analytical Chemistry, 2017, 47(6): 490−498. doi: 10.1080/10408347.2017.1334534
[29] Felicissimo M P, Peixoto J L, Bittencourt C, et al. SEM, EPR and ToF-SIMS analyses applied to unravel the technology employed for pottery-making by pre-colonial Indian tribes from Pantanal, Brazil[J]. Journal of Archaeological Science, 2010, 37(9): 2179−2187. doi: 10.1016/j.jas.2010.03.015
[30] 徐子琪, 赵煊赫, 梁汉东, 等. 宋代黑釉茶盏油滴的飞行时间二次离子质谱表征[J]. 质谱学报, 2023, 44(1): 25−33. doi: 10.7538/zpxb.2022.0113 Xu Z Q, Zhao X H, Liang H D, et al. Characterization of oil spots on black-glazed teabowl made in Song Dynasty by time-of-flight secondary ion mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(1): 25−33. doi: 10.7538/zpxb.2022.0113
[31] 刘婕, 梁汉东. 华北唐宋古瓷窑兴起的自然条件: 煤系地层出露[J]. 中国煤炭地质, 2024, 36(1): 12−17. doi: 10.3969/j.issn.1674-1803.2024.01.02 Liu J, Liang H D. Natural condition for the rise of ancient porcelain kilns of the Tang and Song Dynasties in North China: Outcrops of coal strata[J]. Coal Geology of China, 2024, 36(1): 12−17. doi: 10.3969/j.issn.1674-1803.2024.01.02
[32] Thompson J M, Meffre S, Danyushevsky L. Impact of air, laser pulse width and influence on U-Pb dating of zircons by LA-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33: 221−230. doi: 10.1039/C7JA00357A
[33] 顾幸勇, 方豪, 宋仪杰. 茶叶末结晶釉主晶相的研究[J]. 中国陶瓷, 1989, 25(2): 6−9. Gu X Y, Fang H, Song Y J. A study on principal crystalline phase of tea-dust crystalline glaze[J]. China Ceramics, 1989, 25(2): 6−9.
[34] Li W, Luo H, Li J, et al. Studies on the microstructure of the black-glazed bowl sherds excavated from the Jian Kiln site of ancient China[J]. Ceramics International, 2008, 34(34): 1473−1480. doi: 10.1016/j.ceramint.2007.04.004
[35] Ma Q L, Xu S Q, Wang J L, et al. Integrated analysis of a black-glazed porcelain bowl in Tushan Kiln dated back to Song Dynasty, China[J]. Materials Chemistry and Physics, 2020, 242: 122213. doi: 10.1016/j.matchemphys.2019.122213
[36] 陈显求, 陈士萍, 周学林, 等. 金、元时期旬邑窑茶叶末瓷的研究[J]. 陶瓷学报, 1996, 17(3): 15−24. Chen X Q, Chen S P, Zhou X L, et al. The study on Jin and Yuan Dynasties tea dust wares from Xunyi Kiln Site[J]. Journal of Ceramics, 1996, 17(3): 15−24.
[37] Wang M, Wang T, Wang F, et al. Raman study of rusty oil spotted glaze produced in Linfen Kilns (Shanxi Province, AD1115–1368)[J]. Journal of Raman Spectroscopy, 2020, 53(3): 582−592. doi: 10.1002/jrs.6229
[38] Wang T, Hole C, Ren Z, et al. Morphological and structural study of crystals in black-to-brown glazes of Yaozhou ware (Song Dynasty) using imaging and spectroscopic techniques[J]. Journal of the European Ceramic Society, 2021, 41(12): 6049−6058. doi: 10.1016/j.jeurceramsoc.2021.05.025
[39] 王秀玲, 侯亮亮, 王敏力, 等. 山西大同浑源窑出土黑釉剔花瓷片的科技分析[J]. 中国陶瓷, 2022, 58(8): 53−58. doi: 10.16521/j.cnki.issn.1001-9642.2022.08.009 Wang X L, Hou L L, Wang M L, et al. Scientific and technological analysis of black-glazed carving ware of Hunyuan Kilns in Datong, Shanxi Province[J]. China Ceramics, 2022, 58(8): 53−58. doi: 10.16521/j.cnki.issn.1001-9642.2022.08.009
[40] 付玲芝. 辽宁省弓长岭铁矿磁铁矿-赤铁矿转变机制研究[D]. 长春: 吉林大学, 2016: 58−62. Fu L Z. Study on mechanism of transforming between magnetite and hematite of Gongchangling iron deposit in Liaoning Province[D]. Changchun: Jilin University, 2016: 58-62.
[41] 程桂亮, 姚奉洪, 杨开玉, 等. 耐热陶瓷的研究[J]. 中国陶瓷, 1988(1): 22−28. doi: 10.16521/j.cnki.issn.1001-9642.1988.01.003 Cheng G L, Yao F H, Yang K Y, et al. A study on temper-ware[J]. China Ceramics, 1988(1): 22−28. doi: 10.16521/j.cnki.issn.1001-9642.1988.01.003
[42] Wang M, Zhu T Q, Ding X, et al. Composition comparison of Zhejiang Longquan celadon and its imitation in Dapu Kiln of Guangdong in the Ming Dynasty of China (1368—1644 CE) by LA-ICP-MS[J]. Ceramic International, 2018, 44(2): 1785−1796. doi: 10.1016/j.ceramint.2017.10.112
-
期刊类型引用(8)
1. 王小花,黄韡,顾培良,李静,周佳. 基于自动顶空-固相微萃取-气相色谱质谱检测葡萄酒中的9种木塞污染物. 食品科技. 2024(08): 322-328 . 百度学术
2. 吴悦,赖永忠,陆国永,林晓昇,梁树生,许文帅. 顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯. 岩矿测试. 2023(04): 781-792 . 本站查看
3. 陶慧,黄理金,欧阳磊,帅琴. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取. 岩矿测试. 2022(06): 1040-1049 . 本站查看
4. 黄百祺,沈丹妮,王如意,李双林,林焕怡,李咏梅. 不同萃取头分析大高良姜挥发性成分效果比较. 中成药. 2021(06): 1656-1662 . 百度学术
5. 赵佳平,王俊霞,刘婷婷,张占恩. 含铁二氧化硅涂层固相微萃取-GC/MS法测定水中的有机磷阻燃剂. 现代化工. 2021(09): 235-240 . 百度学术
6. 梁淼,杨艳,石嘉悦,汪兴平,郑福平,余爱农. 酶/酸水解毛叶木姜子中键合态香味成分的比较. 精细化工. 2020(05): 989-996 . 百度学术
7. 孙书堂,严倩,黎宁,黄理金,帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试. 2020(03): 408-416 . 本站查看
8. 杨洪早,李锦宇,王东升,张世栋,董书伟,闫宝琪,那立冬,吴春丽,邓俊,吴冠连,陈新丽,赵留涛,朱凯,梁永喜,严作廷. GC法测定马香苓口服液中百秋李醇含量研究. 中国畜牧兽医. 2020(07): 2264-2276 . 百度学术
其他类型引用(3)