In situ Self-transforming Membrane as Solid Phase Microextraction Coating Extraction of PAHs in Environmental Water Samples
-
摘要: 多环芳烃(PAHs)是一类具有致癌作用且难以降解的持久性有机污染物,广泛存在于环境中。环境中痕量PAHs的直接分析往往因检测手段的检出限达不到要求而存在困难,需要结合分离富集手段。常规的样品前处理技术如索氏提取、液液萃取等存在耗时长、使用大量有机溶剂等问题。因此为了提高效率、避免对自然环境的二次污染,有必要开发一种简便、环境友好的新型样品前处理技术。固相微萃取(SPME)是一种集采样、富集、进样于一体的无溶剂前处理技术,与气相色谱-质谱(GC-MS)等技术联用可实现复杂基质中痕量有机物的快速富集和检测。目前SPME技术的研究热点主要集中在改善涂层的萃取性能以及提高其机械强度方面。本文采用铁丝(IW)作为载体,同时又提供了铁离子来源,以原位自转化的方式在具有良好机械稳定性的铁丝上生长出一层多孔结构的金属有机骨架化合物多孔膜[MIL-53(Fe)];将其作为固相微萃取涂层[IW@MIL-53(Fe)],以7种难挥发的稠环PAHs作为目标分析物,以浸入式模式进行萃取,并结合GC-MS作为检测手段验证其萃取性能。结果表明:新涂层的萃取性能是商用100μm PDMS涂层的1~2倍,且涂层可稳定使用120次以上。该方法的检出限为0.03~2.25ng/L,线性范围为250~10000ng/L,相关系数为0.9903~0.9991。将建立的方法应用于自然水体中PAHs的检测,加标回收率为80.1%~108.5%。本研究不仅为高性能SPME涂层简单、快速制备提供了新思路,而且所建立的方法有望应用于水体中痕量有机污染物的准确和高灵敏检测。
-
关键词:
- 固相微萃取涂层 /
- MIL-53(Fe)膜 /
- 气相色谱-质谱法 /
- 多环芳烃 /
- 原位自转化
要点(1) 金属基质原位自转化技术制备固相微萃取涂层(MOFs)。
(2) MOFs材料作为固相微萃取涂层材料有效萃取多种多环芳烃。
(3) 固相微萃取技术与GC-MS联用实现自然水体中多环芳烃的高效检测。
HIGHLIGHTS(1) Preparation of solid phase microextraction coating by in situ self-transformation of the metal matrix.
(2) MOFs material as solid phase microextraction coating for effective extraction of PAHs.
(3) High efficient detection of PAHs in natural water by solid phase microextraction coupled with GC-MS.
Abstract:BACKGROUNDPolycyclic aromatic hydrocarbons (PAHs) are one of the persistent organic pollutants which are carcinogenic and difficult to degrade, and are widespread in the environment. The direct analysis of trace PAHs in the environment is often difficult because of the low sensitivity of the detection methods. It is necessary to combine separation and enrichment methods. Conventional sample pretreatment techniques, such as Soxhlet extraction and liquid-liquid extraction, are time-consuming and use a large number of organic solvents.OBJECTIVESTo develop a new, simple, and environmentally-friendly method for sample pretreatment.METHODSSolid phase microextraction (SPME) is a solvent-free pretreatment technology which integrates sampling, enrichment and injection. Combined with gas chromatography-mass spectrometry (GC-MS), it can produce the rapid enrichment and detection of trace organic compounds in a complex matrix. At present, the research focus of improving SPME technology is to improve the mechanical strength and extraction performance of the coating. Using iron wire (IW) as the carrier, which also provided the iron ion source, a porous MOFs film[MIL-53(Fe)] was grown on iron wire with good mechanical stability by in-situ self-transformation. It was used as the solid phase microextraction coating[IW@MIL-53(Fe)]. Seven kinds of non-volatile condensed ring PAHs were used as the target analyte, and immersion extraction mode combined with GC-MS as detection means were used to verify its extraction performance.RESULTSResults showed that the extraction performance of the new coating was 1-2 times higher than that of the commercial 100μm PDMS coating, and the coating can be used stably for more than 120 times. The detection limits of the methods were 0.03-2.25ng/L, the linear ranges were 250-10000ng/L, and the correlation coefficients were in the range of 0.9903-0.9991. The coating was applied successfully to the detection of PAHs in natural water, where the recoveries were from 80.1% to 108.5%.CONCLUSIONSThis study not only provides an idea for the simple and rapid preparation of high-efficiency SPME coatings, but also has great potential to be applied to determinate trace volatile organic pollutants in water with high accurateness and efficiency. -
中国矿产资源丰富,类型繁多,其中镍矿石、铅矿石和锌矿石等均为金属冶炼的重要原材料,在冶金、化工、机械、电气、医药、军事等很多领域中都具有广泛的应用,前景良好[1-2]。硫作为矿石中常见的有害杂质元素,在矿石中主要以硫化物形式存在[3-4],硫含量的高低会直接影响金属材料的力学性能、抗腐蚀性能及耐磨性等,限制了矿石原料的应用范围。因此,准确、快速测定矿石中的硫含量具有重要意义。
应用高频红外碳硫仪测定硫,具有方法操作简单、检出限低、测定范围广[5-8]等优点,能极大地提高样品检测效率[9],已被广泛应用于地质样品中碳、硫的检测[10-13]。此外,国家标准方法、行业标准方法中也规定了相关方法测定碳硫含量的应用,如《铁矿石:碳和硫含量的测定高频燃烧红外吸收法》(GB/T 6730.61—2005)规定了铁矿石中碳、硫含量范围分别为0.01%~2.5%和0.001%~2.0%的测定方法;《镍化学分析方法:硫量的测定高频感应炉燃烧红外吸收法》(GB/T 8647.8—2006)规定了镍矿石中硫含量范围在0.0010%~0.050%的测定方法;《区域地球化学样品分析方法第25部分:碳量测定燃烧-红外吸收光谱法》(DZ/T 0279.25—2016)规定了水系沉积物和土壤中碳含量范围在0.01%~10%的测定方法等。但这些标准方法的检测范围有限,多适用于低含量硫的测定。在此基础上,大量学者采用高频燃烧-红外吸收法开展了高含量硫的检测方法研究[14-19]。杨小莉等[15]采用与实际样品化学性质相似的铜铅锌矿石标准物质绘制标准曲线,建立了高频燃烧红外吸收法测定铜铅锌矿石中硫含量跨度范围较大的(质量分数为0.106%~10.76%)分析方法,但该方法检测池单一,仅适用于硫含量小于11%的矿石检测;周富强等[18]采用高频红外吸收法,以硫酸钾建立标准曲线,利用高纯二氧化硅粉对高含量硫的样品进行稀释,建立了矿产品中硫质量分数为0.01%~53%的测定方法,该方法虽然测定范围广,但标准曲线分段过多,对于实际检测中未知硫含量的样品,加大了检测工作量,增加了检测成本。
针对高频红外碳硫仪测定硫分析方法中检测池单一、难以准确测定高含量硫及标准曲线分段过多而降低检测效率等问题,本文在之前实验的基础上,通过高低硫检测池切换的方法,采用高含量硫和低含量硫两条检测曲线相结合的方式,进行了样品称样量、纯铁助熔剂添加量及分析时间等测定条件对硫含量影响的系列研究,建立了高频红外碳硫仪快速测定镍铅锌矿石中硫含量的检测方法,并通过国家标准物质验证了方法的精密度及准确度,将测定结果与燃烧碘量法进行比较,佐证了方法的准确度。
1. 实验部分
1.1 仪器及工作条件
HCS-808型高频红外碳硫分析仪(四川赛恩斯仪器有限公司),仪器主要工作参数为:供压电压220V±5%,50Hz;分析氧气压力0.08MPa,分析氧气流速2.8L/min;动力氧气压力0.5MPa,动力氧气流速1.8L/min;室内温度15~30℃,相对湿度<70%。
BS124S型电子天平(赛多利斯科学仪器有限公司),精度为0.0001g;SGM2880A型人工智能箱式电阻炉(洛阳市西格马仪器制造有限公司);101-1AB型电热鼓风干燥箱(天津市泰斯特仪器有限公司)。
碳硫仪专用瓷坩埚(型号Φ25mm×25mm,四川赛恩斯仪器有限公司)。高效变色干燥剂、碱石棉、无水高氯酸镁;高纯氧气(纯度不小于99.5%)。
纯铁助熔剂:国家工业标准产品,铁含量大于99.8%,硫含量小于0.0005%(四川赛恩斯仪器有限公司);纯钨助熔剂:国家工业标准产品,钨含量不小于99.95%,硫含量不大于0.0003%(四川赛恩斯仪器有限公司)。
1.2 实验样品
镍矿石与精矿成分分析标准物质:GBW07145(硫含量标准值0.74%±0.06%)、GBW07146(硫含量标准值1.53%±0.06%)、GBW07147(硫含量标准值3.78%±0.07%)、GBW07148(硫含量标准值18.14%±0.41%),均为中国地质科学院地球物理地球化学勘查研究所研制。
铅锌矿石成分分析标准物质:GBW(E)070077(硫含量标准值2.90%)、GBW(E)070080(硫含量标准值15.62%),均为陕西省地质矿产实验研究所研制;GBW(E)070026(硫含量标准值5.87%±0.07%),原地质矿产部河南省中心实验室研制。
铅矿石成分分析标准物质:GBW07172(硫含量标准值10.26%±0.19%),西藏自治区地质矿产勘查开发局中心实验室研制。
锌精矿成分分析标准物质:GBW07168(硫含量标准值32.0%±0.3%),中国地质科学院地球物理地球化学勘查研究所研制。
多金属矿石成分分析标准物质:GBW07163(硫含量标准值6.74%±0.11%),中国地质科学院地球物理地球化学勘查研究所研制。
富铅锌矿石成分分析标准物质:GBW07165(硫含量标准值29.0%±0.4%),中国地质科学院地球物理地球化学勘查研究所研制。
实际矿石样品:均来自青海某矿业公司委托的检测样品,样品粒度均不大于0.074mm(200目)。
1.3 实验方法
1.3.1 样品硫含量测定步骤
前处理:将瓷坩埚放入1200℃箱式电阻炉中灼烧4h,去除瓷坩埚自身硫含量及水分含量对样品测定结果的影响,待冷却至室温后置于干燥器中备用。将待测样品放入105℃恒温干燥箱中烘烤2h,再冷却至室温,置于干燥器中备用。
检测步骤:称取0.50g纯铁助熔剂于烘干的瓷坩埚中,再称取0.0400g烘好的待测样品,均匀地加入纯钨助熔剂2.0g,在1.1节仪器工作条件下,开机后示波器信号约15~20s后稳定,因此设置清洗时间20s,加热时间20s,分析时间45s,进行待测样品硫含量检测。
1.3.2 标准曲线的绘制
仪器使用前需要用不同含量的标准物质进行校正,每种标准物质重复分析2~3次,其分析结果重复性应符合国家允许的误差要求后才能进行曲线校正[6],且使用不同浓度的标准物质绘制曲线可以减少不同含量待测样品的误差,使用相同基体的标准物质可以提高检测的准确性,采用多点校正的方式测量结果更佳且测量范围更广[20-21]。
实验先选用高硫池,采用系列国家标准物质GBW(E)070077、GBW07147、GBW(E)070026、GBW07172、GBW07148、GBW07168(硫标准值依次为2.90%、3.78%、5.87%、10.26%、18.14%、32.0%),建立标准曲线y1=1.0005x1-0.0027(R2=0.9997),测定范围为2.9%~32.0%;再选用低硫池,采用系列国家标准物质GBW07145、GBW07146、GBW(E)070077、GBW07147、GBW(E)070026(硫标准值依次为0.74%、1.53%、2.90%、3.78%、5.87%),建立标准曲线y2=0.9885x2+0.0238(R2=0.9995),测定范围为0.74%~5.87%。校正好曲线检测样品时,通过设置智能高低硫检测池切换模式来扩大样品测定范围,并将切换值设置为3.0%,即:当待测样品中硫含量≥3.0%时,仪器自动选择高硫池测定结果;当硫含量<3.0%时,仪器自动选择低硫池测定结果,智能切换模式下硫含量测定范围扩大至0.74%~32.0%。
2. 结果与讨论
2.1 称样量对硫含量结果的影响
矿石属于低电磁感应样品,采用高频燃烧-红外吸收法检测时需要加导电、导磁的助熔材料。称样量的大小直接影响着助熔剂添加量和样品分析时间的选择,也是决定样品是否充分燃烧、转化等的重要因素。称样量过小,样品代表性不足,测定结果稳定性差;称样量过大,样品燃烧不完全,导致测定结果偏低[15]。因此,选择合适的称样量是保证样品检测结果准确度的主要因素之一。
采用标准物质GBW07146(硫标准值为1.53%)、GBW07172(硫标准值为10.26%)和GBW07168(硫标准值为32.0%)进行试验。分别称取样品0.0200、0.0300、0.0400、0.0500、0.0700和0.1000g,每个样品平行测定3次求平均值,绘制不同称样量对硫测定结果的影响曲线。从图 1分析结果可得,当称样量小于0.0300g或大于0.0700g时,三个样品的硫含量测定值均严重偏低;当称样量为0.0300g时,硫含量较低的GBW07146其测定值仍然偏低,超出误差范围,GBW07172硫含量测定值则略偏低,但在误差允许范围,而硫含量较高的GBW07168其测定值则与标准值相近;当称样量为0.0500g时,GBW07146和GBW07172两个样品的硫含量测定值与标准值最接近,而硫含量较高的GBW07168测定值偏低,超出误差范围。这是因为样品在燃烧过程中产生的粉尘及水蒸气等均会对SO2产生微弱的吸附作用,随着样品数量的增加,堆积的粉尘量逐渐增多。每个样品分析时,由于炉膛中碱性氧化物和水蒸汽的浓度无法一致,导致吸附作用力大小不一[6]。当称样量过小时,样品检测过程中释放的SO2量较少,即使少量的吸附作用,也会导致样品测定结果不稳定,误差大;随着称样量的逐渐增加,微量的吸附作用对样品检测稳定性影响变小,对硫含量较高的样品影响可忽略,而低硫含量样品的检测结果则依然会受到影响;当称样量过多时,由于每次检测助熔剂添加量为固定量,则导致样品不能充分燃烧,测定结果偏低,尤其是高硫含量样品在燃烧过程中还会出现较多粉尘。因此,在保证样品检测结果准确度高、稳定性好的前提下,综合考虑样品检测成本等因素,本文确定称样量为0.0400g。
2.2 纯铁助熔剂添加量的选择
助熔剂在燃烧过程中,有氧化放热作用,有助于样品燃烧温度的提高。助熔剂如果不合适,容易造成每次燃烧达到的最高温度不一样,从而使样品中的硫转化率不一样,造成重复性不好。矿产品试样的导磁导电性较差,单独用一种助熔剂时,存在板电流变化较大、信号较低、熔融状态较差、易飞溅、释放效果不好等问题[18]。因此,选择合适的助熔剂不仅可以稀释样品,促进样品燃烧,使之完全释放出硫,还可以增加样品的导磁性,有效提高测定结果的准确性与稳定性。纯铁属于高电磁感应物质,通过高频感应可产生较大的涡电流和较多的焦耳热,迅速提高炉温,使样品完全燃烧,且与样品氧化物熔融时形成互溶的流体,使燃烧过程更稳定。钨的熔点高(熔点3382℃)、密度大,既可以提高样品的热容量,增加热量助熔,又可以防止纯铁燃烧产生飞溅,且WO3的生成有利于SO2释放[10],此外WO3的逸出,增加了硫的扩散速度,使硫充分氧化,挥发的WO3在700~800℃又转化为固相,覆盖在管道中尚存的Fe2O3上,阻止了SO2催化转为SO3,防止了管道对硫的吸附,保证结果的可靠性。
纯铁燃烧时易产生飞溅,钨可以作为很好的覆盖。在参考前人成果[22-28]的基础上,为提高结果稳定性,确保在不同含量的铁助熔剂中样品燃烧过程不产生飞溅,实验中选择在固定钨粒2.0g的条件下[23-24],分别称取0.0400g标准物质GBW07146和GBW07168,分析不同纯铁加入量对测定值的影响,每个样品测定3次取平均值,测定结果见表 1。
表 1 纯铁加入量对硫测量值的影响Table 1. Effect of pure iron addition on the sulfur detection纯铁加入量(g) GBW07146硫含量 GBW07168硫含量 标准值(%) 测定值(%) 标准值(%) 测定值(%) 0.20 1.44 31.51 0.35 1.47 31.78 0.50 1.53±0.06 1.52 32.0±0.3 32.04 0.60 1.54 31.88 0.75 1.48 31.75 从表 1结果可以看出,当纯铁加入量为0.20g时,样品的硫含量测定值较标准值严重偏低,超出允许误差范围,这是因为铁量少,样品无法充分燃烧;随着铁加入量的增加,硫含量测定值也变大了,但较标准值仍偏低,不过都在误差允许范围内;当铁的加入量增大至0.50g时,两个不同硫含量样品的测定值均与各自标准值最接近;而当铁加入量继续增大时,硫含量测定值又开始降低,这是因为铁含量过高导致了样品燃烧飞溅,且产生的粉尘量增加,此外铁屑的硫空白也会影响样品的测定结果。综上所述,当纯铁加入量为0.50g时,样品熔融较好,且燃烧无飞溅,仅产生极少量粉尘,燃烧效果最佳,硫含量测试值与标准值结果最接近。考虑到样品中的硫含量范围跨度较大,因此选择纯铁助熔剂添加量为0.50g,纯钨助熔剂添加量为2.0g,可保证不同硫含量的样品均充分燃烧,且稳定性好。
2.3 样品分析时间的选择
分析时间是决定硫释放曲线形态的重要因素[29],仪器分析时间的长短对样品中硫含量测定值的影响也很明显[30]。且矿石中大部分样品的硫含量都较高,分析时应尽量控制好分析时间,选择合适的积分参数,使释放曲线一直呈现正态分布的形态,保证样品在充分燃烧的同时,也要考虑尽量减少拖尾带来的影响。
选择实验优化好的称样量和助熔剂添加量,改变样品燃烧的分析时间,对GBW07147、GBW07172和GBW07168进行测定。从表 2测定结果可见,分析时间小于35s时,样品硫含量测定结果较标准值严重偏低,这是因为时间过短,样品燃烧不充分,硫释放不完全,从硫曲线形态图中也可以明显看出曲线积分不完全;分析时间为40s时,硫含量较高的GBW07168样品的测定值偏低,样品仍未能充分燃烧;分析时间增加至45s时,样品测定值均与标准值最接近;当分析时间继续增大,红外吸收峰的积分面积值增加,导致样品测定值均偏高,但此时样品中的硫已经释放完全,因此结果在误差范围内。综合考虑检测成本及分析效率等因素,实验确定分析时间为45s,样品硫释放曲线图均表现出平滑、完整。
表 2 不同分析时间下硫含量测定结果Table 2. Results of sulfur content in different analysis time分析时间(s) GBW07147硫含量 GBW07172硫含量 GBW07168硫含量 标准值(%) 测定值(%) 标准值(%) 测定值(%) 标准值(%) 测定值(%) 30 3.78±0.07 3.65 10.26±0.19 9.52 32.0±0.3 28.05 35 3.73 9.83 30.21 40 3.82 10.40 31.57 45 3.78 10.28 32.04 50 3.87 10.60 32.21 55 3.89 10.61 32.28 2.4 方法检出限、精密度及准确度验证
取经过预处理灼烧过的空白坩埚12个,按照HJ 168—2010的要求,采用本实验优化的分析方法连续测定硫含量最低的标准样品GBW07145(硫含量标准值0.74%),平行测定12次,硫含量的测定值分别为0.675%、0.680%、0.695%、0.798%、0.675%、0.798%、0.799%、0.801%、0.803%、0.798%、0.680%、0.804%,按测定结果的3倍标准偏差计算方法检出限为0.185%,以4倍方法检出限计算方法测量下限[24]为0.739%。
选择标准物质GBW(E)070077、GBW07163、GBW07172、GBW(E)070080、GBW07165和GBW07168,按照本实验优化的分析方法进行硫的精密度和准确度实验,每个样品连续测定11次,根据《地质矿产实验室测试质量管理规范》(DZ/T 0130—2006)要求,依照如下公式计算相对误差允许限(YB):
$$ \mathrm{Y}_{\mathrm{B}}=\frac{1}{\sqrt{2}} C \times\left(14.37 \times X_0^{-0.1263}-7.659\right) $$ 式中:C为硫组分重复分析相对偏差允许限系数,其值为0.67;X0为标准物质中硫组分的标准值。从表 3检测结果分析可得,测定结果的相对标准偏差(RSD)分别为2.04%、1.04%、0.82%、1.25%、0.73%和0.50%,相对误差(RE)均小于2%,在相对误差允许限内,说明该方法的精密度良好,测定结果准确可靠,满足DZ/T 0130—2006质量管理规范的要求。与周富强等[18]的方法相比,本文将高低两条校正曲线相结合,固定了合适的称样量,减少了样品检测过程因切换分析方法引起的测量误差,提高了样品测定结果准确度,降低了测定结果的相对标准偏差(RSD),文献中RSD小于2.6%[18],本文中RSD均小于2.04%。
表 3 方法精密度和准确度Table 3. Precision and accuracy tests of the method标准物质编号 硫含量标准值(%) 硫含量测定值(%) 硫含量测定平均值(%) RSD (%) RE (%) YB (%) GBW(E)070077 2.90 2.86 2.85 3.01 2.97 2.88 2.91 2.99 2.92 3.02 2.89 2.93 2.93 2.04 1.03 2.32 GBW07163 6.74 6.85 6.66 6.68 6.80 6.84 6.85 6.82 6.70 6.72 6.80 6.78 6.77 1.04 0.49 1.72 GBW07172 10.26 10.28 10.40 10.15 10.22 10.26 10.36 10.26 10.29 10.45 10.31 10.35 10.30 0.82 0.42 1.44 GBW(E)070080 15.62 15.65 15.45 15.52 15.36 15.97 15.90 15.83 15.85 15.72 15.68 15.83 15.71 1.25 0.55 1.18 GBW07165 29.00 29.25 28.65 28.82 28.77 29.15 28.85 29.02 28.93 28.72 29.28 28.99 28.95 0.73 -0.18 0.82 GBW07168 32.00 32.30 32.17 32.21 32.01 31.85 32.06 31.95 32.03 31.95 32.24 31.81 32.05 0.50 0.16 0.77 随机选取20个实际样品,采用本实验优化的方法进行硫含量检测,每个样品平行测定3次取平均值,再通过与燃烧碘量法结果对比分析两种方法的绝对误差,比较两种方法的一致性和相关性,间接考察方法的准确度。由表 4测定结果可知,两种方法测定的硫含量相近,绝对误差范围在-0.25%~0.49%之间,说明本实验方法具有较高的准确度。通过对表 4数据进行线性拟合可知,两种方法测定结果之间呈极显著线性正相关,线性方程为y=1.0009x+0.0996(R2=0.9995),说明两种方法的一致性和相关性很好,间接地表明了高频红外碳硫仪测定矿石样品中硫含量的可靠性。
表 4 两种方法硫含量结果对比Table 4. Comparison of sulfur content determined with two methods实际样品编号 硫含量测定平均值(%) 绝对误差(%) 实际样品编号 硫含量测定平均值(%) 绝对误差(%) 高频红外碳硫仪法 燃烧碘量法 高频红外碳硫仪法 燃烧碘量法 1 5.96 6.21 -0.25 11 2.23 2.05 0.18 2 26.09 25.60 0.49 12 24.62 24.85 -0.23 3 4.83 4.72 0.11 13 2.82 2.72 0.10 4 2.17 1.96 0.21 14 30.41 30.36 0.05 5 2.24 2.09 0.15 15 3.10 2.99 0.11 6 6.94 7.12 -0.18 16 5.23 5.00 0.23 7 4.12 4.08 0.04 17 2.17 2.02 0.15 8 2.47 2.20 0.27 18 15.73 15.88 -0.15 9 3.30 3.28 0.02 19 13.40 13.07 0.33 10 1.34 1.31 0.03 20 17.57 17.09 0.48 3. 结论
本文将高低两条硫含量校正曲线相结合,采用高低硫检测池切换的方法,建立了高频红外碳硫仪快速测定镍铅锌矿石中质量分数为0.74%~32.0%的硫含量方法,扩大了样品硫含量测量范围,有效地避免了因含量范围跨度大、检测曲线分段过多引起的检测信号不稳定及方法切换频繁等问题,提高了检测效率,降低了检测成本。
建立的方法可以同时快速、准确测定范围广、含量高的多种矿石硫含量,并解决了矿石的低电磁感应及基体影响大等问题。但高频红外碳硫仪测定硫对检测环境要求极为严格,尤其是含量较高、基体复杂的矿石样品,其分析对湿度极其敏感,探索出合适的温度、湿度检测条件,有效地节省干燥剂的使用成本是今后研究的重点内容。
-
表 1 IW@MIL-53(Fe)涂层SPME-GC-MS分析7种PAHs的分析性能
Table 1 Analysis performance of 7 kinds of PAHs by IW@MIL-53(Fe) coating with SPME-GC-MS
分析物 线性范围(ng/L) R2 LOD (ng/L, S/N=3) LOQ (ng/L, S/N=10) RSD(%) 涂层内(n=5) 涂层间(n=3) BaA 250~10000 0.9991 0.03 0.10 3.1 6.7 CHR 250~10000 0.9922 0.13 0.43 6.2 3.0 BbF 250~10000 0.9922 0.11 0.37 8.9 5.7 BKF 250~10000 0.9903 0.26 0.87 5.2 5.5 BaP 250~10000 0.9933 0.36 1.20 7.7 6.0 IPY 250~10000 0.9962 1.50 5.00 10.4 9.5 BPE 250~10000 0.9982 2.25 7.50 10.4 2.5 表 2 实际水样中PAHs分析结果
Table 2 Analytical results of PAHs in actual water samples
分析物 东湖水样 长江水样 浓度(ng/L) 加标浓度(ng/L) RSD (%, n=3) 回收率(%) 浓度(ng/L) 加标浓度(ng/L) RSD (%, n=3) 回收率(%) BaA ND 500 11.6 89.3 ND 500 3.5 80.1 CHR ND 500 8.0 102.3 ND 500 7.0 92.5 BbF ND 500 8.8 96.5 ND 500 10.6 84.6 BKF ND 500 5.5 91.1 ND 500 6.4 89.5 BaP ND 500 11.1 90.6 ND 500 9.6 83.0 IPY ND 500 8.6 91.8 ND 500 5.1 108.5 BPE ND 500 4.9 99.7 ND 500 14.4 91.8 注:ND表示未检出。 -
Li J L, Wang Y X, Zhang C X, et al.The source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil in Xiaodian sewage irrigation area, north of China[J]. Ecotoxicology, 2014, 23(10):1943-1950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b646c4957fc09cd12fb3d62c9bb547f
Kim K H, Jahan S A, Kabir E, et al.A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60(1):71-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac240dcd8d5ce7db797fae5535c66d55
Locatelli M, Forcucci L, Sciascia F, et al.Extraction and detection techniques for PAHs determination in Beverages:A review[J]. Current Chromatography, 2014, 1(2):122-138.
Alizadeh R, Najafi N M.Quantification of PAHs and chlorinated compounds by novel solid-phase microex-traction based on the arrays of tin oxide nanorods[J]. Environmental Monitoring and Assessment, 2013, 185(9):7353-7563.
顾涛, 帅琴, 高强, 等.新型固相微萃取装置的研制及在有机磷农药检测中的应用[J].岩矿测试, 2012, 31(1):71-76. http://www.ykcs.ac.cn/article/id/ykcs_20120109 Gu T, Shuai Q, Gao Q, et al.A study on solid phase micro-extraction device and application of organophosphorus pesticides determination[J]. Rock and Mineral Analysis, 2012, 31(1):71-76. http://www.ykcs.ac.cn/article/id/ykcs_20120109
熊茂富, 任敏, 杜伊, 等.顶空固相微萃取-气相色谱质谱联用法同时测定湖库水中12种氯苯甲醚的条件优化[J].岩矿测试, 2019, 38(6):724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016 Xiong M F, Ren M, Du Y, et al.Simultaneous determination of 12 chloroanisoles in lake reservoir waters by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6):724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016
Arthur C L, Pawliszyn J.Solid-phase microextraction with thermal-desorption using fused-silica optical fibers[J]. Analytical Chemistry, 1990, 62(19):2145-2148.
Koziel J, Jia M Y, Khaled A, et al.Field air analysis with SPME device[J]. Analytica Chimica Acta, 1999, 400(1):153-162.
Xu Y, Zhou X, Zhang D Y, et al.Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometric (GC-MS) analysis of volatile profiles during the stir-frying process of malt[J]. Analytical Methods, 2016, 8(7):1699-1704. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e043b1414bafb312acab136a9b7aaf36
Li L, Huang L J, Sun S T, et al.An amino-func-tionalized ordered mesoporous polymer as a fiber coating for solid phase microextraction of phenols prior to GC-MS analysis[J]. Microchimica Acta, 2019, 186(9):6651-6658.
Risticevic S, Niri V H, Vuckovic D, et al.Recent developments in solid-phase microextraction[J]. Analytical and Bioanalytical Chemistry, 2009, 393(3):781-795.
Spietelun A, Pilarczyk M, Kloskowski A, et al.Current trends in solid-phase microextraction (SPME) fibre coatings[J]. Chemical Society Reviews, 2010, 39(11):4524-4537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=842fec4c66cc651db6f5cbeb6f0596c6
Anbia M, Khazaei M.Ordered nanoporous carbon-based SPME and determination by GC[J]. Chromatographia, 2011, 73(3-4):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8fd2deb2f5c6ab0663d1852ca1d2bbf
Silva E A S, Risticevic S, Pawliszyn J.Recent trends in SPME concerning sorbent materials, configurations and in vivo applications[J]. TrAC Trends in Analytical Chemistry, 2013, 43(1):24-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a24558ea7eded9e4d4d18f2cd8e3dad
Zhang X Q, Liang Q L, Han Q, et al.Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins[J]. Analyst, 2016, 141(13):4219-4226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ae4568964c576e6f642dd63e3a094ce
Tian J, Lu C, He C T, et al.Rapid separation of non-polar and weakly polar analytes with metal-organic framework MAF-5 coated capillary column[J]. Talanta, 2016, 152(1):283-287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe81b6a1d34e05ac9688568fa943dabe
Lirio S, Liu W L, Lin C L, et al.Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples[J]. Journal of Chromatography A, 2016, 1428(1):236-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=992fbc2e79f53abd01319b5bd18845e0
van Nguyen Thi T, Luu C L, Hoang T C, et al.Synthesis of MOF-199 and application to CO2 adsorption[J]. Advances in Natural Sciences:Nanoscience and Nanotechnology, 2013, 4(3):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201511011
Zhao Y, Song Z X, Li X, et al.Metal organic frameworks for energy storage and conversion[J]. Energy Storage Materials, 2016, 2(1):35-62. http://d.old.wanfangdata.com.cn/Periodical/wnkb-e202004001
Zheng J, Li S Y, Wang Y, et al.In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers[J]. Analytica Chimica Acta, 2014, 829(1):22-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a0f2fadc4591ad080c1dddd97c8f5ab
Hu Y L, Lian H X, Zhou L J, et al.In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides[J]. Analytical Chemistry, 2015, 87(1):406-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0da1ff3e39ba06fc79839004399e21b
Huang L J, He M, Chen B B, et al.Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water[J]. Chemosphere, 2018, 199:435-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5cce554d0f9bbf6a739b3bdcf22ee2dc
Ai L H, Li L L, Zhang C H, et al.MIL-53(Fe):A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing[J]. Chemistry-A European Journal, 2013, 19(45):15105-15108. http://d.old.wanfangdata.com.cn/Periodical/gyscl201701007
Chen X F, Zang H, Wang X, et al.Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry[J]. Analyst, 2012, 137(22):5411-5419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f74d4649ae52b2cd148bc91e2165e1bc
Zhang S L, Du Z, Li G K.Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples[J]. Talanta, 2013, 115(1):32-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa946fdc3bae20d492f99165755032c8
Zhang G J, Zang X H, Li Z, et al.Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples[J]. Talanta, 2014, 129(1):600-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac90c768ad2d997c3bac8b7c15b7f5df
Sun S T, Huang L J, Xiao H Y, et al.In situ self-transformation metal into metal-organic framework membrane for solid-phase microextraction of polycyclic aromatic hydrocarbons[J]. Talanta, 2019, 202(1):145-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a7a5a1acbe1d524b0b25004e902fbd7
Lü F, Gan N, Huang J, et al.A poly-dopamine based metal-organic framework coating of the type PDA-MIL-53(Fe) for ultrasound-assisted solid-phase microextraction of polychlorinated biphenyls prior to their determination by GC-MS[J]. Microchimica Acta, 2017, 184(8):2561-2568. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d44457e5348a533ac8499dbf1dcf6a36
Tian J Y, Xu J Q, Zhu F.Application of nanomaterials in sample preparation[J]. Journal of Chromatography A, 2013, 1300(1):2-16.
赖永忠.顶空进样-固相微萃取测定饮用水源水中吡啶[J].岩矿测试, 2011, 30(5):596-600. http://www.ykcs.ac.cn/article/id/ykcs_20110514 Lai Y Z.Determination of pyridine in drinking source water by head space sampling-solid phase micro-extraction[J]. Rock and Mineral Analysis, 2011, 30(5):596-600. http://www.ykcs.ac.cn/article/id/ykcs_20110514
Jalili V, Barkhordari A, Ghiasvand A.Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons:A review[J]. Microchemical Journal, 2020, 157:104967.
Harati F, Ghiasvand A, Dalvand K, et al.Fused-silica capillary internally modified with nanostructured octadecyl silica for dynamic in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from aqueous media[J]. Microchemical Journal, 2020, 155:104672.
欧阳钢锋, Pawliszyn Janusz.固相微萃取:原理与应用[M].北京:化学工业出版社, 2012. Ouyang G F, Pawliszyn J.Solid phase microextraction:Principle and application[M]. Beijing:Chemical Industry Press, 2012.
-
期刊类型引用(1)
1. 唐珂,左嘉. 连续提取沉积物中硫的形态分析方法. 科学技术创新. 2024(24): 83-86 . 百度学术
其他类型引用(0)