Characteristics of Lignin-derived Phenolic Compounds in Arid Lake, Northeastern China and Climatic Implications
-
摘要:
木质素广泛分布于维管植物,经分解生成的酚类化合物可示踪有机质来源、评估木质素降解程度,进而用于反演古环境与古气候变化。采用合适的分析方法有效地分解木质素是推断母源植物类型、降解程度的技术基础,常规方法是木质素经碱(或酸)解后,利用气相色谱-质谱法(GC-MS)分析酚类单体化合物,但分解、提取过程复杂、易引入杂质。热裂解技术可在高温下快速分解有机质,裂解产物可通过GC-MS进行在线分析,具有用样量少、有机质提取比例高、重现性好、操作便捷的特点。本文选择地处亚洲夏季风影响区域的边缘的内蒙伊和沙日乌苏湖,采用热裂解GC-MS(Py-GC/MS)技术,对湖泊沉积物进行裂解分析,在对裂解温度(450℃、550℃和650℃)进行了优化的基础上,识别了21种酚类化合物,包括:4-甲基苯酚、2-乙基苯酚等9种烷基酚类(PHs),4-乙基-2-甲氧基苯酚、4-乙烯基-2, 6-二甲氧基苯酚等9种烷基酚类(PHs)和12种甲氧基酚类(LGs)。结合沉积岩心样品AMS 14C年龄的分析结果,6.7ka以来沉积物中酚类化合物总量、PHs和LGs的变化趋势总体一致,呈现出6.7~4.0ka相对含量较高、4.0ka以来相对含量较低的特征。不同于PHs中邻(o-)-PHs、间(m-)-PHs、对(p-)-PHs的变化趋势与总量一致;但不同取代特征的LGs相对含量变化趋势存在差异,p-LGs在5.4ka前后就出现含量显著下降,3.8ka以来维持较低水平。根据微生物对木质素的“去甲基/去甲氧基”氧化反应途径,对位取代酚类化合物比值(p-PHs/p-LGs)可作为陆生高等植物降解指标,该值越大微生物降解作用越强。将p-PHs/p-LGs指标应用于伊和沙日乌苏沉积物样品结果显示,6.7ka以来p-PHs/p-LGs与正构烷烃单体碳同位素δ13C27~33变化趋势一致(R=-0.77),间接地指示了有效降水变化。即6.7ka以来气候整体转湿,区内陆生高等植物占据优势,充足的水分和有机质为微生物提供了适宜的生存环境和相对稳定的营养来源,降解作用整体呈增强趋势;6.3~5.5ka和4.1~3.6ka期间有效湿度降低,微生物对木质素的降解作用相对减弱。p-PHs/p-LGs指标对应了呼伦贝尔地区湿度变化特征,揭示了干旱-半干旱地区微生物降解与有效湿度变化的相关性,为探讨陆地生态系统对东亚季风北部边缘区气候变化的响应提供科学依据。
-
关键词:
- 热裂解-气相色谱-质谱法 /
- 伊和沙日乌苏湖 /
- 木质素酚类单体化合物 /
- 微生物降解 /
- 古气候
要点(1) Py-GC/MS分析伊和沙日乌苏湖泊沉积物中木质素酚类化合物的适宜裂解温度为650℃。
(2) 沉积物中PHs和LGs分布特征差异主要来自微生物的“去甲基/去甲氧基”降解反应,降解指标p-PHs/p-LGs数值越大,木质素经历降解的程度越高。
(3) 6.7ka以来伊和沙日乌苏湖p-PHs/p-LGs与正构烷烃单体碳同位素δ13C27~33变化趋势一致,可能间接地指示了该区域(干旱-半干旱地区)有效湿度变化。
HIGHLIGHTS(1) 650℃ is the suitable pyrolytic temperature for digesting lignin-derived phenolic compounds in the sediments of Yiheshariwusu Lake.
(2) The difference in distribution characteristics of PHs and LGs in sediments is mainly due to the "demethylation/demethoxy" degradation reaction of microorganisms. The value of degradation index p-PHs/p-LGs corresponds to the degree of lignin degradation.
(3) Since 6.7ka, p-PHs/p-LGs of Yiheshariwusu Lake has been consistent with the change trend of carbon isotope δ13C27-33 of n-alkane monomer in Xiaolongwan Maar Lake, which may indirectly indicate the change of effective precipitation in this area (arid and semi-arid area).
Abstract:BACKGROUNDLignin is widely distributed in vascular plants, and lignin-derived phenolic compounds generated by decomposition could provide information on the source of organic matter and the degradation degree of lignin. The conventional method for lignin deconstruction is complex and involves lignin hydrolysis via alkaline/acid chemical reagents. The analytical technique pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) breaks the chemical bonds of large molecule compounds by instantaneous high temperature to generate a series of small molecule compounds without introducing pretreatment methods such as chemical extractions, realizing the online analysis of complex organic matter that is not easy to be gasified. This technique is characterized by low sample volume, high organic matter extraction ratio, good reproducibility, and convenient operation. It has been shown that the high-temperature cracking products of peat and lake sediments are similar to the results of traditional CuO oxidative decomposition. The distribution characteristics of phenolic compounds indicate the vegetation type and organic matter degradation characteristics. However, the optimization of analytical methods, application of environmental indication significance, and comparative studies of different matrix samples are still needed.
OBJECTIVES(1) Investigate suitable analytical methods for decomposing lignin in lake sediment samples and identify pyrolytic phenolic compounds in the sediments of Yiheshariwusu Lake in the northeast semi-arid region of China (Fig.E.1A, B). (2)Discuss the distribution characteristics of phenolic compounds in the sediments of Yiheshariwusu Lake. (3) Reveal the correlation between pyrolytic lignin phenols and regional climate change in the study area by combining traditional climate proxies, and provide an effective indicator for interpreting the response of terrestrial ecosystems to global climate change.
METHODS(1) Analytical method: An optimized analytical method of Py-GC/MS was established and applied to evaluate lignin-derived phenolic compounds in typical arid lake sediment. Samples were heated to 650℃ for 20s (heating rate 20℃/ms) and pyrolysis products were injected into the gas chromatography (GC) system in split mode, then separated in a nonpolar, low-bleed fused silica column (DB-1MS, 60m, 0.25mm i.d., 0.25μm film thickness, J&W). The GC oven program was set to increase from 40 to 320℃ at a rate of 4℃/min, and left at 320℃ for 18min. With internal electron ionization and ion trapping, the compounds were fragmented and identified in full scan mode (40-450amu). Blank and duplicate samples were analysed for quality control.
(2) Establishment of climatic proxy: Yiheshariwusu was selected as a typical arid lake and pyrolytical phenolic compounds of sediment cores were analysed. Historical variation of phenolic compound combing with radiocarbon dating results were revealed. According to "demethyl/demethoxy" oxidation reaction pathway of microorganisms to lignin, indicator related to degradation degree of lignin was established, and by comparing the indicators with conventional climate proxies previously published in the region, correlations between the indicators and climate features such as effective precipitation can be explored.
RESULTS(1) Py-GC/MS analysis method for phenolic compounds was optimized. Phenolic compounds in the total pyrolytic products of sediments were categorized into 2 groups according to the type of functional group: alkyl-phenols (phenol compounds, PHs) and methoxy-phenols (lignin monomer compounds, LGs), which are further divided into o-, m- and p-compounds according to the position of the substituent on the benzene ring structure. Based on fine characterization of organic matter composition in the sediments of Yiheshariwusu Lake in Inner Mongolia, 21 phenolic compounds were identified and analyzed, including 9 PHs and 12 LGs (Table 1). Pyrolysis temperature is the main factor affecting the results of Py-GC/MS analysis of sediment organic matter fingerprinting. By discussing the effect of different pyrolysis temperatures on the distribution characteristics of the total pyrolytic products at 450℃, 550℃ and 650℃, it was determined that the relative concentration of lignin phenolic compounds increased significantly with increasing pyrolysis temperature. The ether bond (C—O—C) connecting the lignin skeleton structure benzene propane structural unit was further broken as the temperature was increased from 450℃ to 650℃. The relative concentration of phenolic compounds in the pyrolysis compounds reached the highest proportion (16.46%), while the proportion of aromatic hydrocarbons and aliphatic hydrocarbons increased by 3.98% and 10.26%, respectively. The natural macromolecules, which are not easily vaporized, are gradually cleaved into smaller ionic fragments of phenolic compounds under high pyrolysis temperature. As the cleavage temperature increases to 650℃, the flux of phenolic compounds into the chromatographic system increases and the gas chromatographic response is gradually enhanced, with the phenolic compounds reaching the highest ionic intensity response. At the same time, the unit peak area, shape and signal-to-noise ratio were all improved, which improved the accuracy of phenolic compound identification and analysis.
(2) Distribution characteristics of phenolic compounds in Yiheshariwusu Lake were discussed. According to AMS 14C age data, historical variation of total phenolic compounds, PHs and LGs in lake sediment are generally consistent since 6.7ka, showing the characteristics of high relative concentration of 6.7-4.0ka and low concentration since 4.0ka. The variation characteristics of o-PHs, m-PHs, and p-PHs are consistent with total PHs, yet the change characteristics of p-LGs and LGs are different, the relative concentration of p-LGs decreased significantly near 5.4ka and remained at a low level since 3.8ka (average relative concentration of 0.29%). Combined with the lithological characteristics of sediment cores, relative concentration of total phenolic compounds and PHs decreased significantly around 4.0ka, probably due to the change of sedimentary lithology from sand to clay with smaller grain sizes during 4.0-3.8ka, where compounds with smaller molecular weights were preserved in the sediments, and the relative concentration of aliphatic hydrocarbons (e.g., n-alkanes, n-alkenes) and aromatic hydrocarbons significantly increased.
(3) Environmental indication significance of phenolic compounds was studied. According to previous studies of free n-alkanes distribution proxies (e.g., ACL23-33), higher relative concentration in lake sediments of p-PHs indicated major herbaceous source of lignin, however, significant differences in the mean relative concentration of p-PHs and LGs indicated significant microbial degradation of organic matter. The mean value of p-PHs/p-LGs for Yiheshariwusu Lake sediments was 16.41 (n=31, range of 4.36-37.31), showing an overall increasing trend since 6.7ka, reflecting a gradual increase in microbial activities. p-PHs/p-LGs showed a consistent trend and negative correlation with δ13C27-33 (n=31, R=-0.77, p < 0.01), meanwhile, variation of p-PHs/p-LGs positively correlated with the trend of increasing pollen of Chenopodiaceae and Poaceae in Hulun Lake sediment (n=31, R=0.54, p < 0.01), and on a larger scale, p-PHs/p-LGs are consistent and positively correlated with the gradual increase in the standardized precipitation index since 6.7ka in the northern hemisphere mid-latitudes (n=31, R=0.62, p < 0.01) (Fig.E.1C).
CONCLUSIONSThe suitable pyrolysis temperature for Py-GC/MS analysis of phenolic compounds in the sediments of Yiheshariwusu Lake is 650℃. The value of degradation index p-PHs/p-LGs corresponds to the degree of lignin degradation, and the larger the value, the stronger the microbial degradation. Applying the p-PHs/p-LGs index to the sediment samples of Yiheshariwusu Lake, the result show that degradation index (p-PHs/p-LGs) and the carbon isotope of free n-alkanes δ13C27-33 has solid correlation since 6.7ka, indirectly indicating the change of effective precipitation, as the climate turned wet generally since 6.7ka, with terrestrial higher plants dominant, humid climate and sufficient organic matter provided a suitable living environment and relatively stable nutrient source for microorganisms, and the degradation generally increased. Since effective precipitation decreased during 6.3-5.5ka and 4.1-3.6ka, the degradation of lignin by microorganisms was relatively weakened. The p-PHs/p-LGs index corresponds to the characteristics of effective precipitation in the Hulun Buir region, revealing the correlation between microbial degradation and humidity change in arid and semi-arid regions. These findings provide a scientific basis for exploring the response of terrestrial ecosystems to climate change in the northern marginal region of the East Asian monsoon.
-
花岗质岩岩石是地球大陆地壳有别于其他行星的重要标志,且与大量的岩浆-热液矿床在时空和成因上密切相关[1-3],有关花岗质岩石的形成与演化一直是地质学者研究的热点。花岗质岩石主要矿物组成比较简单,一般由长石、云母和石英组成,但有关其岩石起源与演化一系列问题一直存在激烈的争议。绝大多数情况下,人们大多借助元素和同位素地球化学来限定花岗质岩石成因,如以往常采用全岩的Sr、Nd、Pb等放射成因同位素来进行示踪,遗憾的是这些同位素在很多情况下难以对花岗质岩浆的形成与演化提供明确的制约[4-5]。这是因为全岩同位素示踪存在三个方面的局限性:①岩浆在侵位过程当中如果发生了多次岩浆改造(Modification),如岩浆混合、围岩同化混染和结晶分异等,Sr-Nd同位素测定值代表的是均一化后某一个时间点(snapshot)的信息,无疑会隐藏许多岩浆来源的信息[6];②全岩放射成因同位素能够较合理地监测到古老地壳和软流圈地幔物质,但很难监测到年轻物质的具体混入量,因为后者的放射成因子体同位素难以准确测量,而且年轻的幔源岩石或者岛弧火山岩在参与花岗岩形成之前如果遭受热液蚀变,Sr同位素只有少量变化,而Nd和Pb同位素没有变化[4],故难以准确地判断其源岩性质;③使用全岩放射成因同位素分析问题时,我们通常假定岩石中各矿物相具有相同的来源并且保持同位素平衡,但近年来人们发现一些矿物与其寄主岩石在同位素组成上可以存在很大差别[7]。因此,仅借助全岩放射成因同位素来示踪岩浆来源,许多详细的岩浆来源信息及源岩性质变化细节不能被有效地揭露出来,况且与成矿有关的花岗质岩石常普遍遭受不同程度的热液蚀变,这就给用全岩化学成分限定岩浆起源与形成过程带来了更大难度。
为了攻克这个难题,越来越多的研究者试图利用花岗岩中矿物的元素和同位素来揭示岩石成因和演化过程,但由于侵入岩缓慢的冷却过程,亚固相线下大部分矿物的化学成分得到重新平衡,许多详细的岩石成因信息已经丢失[8]。而副矿物具有难熔、惰性和化学性质稳定等特征,一般不易受后期热事件的影响[8-9],即使在特定的条件下发生改变,也能通过结构及成分有效地辨别出来[10-12]。同时,副矿物中含有岩石中大部分高场强元素和稀土元素,这些元素和相关同位素在副矿物中扩散速率缓慢,其结晶过程随着岩浆物理化学条件的改变而表现出不同的结构与地球化学特征,甚至能保存元素和同位素环带,被视为岩浆来源和演化过程的监测器,最大限度地保留了岩浆来源与演化过程的地球化学指纹[12-13]。近年来,随着激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)和激光剥蚀多接收等离子体质谱(LA-MC-ICP-MS)等微区原位分析技术的快速发展和日趋成熟,使得对副矿物进行原位成分测定、获得高精度微量元素和同位素组成得以实现,极大地促进了副矿物在岩石成因中的应用[13-14]。如Bruand等[13]通过对副矿物锆石、磷灰石和榍石进行了原位氧同位素分析,识别出古老花岗岩受后期变质作用的影响,而全岩分析无法揭示出来。越来越多的研究表明,副矿物榍石[CaTi(SiO4)O]微区原位元素和Nd同位素组成,也能够详细揭示岩浆来源和岩浆变化的细节,可显著提高岩浆作用过程的空间分辨率,是探讨岩浆来源与岩石成因的新的有效手段,避免了利用全岩分析为我们探讨花岗岩类成因带来的困扰[15-17, 14]。
湘南构造岩浆带是华南地区花岗质岩浆活动的重要组成部分,发育有多个高钾钙碱性花岗闪长质小岩体,如水口山、宝山和铜山岭等,这些闪长质小岩体主要形成于155~160Ma[18-19],在时空和成因上与铜铅锌多金属成矿密切相关,普遍遭受了不同程度的热液蚀变作用[19-21]。以往基于全岩元素和Sr-Nd-Pb同位素分析,先后提出壳-幔混合成因、残留体再造及中下地壳脱水熔融等多种不同成因模型[22-23],有关这些花岗闪长质岩体的源区特征及岩浆性质一直存在非常大的争议。本文以铜山岭岩体为对象,在详细的野外和镜下观察基础上,采用电子探针(EPMA)、激光剥蚀等离子体质谱(LA-ICP-MS)技术对暗色包体和花岗闪长岩两种岩石类型中榍石的主量、微量元素进行原位分析,采用激光剥蚀多接收等离子体质谱(LA-MC-ICP-MS)技术分析两类样品中榍石的原位Nd同位素组成,准确限定花岗闪长质岩石形成的源区特征和岩浆物理化学性质,为深入理解该地区花岗闪长质岩石成因及其大规模铜铅锌多金属成矿机制提供重要支撑。
1. 地质背景
湘南位于华夏地块和扬子地块的结合部位,其东为华夏地块,西为扬子地块,是一个极富特色的铜铅锌多金属成矿密集区(图 1a)[24-25]。该地区主要出露的地层为古生界灰岩、碎屑岩[26]。岩浆作用强烈,花岗闪长质小岩体成带状密集分布,区域上自北向南分布的水口山、宝山、铜山岭是该地区铜铅锌多金属成矿有关的花岗闪长质小岩体的典型代表。
图 1 (a)湘南地区地质简图和(b)铜山岭岩体分布图(据文献Wang等[24]和卢友月等[25]修改)。湘东南的花岗闪长质侵入体位于华夏和扬子地块的结合部位,铜山岭岩体位于湘东南的南部,由Ⅰ、Ⅱ、Ⅲ等3个小岩体组成,本次研究的样品采自Ⅰ号岩体Figure 1. (a)The simplified geological map of southern Hunan Province and (b) the distribution of the Tongshanling granitic pluton (modified from Wang, et al.[24] and Lu, et al.[25]). Granodioritic pluton in southeast Hunan Province (South China) emplaced at the junction between Cathaysia and Yangtze bocks. The Tongshanling pluton is located in the south of southeast Hunan Province, and is composed of three small plutons Ⅰ, Ⅱ and Ⅲ. The studied samples were collected from No.Ⅰ pluton.铜山岭岩体位于湘东南地区南部,由Ⅰ、Ⅱ、Ⅲ三个小岩体组成,近东西向分布,总面积12km2(图 1b)。该岩体侵入于寒武纪浅变质岩、泥盆纪海相碳酸盐岩夹碎屑岩地层中,形成年龄为159±1Ma[18]。岩体周边分布一系列铜铅锌多金属矿床(点),自北向南有铜山岭矽卡岩型-热液脉型铜多金属矿床、江永矽卡岩型银铅锌矿床、桥头铺矽卡岩型铜钼多金属矿床(图 1b)。前人通过年代学、同位素(S、Pb、C)及流体包裹体研究,大多认为这些矿床与铜山岭岩体在时空和成因上密切相关[21, 25, 27-28]。
2. 实验部分
2.1 实验样品
本次研究的所有样品均采自铜山岭Ⅰ号岩体,岩性主要为角闪石黑云母花岗闪长岩(图 2a),主要矿物组成为角闪石、黑云母、长石和石英,角闪石一般呈棕色和浅绿色(图 2),局部可见有明显的蚀变特征。岩体中发育有大量的铁镁质暗色包体如图 2b所示。主要由角闪石和黑云母等暗色矿物组成。
图 2 铜山岭岩体岩性特征和暗色包体照片及榍石透射光和背散射电子图像。铜山岭岩体中的花岗闪长岩主要由角闪石、长石、石英和黑云母组成。榍石在反射光和背散射电子图像中没有显示出明显的成分环带a—花岗闪长岩的主要矿物组合;b—花岗闪长岩中暗色包体;c—代表性花岗闪长岩镜下照片;d—角闪石镜下特征;e—透射光下榍石照片;f—榍石的背散射电子图像。Figure 2. Characteristics of mafic microgranular enclave and hosted granodiorite, and photomicrographs of accessory mineral titanite.a—The major mineral assemblages of granodiorite; b—The mafic microgranular enclave hosted by granodiorite; c—Photomicrograph of the representative granodiorite; d—Photomicrograph of amphibole; e—Photomicrograph of titanite under transmission light; f—Black scatter electric image of titanite. The granodiorites are mainly composed of amphibole, feldspar, quartz, and biotite. Accessory mineral titanite grains in the MME and host granodiorite of the Tongshanling granitic pluton show little or no intra-grain concentric zoning in transmission and BSE images.本文对花岗闪长岩和暗色包体样品进行粉碎后采用电磁法分选榍石,将分选的榍石颗粒制成环氧树脂靶,然后对榍石进行抛光处理,之后对榍石进行透反射光和背散射照相(图 2中e,f),检查榍石的内部结构,选择无裂痕、无微小矿物包裹体和表面平整的区域进行激光原位分析。
2.2 分析方法
2.2.1 榍石主量元素分析
榍石主量元素利用EPMA进行分析,在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,仪器型号为日本电子生产的JXA8530F-plus型场发射电子探针。仪器工作条件为:加速电压25kV,加速电流10nA,束斑5μm。采用自然界和人工合成国际标样对榍石中元素进行校正,用Kaersutite角闪石国际标样校正榍石的Na、K、Mg、Al、Si、Ca、Mn和Fe等元素的含量,磷灰石和金红石标样分别用来校正榍石中F和Ti的含量。元素特征峰测试时间为10s,背景测试时间为5s,所有测试数据均进行了ZAF校正处理。
2.2.2 榍石原位微量元素分析
榍石微量元素分析实验在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS完成。激光剥蚀系统为GeoLasPro 193nm ArF准分子激光器,电感耦合等离子体质谱为Agilent 7900。激光剥蚀过程中采用氦气为载气,氩气为补偿气,并加入少量氮气提高灵敏度,三者在进入ICP之前通过一个T形接头混合。样品仓为标配的剥蚀池,其中加入树脂制作的模具来获得一个较小体积的取样空间,以降低记忆效应,提高冲洗效率。分析过程中,激光工作参数频率为5Hz,能量密度5J/cm2,束斑44μm,分析点靠近电子探针点的位置,每个样品的总测试时间为90s,采集背景信号15s,样品剥蚀时间60s,冲洗管路和样品池时间15s。在测试之前用美国地调局研制的硅酸盐玻璃NIST610对ICP-MS性能进行优化,使仪器达到最佳的灵敏度和电离效率(U/Th≈1)、尽可能小的氧化物产率(ThO/Th < 0.3%)和低的背景值。微量元素含量校正、仪器灵敏度漂移校正等都采用ICPMSDateCal软件处理,以对应点电子探针获得的Ca含量作为内标,标准物质NIST610和NIST612玻璃作为外标进行数据校正,微量元素分析的准确度优于10%。
2.2.3 榍石原位Sm-Nd同位素分析
榍石Sm-Nd同位素分析实验在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-MC-ICP-MS完成。激光剥蚀系统是澳大利亚瑞索公司生产的RESOlution-155 ArF193-nm,多接收电感耦合等离子体质谱仪是英国Nu公司生产的Nu Plasma Ⅲ。分析过程中,激光的束斑72μm,剥蚀频率6Hz,能量密度6J/cm2。使用144Sm/147Sm=0.205484和146Nd/144Nd=0.7129分别校正Sm同位素和Nd同位素的质量歧视[29]。利用144Sm/149Sm=0.22332校正144Sm对144Nd的同质异位数干扰[30]。榍石标样BLR-1作为外标校正147Sm/144Nd的质量歧视和元素分馏。实验测得的4个监控标样MAD、Otter Lake、LAP和SAP的143Nd/144Nd比值分别为0.511352±0.000008、0.511956±0.000008、0.511355±0.000015、0.511011±0.000007,与相应样品的143Nd/144Nd参考值在误差范围内基本一致(MAD:0.511322±0.000053、Otter Lake:0.512940±0.000009、LAP:0.512352±0.000024、SAP:0.511007±0.000030)[17]。
3. 榍石微区原位元素和同位素分析结果
3.1 榍石主量和微量元素特征
表 1 铜山岭花岗闪长岩和暗色包体中榍石电子探针分析数据Table 1. Representative EPMA data of titanite in granodiorite and mafic microgranular enclave of the Tongshanling pluton元素/分析点 暗色包体(%) 花岗闪长岩(%) TSL4-1 TSL4-2 TSL4-3 TSL4-4 TSL4-5 TSL5-1 TSL5-2 TSL5-3 TSL5-4 TSL5-5 TSL5-6 Na2O 0.014 0.013 - 0.056 0.009 - - 0.003 - - - K2O 0.009 0.004 0.001 0.006 0.008 - - - - - - F 1.45 0.48 1.45 1.69 1.23 1.84 0.255 1.57 1.10 1.09 1.07 MgO - 0.003 0.001 - 0.005 0.031 0.001 0.017 - - 0.002 Al2O3 3.62 2.70 3.60 4.14 3.31 5.61 1.81 4.68 3.03 3.37 2.48 SiO2 31.7 31.4 31.2 31.3 30.7 31.3 31.1 31.4 31.6 31.0 31.6 Cl 0.017 - 0.008 0.012 0.002 0.005 - - 0.007 - 0.004 CaO 29.4 29.3 30.0 29.9 29.4 29.9 29.6 29.0 29.6 29.5 29.4 TiO2 33.9 35.7 35.1 33.7 34.0 30.6 38.2 32.9 35.0 34.2 36.8 MnO 0.059 0.043 0.024 0.045 0.061 0.028 0.044 0.053 0.066 0.024 0.027 FeO 0.220 0.356 0.366 0.190 0.184 0.465 0.378 0.191 0.606 0.456 0.432 总计 100 99.9 102 101 98.9 99.7 101 99.8 101 99.7 102 以O=5计算的阳离子个数(afpu) Na 0.001 0.001 - 0.003 0.001 - - - - - - Mg - - - - - 0.001 - 0.001 - - - Al 0.069 0.052 0.068 0.078 0.064 0.107 0.034 0.089 0.057 0.065 0.047 Si 1.021 1.020 0.996 1.004 1.008 1.013 1.001 1.015 1.016 1.010 1.007 Ca 1.013 1.020 1.026 1.025 1.032 1.038 1.020 1.002 1.020 1.030 1.006 Ti 0.822 0.872 0.841 0.812 0.840 0.745 0.925 0.800 0.847 0.839 0.883 Mn 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 Fe 0.006 0.010 0.010 0.005 0.005 0.013 0.010 0.005 0.016 0.012 0.012 F 0.008 0.003 0.008 0.009 0.007 0.010 0.001 0.008 0.006 0.006 0.006 F和Cl 0.001 - - 0.001 - - - - - - - Al+Fe 0.075 0.061 0.078 0.083 0.069 0.120 0.044 0.094 0.074 0.077 0.058 注:“-”代表低于检测限,下同。 表 2 铜山岭花岗闪长岩和暗色包体中榍石原位微量元素组成Table 2. Trace element compositions of titanite in granodiorite and mafic microgranular enclave of the Tongshanling pluton元素/分析点 暗色包体(μg/g) 花岗闪长岩(μg/g) TSL4-1 TSL4-2 TSL4-3 TSL4-4 TSL4-5 TSL5-1 TSL5-2 TSL5-3 TSL5-4 TSL5-5 TSL5-6 Li 0.431 0.565 0.141 0.264 0.050 1.17 - 0.082 0.260 0.942 - V 1461 571 610 1317 701 781 553 643 687 795 717 Ni 0.178 0.560 0.417 0.032 0.619 0.042 0.185 0.431 - 0.338 - Cu 0.532 0.510 0.589 0.329 0.761 0.648 0.596 0.265 0.357 0.347 0.651 Zn 2.22 2.36 3.49 1.91 2.59 1.76 1.02 2.94 1.15 2.21 1.31 Ga 8.27 6.41 6.58 7.61 6.31 3.56 3.88 7.71 7.68 2.23 6.38 As 0.776 2.36 0.632 0.365 2.66 7.54 1.51 2.63 3.80 3.25 0.796 Rb 0.063 0.742 0.088 - 0.003 0.242 0.051 0.033 0.137 0.087 0.099 Sr 4.66 6.61 6.16 4.74 6.29 7.23 7.51 6.22 7.62 11.3 6.42 Y 270 74.0 131 32.4 90.9 118 872 333 1706 74.9 906 Zr 16.5 143 26.8 59.4 486 11.1 154 190 536 474 67.0 Nb 384 584 354 306 1489 650 625 1069 1455 1217 963 Sn 861 4116 3960 1353 6594 90 1162 3503 1233 829 651 Cs 0.112 0.320 0.038 0.039 0.004 0.317 0.002 0.005 0.044 0.110 0.011 Ba 0.093 0.342 0.055 0.108 0.053 1.323 - 0.080 0.033 1.263 0.048 La 5.33 9.87 8.07 4.19 5.92 16.5 4.37 14.1 15.8 15.7 2.75 Ce 24.8 43.1 48.4 16.6 21.5 63.9 43.2 73.9 98.1 51.4 25.7 Pr 5.45 6.39 9.19 2.58 3.91 11.9 15.5 15.8 27.0 7.02 9.56 Nd 37.6 29.6 49.9 13.1 24.9 69.8 135.2 97.8 214 32.6 86.8 Sm 19.8 7.79 13.2 4.95 10.7 22.2 86.8 35.8 135 26.4 68.5 Eu 8.94 10.9 13.4 5.71 15.7 10.2 46.0 17.4 32.5 28.8 20.3 Gd 29.7 9.59 16.2 5.09 13.8 22.6 118 42.2 192 25.9 108 Tb 5.95 1.58 2.85 0.84 2.18 3.50 21.7 7.20 37.03 1.42 21.3 Dy 42.7 10.5 19.8 5.3 13.3 20.1 143 47.5 259 9.8 151 Ho 9.84 2.45 4.44 1.12 3.05 4.20 30.2 10.9 55.4 2.14 31.2 Er 29.0 7.2 13.5 3.3 9.0 11.0 85.5 33.9 166.4 6.5 89.3 Tm 4.63 1.18 2.21 0.51 1.40 1.58 13.73 5.69 26.6 1.12 13.6 Yb 32.1 10.3 17.2 3.5 9.8 10.1 103 47.5 206 10.8 100 Lu 4.52 1.97 3.38 0.52 1.29 1.49 17.3 9.48 33.0 1.91 14.1 Hf 0.639 5.09 0.849 2.10 19.0 0.387 7.36 6.77 21.0 16.4 2.13 Ta 28.4 52.1 34.0 24.7 109.5 56.0 56.2 85.7 104.8 91.0 80.3 W 10.2 167 50.5 13.3 173 11.1 3.24 609 366 144 6.15 Pb 0.495 1.386 0.502 0.280 1.14 5.52 0.540 1.43 1.39 1.68 0.427 Th 2.13 3.76 1.44 6.40 2.52 2.35 5.04 63.5 62.0 6.92 2.41 U 17.2 52.8 16.9 18.2 19.8 4.39 18.0 262 205 45.4 10.1 ΣREE 258 152 222 67 136 269 864 459 1498 187 742 LaN/YbN 0.12 0.69 0.34 0.85 0.43 1.17 0.03 0.21 0.06 1.04 0.02 T(℃) 762 878 786 828 956 743 883 895 963 954 834 Eu/Eu* 1.13 3.86 2.80 3.48 3.94 1.39 1.39 1.37 0.62 1.10 0.72 Ce/Ce* 1.13 1.33 1.38 1.24 1.09 1.12 1.29 1.22 1.17 1.20 1.23 Zr/Hf 25.9 28.1 31.5 28.3 25.6 28.7 21.0 28.0 25.5 29.0 31.4 Nb/Ta 13.5 11.2 10.4 12.4 13.6 11.6 11.1 12.5 13.9 13.4 12.0 Y/Ho 27.4 30.2 29.6 28.8 29.8 28.0 28.9 30.7 30.8 35.0 29.0 分析结果显示,铜山花岗闪长岩及暗色包体中榍石的主量元素变化范围基本一致,SiO2为31.0%~31.7%,Al2O3为1.81%~5.61%,CaO为29.0%~30.0%,TiO2为30.6%~38.2%,FeO为0.184%~0.606%,F为0.48%~1.84%。对榍石原位微量元素分析显示,单个样品的微量元素含量变化范围不大,没有明显的成分环带。两类样品中榍石的稀土元素总量变化范围较大,为67~1498μg/g,但二者稀土配分模式存在一定差别(图 3)[31],暗色包体中榍石具有微弱的重稀土富集,LaN/YbN比值为0.12~0.85,具有明显的Eu正异常,Eu/Eu*值为1.13~3.94;而花岗闪长岩中榍石稀土配分模式变化较大,Eu正异常变小,部分分析点显示出负异常,Eu/Eu*值为0.62~1.39。两类样品中榍石的微量元素对Zr/Hf、Nb/Ta、Y/Ho比值变化范围较小(表 2),Zr/Hf比值为21.0~31.5,Nb/Ta比值为10.4~13.9,Y/Ho比值为27.4~35.0。
图 3 铜山岭榍石稀土元素配分模式图,暗色包体中榍石的稀土含量低于花岗闪长岩中榍石的稀土含量并具有明显的正Eu异常,而花岗闪长岩中的榍石显示出弱的正Eu或者负Eu异常。球粒陨石标准化数据据Sun和McDonough[31]Figure 3. Chondrite-normalized REE patterns for titanite from the Tongshanling granitic pluton. Titanite from MME is characterized by Eu positive anomaly. The titanite from granodiorite has REE content higher than those from MME and shows weak positive or negative Eu anomaly on REE pattern. It is indicate that the granitic melts of the Tongshanling are characterized by high oxygen fugacity (The chondrite values are from Sun and McDonough[31]).3.2 榍石Sm-Nd同位素特征
3个样品中榍石的微区原位Sm-Nd同位素分析结果见表 3。单颗粒榍石的Sm-Nd同位素组成非常均一,暗色包体中榍石的147Sm/144Nd比值为0.2399~0.4026,144Nd/143Nd变化范围为0.512321~0.512675,εNd(t)值为-3.5~-8.9,平均值为-7.2±2.4。花岗闪长岩中榍石147Sm/144Nd比值为0.2850~1.4020,144Nd/143Nd变化范围为0.512269~0.513399,εNd(t)值为-5.4~-9.9,平均值为-6.9±2.4。花岗闪长岩中榍石的Sm-Nd同位素比值变化范围略大于暗色包体中榍石的Sm-Nd同位素比值,但两者的初始Nd同位素组成非常相似(图 4)。
表 3 榍石原位Sm-Nd同位素组成Table 3. In-situ Sm-Nd isotope compositions in titanite from granodiorite and mafic microgranular enclave of the Tongshanling pluton暗色包体分析点 147Sm/144Nd 2σ 143Nd/144Nd 2σ εNd(t) 2σ fSm/Nd 2σ T4TNd07 0.3415 0.0099 0.512337 0.000442 -8.9 0.6 0.736 0.050 T4TNd09 0.3894 0.0010 0.512392 0.000095 -8.8 1.9 0.980 0.005 T4TNd10 0.4026 0.0026 0.512675 0.000057 -3.5 1.1 1.047 0.013 T4TNd11 0.2416 0.0048 0.512321 0.000283 -7.1 1.5 0.228 0.024 T4TNd12 0.2399 0.0072 0.512504 0.000744 -3.5 1.5 0.220 0.037 T4TNd13 0.2626 0.0018 0.512346 0.000509 -7.0 0.9 0.335 0.009 花岗闪长岩分析点 147Sm/144Nd 2σ 143Nd/144Nd 2σ εNd(t) 2σ fSm/Nd 2σ T3TNd01 1.4020 0.0098 0.513399 0.000267 -9.9 1.2 6.127 0.050 T5TNd01 0.4059 0.0026 0.512580 0.000166 -5.4 1.2 1.063 0.013 T5TNd02 0.5917 0.0046 0.512761 0.000140 -5.7 0.7 2.008 0.023 T5TNd05 0.3743 0.0047 0.512404 0.000270 -8.2 1.3 0.903 0.024 T3TNd03 0.2850 0.0048 0.512269 0.000693 -9.0 3.5 0.449 0.024 图 4 铜山岭花岗闪长岩和暗色包体中榍石Sm-Nd同位素组成,暗色包体和花岗闪长岩中的榍石具有相似的初始Nd同位素组成a—榍石147Sm/144Nd与143Nd/144Nd相关图;b—榍石147Sm/144Nd与εNd(t)相关图;c—榍石εNd(t)加权平均值;d—榍石εNd(t)柱状图。Figure 4. The Sm-Nd isotope compositions of titanite from the Tongshanling granitic pluton. All titanite grains have coincident negative initial Nd isotopic compositions.(a) Plot of 147Sm/144Nd against 143Nd/144Nd for titanite; (b) Plot of 147Sm/144Nd against εNd(t) for titanite; (c) Weighted mean εNd value(t) for titanite; (d) Histogram of εNd(t) value for titanite. Titanite from MME has homogenous Nd isotope compositions. Their present 144Nd/143Nd ranges from 0.512321 to 0.512675, corresponding to εNd(t) value from -3.5 to -8.9 with an average of -7.2±2.4 (N=6). Titanite from granodiorite overall have 144Nd/143Nd ratio ranging from 0.512269 to 0.513399. Their time-corrected initial εNd(t) value vary between -5.4 and -9.9 with an average of -6.9±2.4 (N=5). All titanite grains have negative initial Nd isotopic compositions.4. 榍石地球化学特征对岩石成因的指示
4.1 榍石形成条件及其对岩浆性质的约束
副矿物榍石主量元素通常存在较大的差异,且含有较高的稀土元素和高场强元素,常被应用于判别榍石成因进而揭示寄主岩石的形成条件。因此,元素在榍石晶格位的替代方式得到了地质学者的广泛关注[32]。铜山岭花岗闪长岩及其中暗色包体中榍石普遍含有Al、Fe和F等元素,具有相似的元素变化趋势,Al+Fe与Ti具有明显的负相关关系(图 5a),暗示Al和Fe主要通过替代八面体位置上的Ti进入榍石,具体的替代方式是(Al,Fe3+)+(F,OH)=Ti4++O2-。然而,在Al+Fe和F的关系图中,Al和Fe超过了(Al,Fe3+)+(F,OH)=Ti4++O2-理论替换线(图 5b),说明还有额外的Al通过替换进入榍石晶格。铜山岭花岗闪长岩及暗色包体中榍石具有较高的REE含量,很可能还发生了Al+Fe+REE一起替换了Ti位和Ca位,替代方式是(Al,Fe3+)+REE=Ti4++O2-。因此,榍石中微量元素可能同时通过上述两种替代方式进入其晶格中。
图 5 铜山岭榍石主量元素(a,b)和微量元素比值(c,d,e,f)相关图。榍石中主微量元素受离子半径和电荷控制,不受热液活动的影响,能反映初始岩浆的信息a—Ti和Al+Fe相关图;b—F和Al+Fe相关图;c—Zr/Hf比值和Nb/Ta比值相关图;d—Zr/Hf比值和Y/Ho比值相关图;e—Eu异常Eu/Eu*和Zr/Hf比值相关图;f—Eu异常Eu/Eu*和Ce异常Ce/Ce*相关图。Figure 5. Selected major element variational diagrams (a, b) and trace element ratios variational diagrams (c-f) for titanite. The variation of Zr/Hf, Nb/Ta and Y/Ho ratios of titanite grains range from 21.0 to 31.5, 10.4 to 13.9 and 27.4 to 35.0, respectively. These trace element ratios are consistent with those of normal crust and are not fractionated. Therefore, the trace elements of titanite were completely controlled by ion radius and charge, and not affected by late hydrothermal alteration.元素进入榍石晶格与其形成条件密切相关[33-35]。一般而言,岩浆成因榍石具有低CaO和TiO2含量,高FeO、Na2O和MgO含量,稀土和高场强元素含量较高,稀土元素配分模式呈现出平坦的中-重稀土型式,这些地球化学特征明显有别于热液和变质成因的榍石[36-37, 35]。当有流体参与作用时,矿物中的等价微量元素对Zr-Hf、Nb-Ta和Y-Ho会发生明显分异,偏离地壳岩石的正常范围[38-40],由于流体作用中,这些元素在矿物和熔体之间的分配不再受电价和离子半径控制[41]。铜山岭花岗闪长岩与铜多金属成矿在时空和成因上密切相关,岩体普遍遭受了强烈的热液蚀变作用[25, 27-28],热液活动是否对榍石的形成存在影响目前尚不明确。本次研究的榍石具有平坦的中-重稀土元素配分模式(图 3),与苏鲁大别超高压变质岩中残留岩浆榍石的稀土配分模式完全一致[34]。所有榍石均具有低的CaO、Al2O3和TiO2含量及高的Fe2O3和MgO含量(表 1),元素的含量也与苏鲁大别超高压变质岩中残留岩浆榍石及三江地区碱性岩中岩浆榍石的元素含量相当[36, 34-35]。这些元素地球化学特征均说明所研究的榍石都属于岩浆成因。而且,铜山岭花岗闪长岩和暗色包体中榍石中Nb/Ta、Zr/Hf和Y/Ho比值变化范围非常小(图 5),Nb/Ta比值一般小于13.5,Zr/Hf比值一般大于21,Y/Ho比值大于27.4,完全处于离子半径和电价控制的范围。因此,榍石未受热液活动的影响,保持岩浆初始信息,可以用于限定寄主岩石的岩浆性质。
已有实验研究表明,微量元素Zr可以取代榍石中的Ti,其取代量的多少与体系的温度和压力相关,因此,榍石被广泛应用于地质温压条件的估算[42-44]。系统的实验研究证实,榍石中Zr含量与温压条件存在以下关系式[42]:
$$ \begin{aligned} \log \left(\mathrm{Zr}_{\text {榍石 }}\right) & =10.52( \pm 0.10)-7708( \pm 101) / T- \\ & 960( \pm 10) P / T-\log \left(\alpha_{\mathrm{TiO}_2}\right)-\log \left(\alpha_{\mathrm{SiO}_2}\right) \end{aligned} $$ 式中:Zr榍石为榍石中Zr含量(μg/g);T为温度(K);P为压力(GPa),αTiO2和αSiO2分别为Ti和Si的活度。
前人通过角闪石的Al压力计获得了铜山岭花岗闪长岩形成的压力约为2.0GPa[22]。由于铜山岭花岗闪长岩中含有金红石和石英,假定αTiO2和αSiO2均为1,即Ti和Si的活度均为1,根据榍石中Zr含量,计算得到暗色包体中榍石的形成温度为762~956℃,略高于花岗闪长岩中榍石的形成温度743~963℃(表 2),并明显高于前人通过角闪石、黑云母和斜长石等矿物计算的温度[22]。因此,榍石记录的是初始岩浆温度条件,暗色包体中的榍石形成时间略早于寄主花岗岩闪长中的榍石。根据Chappell等[45]提出的高温和低温花岗岩类分类标准,铜山岭花岗闪长岩属于高温花岗岩类。同时,榍石中Ce和Eu异常通常与岩浆氧化还原状态密切相关,由于不同的氧化还原条件下,Ce可以Ce3+和Ce4+,Eu可以Eu2+和Eu3+存在[46, 35]。还原条件下,Ce主要以低价态的Ce3+形式存在,Ce3+离子半径为1.02Å,与7次配位Ca2+离子半径1.06Å相似,容易置换榍石中的Ca2+进入晶格,从而导致较高的Ce/Ce*比值;而Eu主要以Eu2+形式存在,Eu2+离子半径为1.17 Å,与榍石中7次配位Ca2+离子半径相差较大,难以置换进入榍石晶格,从而具有较低的Eu/Eu*比值[46]。氧化条件下,榍石中Ce/Ce*比值和Eu/Eu*比值则反之。铜山岭花岗闪长岩暗色包体中榍石具有Eu的正异常,而花岗闪长岩中榍石分析点大部分显示出Eu的弱负异常,少量点具有Eu正异常(图 3),Eu/Eu*比值降低(图 5),二者的Ce/Ce*比值都大于1.0,且与Eu/Eu*比值变化存在相关性(图 5)。因此,榍石中Eu、Ce异常说明岩浆的初始氧逸度较高,随着岩浆演化,氧逸度有降低趋势。
4.2 榍石Nd同位素对岩浆源区示踪
铜山岭花岗闪长岩具有明显的富钾、高铝特征[47, 28],全岩初始Sr-Nd同位素变化范围较大,初始87Sr/86Sr变化范围为0.707962~0.710396,εNd(t)值为-2.3~-7.0[47, 28]。基于全岩Sr-Nd同位素和元素特征,前人认为铜山岭花岗闪长岩主要由壳幔物质混合形成或者残留体再造[45-46]。由于花岗质岩石在风化和热液蚀变过程中Sm-Nd同位素体系容易重置,难以限定岩浆源区特征,而榍石抗风化抗热液蚀变能力强,其原位Sm-Nd同位素代表了榍石结晶时岩浆的Nd同位素组成,可以有效地示踪岩浆来源和演化过程物质的变化细节,榍石原位Nd同位素成为了示踪岩浆源区和演化过程一个新的有效手段[15, 14, 35]。铜山岭花岗闪长岩中暗色包体的榍石εNd(t)值为-3.5~-8.9,平均值为-7.2±2.4,花岗闪长岩中榍石εNd(t)值为-5.4~-9.9,平均值为-6.9±2.4,二者变化范围相似(图 4),而且同一颗粒不同生长环带的Nd同位素组成比较均一,说明在榍石结晶过程中岩浆来源没有发生明显变化,没有明显的岩浆混合特征。
在Nd同位素演化曲线上,铜山岭花岗闪长岩和暗色包体中榍石都具有负的初始Nd同位素组成,靠近华南大陆中下地壳Nd同位素区域,与湘南地区下地壳麻粒岩包体的Nd同位素组成相似[εNd(t)值为-6.59~-7.34][48],处于元古代麻源群中基性变质岩的范围(图 6)。因此,铜山岭地区的花岗闪长岩很可能由均一的镁铁质中下壳熔融形成。然而,中下地壳什么样的物质能产生富钾、富铝的岩浆?前人通过实验研究发现,角闪岩脱水熔融过程产生的水不饱和岩浆具有高铝、高钾特征,而产生的水饱和岩浆具有高铝、高钙,但亏损铁、镁和钾特征[52-53],因此,铜山岭岩体很可能由镁铁质角闪岩相中下地壳发生脱水熔融形成的水不饱和岩浆形成。
图 6 铜山岭榍石Nd同位素演化曲线。铜山岭榍石的初始Nd同位素靠近华南中下地壳Nd同位素演化线,暗示铜山岭花岗闪长质岩石的物质源区是华南中下地壳物质。所有初始同位素比值根据年龄159±1Ma进行校正,华南中下地壳Sr-Nd同位素数据据Yu等[49]和孔华等[48],元古代中基性变质岩数据据袁忠信等[50],Nd同位素演化曲线据Chen等[51]Figure 6. Nd isotopic evolution diagrams for titanite from the Tongshanling granodiorite. All titanite grains have negative initial Nd isotopic compositions, which is consistent with the evolution trend of Nd isotopes of the middle-lower continental crust of South China. It is indicated that granodiorites from the Tongshanling pluton were probably formed by the amphibole-dehydration melting of a mafic source in the middle-lower crust beneath South China. All the initial ratios were corrected to 159±1Ma. The Nd isotopic data of middle/lower crust are from Yu, et al[49] and Kong, et al[48]. The data of Proterozoic metamorphic rocks are from Yuan, et al[50]. Nd isotopic evolution diagram was modified after Chen, et al[51].5. 结论
利用LA-ICP-MS和LA-MC-ICP-MS等现代原位分析测试技术,精确测定了铜山岭岩体中镁铁质暗色包体(MME)和寄主花岗闪长岩中副矿物榍石的微量元素和Nd同位素组成,确定了REE与Al和Fe主要通过(Al,Fe3+)+REE=Ti4++O2-方式替换榍石的Ti位和Ca位而进入晶格。榍石中微量元素对Zr/Hf、Nb/Ta、Y/Ho比值变化范围完全受控于离子半径和电荷,不受热液蚀变的影响,保留岩浆初始信息。榍石原位化学组成对示踪岩浆性质和起源具有明显的优势。
榍石微量元素分析结果表明铜山岭花岗闪长质岩浆初始氧逸度高,随岩浆演化有降低趋势。暗色包体和寄主花岗闪长岩中榍石具有均一的、负的Nd同位素组成,变化范围较小,与华南大陆中下地壳Nd同位素演化趋势一致,暗示铜山岭花岗闪长岩很可能由镁铁质角闪岩相中下地壳脱水熔融形成的水不饱和岩浆形成。
-
图 2 样品中不同类型酚类化合物选择离子色谱图及质谱裂解特征
a-1、a-2—m/z 107选择离子色谱图及对乙基苯酚质谱图及裂解特征;
b-1、b-2—m/z 124选择离子色谱图及邻甲氧基苯酚质谱图及裂解特征。Figure 2. Selective ion chromatogram, mass spectra and fragmentation characteristics of phenolic compounds.
a-1 and a-2—m/z 107 selective ion chromatogram, mass spectra and fragmentation characteristics of 4-ethylphenol;
b-1 and b-2—m/z 124 selective ion chromatogram, mass spectra and fragmentation characteristics of 2-methoxyphenol.图 3 不同裂解温度下产物相对含量分布及目标化合物色谱响应对比图
a—裂解温度为450℃;b—裂解温度为550℃;c—裂解温度为650℃;d—选择离子m/z=107色谱图;e—选择离子m/z=135色谱图。
Figure 3. Distribution of pyrolytic compounds (five categories are N-compounds, aromatics, polysaccharide derivatives, phenols and aliphatic compounds clockwise) and chromatographic responses of typical phenolic compounds under different pyrolytic temperatures.
a—450℃ of pyrolytic temperature; b—550℃ of pyrolytic temperature; c—650℃ of pyrolytic temperature; d—selective ion chromatogram of m/z 107; e—selective ion chromatogram of m/z=135.
图 4 酚类化合物在总裂解产物中的相对含量及分布特征
a—酚类化合物在裂解产物中相对含量;b—PHs在裂解产物中相对含量;c、d、e—不同取代PHs占比;f—LGs在裂解产物中相对含量;g、h—不同取代LGs占比。
Figure 4. Historical variation of phenolic compounds in pyrolytic compounds.
a—Relative concentration of phenolic compounds in pyrolysis products; b—Relative concentration of PHs in pyrolysis products; c, d, e—Proportion of different substituted PHs; f—Relative concentration of LGs in pyrolysis products; g, h—Proportion of different substituted LGs.
图 5 p-PHs/p-LGs指标及同区气候指标变化特征
a—正构烷烃平均链长ACL23~33[23];b—正构烷烃指示草树比[C31/(C27+C29+C31)][23];c—正构烷烃碳优势指数CPI23~33(逆坐标);d—木质素降解指标(p-PHs/p-LGs);e—长链正构烷烃单体碳同位素比值;f—呼伦湖草本(禾本科、藜科)孢粉百分含量[71];g—北半球中纬地区标化降水指数[74]。
Figure 5. Variation of p-PHs/p-LGs index and climatic records in same region.
a—Average chain length ACL23-33[23]; b—Ratio of grasses/trees [C31/(C27+C29+C31)]; c—Carbon predominance index (CPI23-33); d—Lignin degradation index (p-PHs/p-LGs); e—Compound-specific δ13C27-33; f—Herb pollen percentage of Hulun Lake; g—Net precipitation (precipitation minus evapotranspiration) in standard deviation (SD) units in mid-latitude net precipitation.
表 1 伊和沙日乌苏湖沉积物裂解产物中酚类化合物
Table 1 Pyrolytic phenolic compounds in sediment of Yiheshariwusu Lake
代号 化合物名称 保留时间(min) 化学式 分子量 特征离子(m/z) PH1 苯酚
Phenol20.14 C6H6O 94 94 PH2 2-甲基苯酚
2-Methylphenol23.02 C7H8O 108 107, 108 PH3 苯乙酮
Acetophenone23.22 C8H8O 120 105, 77 PH4 4-甲基苯
4-Methylphenol23.87 C7H8O 108 107, 108 PH5 2-乙基苯酚
2-Ethylphenol26.26 C8H10O 122 107, 122 PH6 3-乙基苯酚
3-Ethylphenol26.67 C8H10O 122 107, 122 PH7 4-乙基苯酚
4-Ethylphenol27.36 C8H10O 122 107, 122 PH8 2-乙基-6-甲基苯酚
2-Ethyl-6-methylphenol29.59 C9H12O 136 121, 136 PH9 2-乙基-5-甲基苯酚
2-Ethyl-5-methylphenol29.97 C9H12O 136 121, 136 LG1 2-甲氧基苯酚
2-Methoxyphenol (Guaiacol)23.22 C7H8O2 124 109, 124 LG2 4-甲氧基苯酚
Methoxyphenol24.24 C7H8O2 124 109, 124 LG3 5-甲基-2-甲氧基苯酚
Methoxy-5-methylphenol
(5-Methylguaiacol)28.07 C8H10O2 138 123, 138 LG4 4-乙基-2-甲氧基苯酚
4-Ethyl-2-methoxyphenol
(4-Ethylguaiacol)31.42 C9H12O2 152 137, 152 LG5 4-乙烯基-2-甲氧基苯酚
4-Vinyl-2-methoxyphenol
(4-Vinylguaiacol)32.54 C9H10O2 150 135, 150 LG6 2, 6-二甲氧基苯酚
2, 6-dimethoxyphenol (Syringol)33.46 C8H10O3 154 154, 139 LG7 4-(2-丙烯基)-2-甲氧基苯酚
4-(2-Propenyl)-2-methoxyphenol (Eugenol)37.06 C10H12O2 164 164, 149 LG8 4-乙酰基-2-甲氧基苯酚
4-Acetyl-2-methoxyphenol (4-Acetylguaiacol)37.85 C9H10O3 166 151, 166 LG9 4-乙基-2, 6-二甲氧基苯酚
4-Ethyl-2, 6-dimethoxyphenol (4-Ethylsyringol)39.19 C10H14O3 182 167, 182 LG10 4-乙烯基-2, 6-二甲氧基苯酚
4-Vinyl-2, 6-dimethoxyphenol (4-Vinylsyringol)40.28 C10H12O3 180 165, 180 LG11 4-羟基-3, 5-二甲氧基苯甲醛
4-Hydroxy-3, 5-dimethoxybenzaldehyde (syringaldehyde)43.06 C9H10O4 182 182, 181 LG12 4-(1-丙烯基)-2, 6-二甲氧基苯酚
4-(1-Propenyl)-2, 6-dimethoxyphenol
(4-Propenylsyringol)44.21 C11H14O3 194 194, 91 -
[1] Vanholme R, Demedts B, Morreel K, et al. Lignin biosyn-thesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905. doi: 10.1104/pp.110.155119
[2] Mitra S, Bianchi T S, Guo L, et al. Terrestrially derived dissolved organic matter in the chesapeake bay and the Middle Atlantic Bight[J]. Geochimica et Cosmochimica Acta, 2000, 64(20): 3547-3557. doi: 10.1016/S0016-7037(00)00450-6
[3] Jex C N, Pate G H, Blyth A J, et al. Lignin biogeochemistry: From modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87: 46-59. doi: 10.1016/j.quascirev.2013.12.028
[4] Ward N D, Krusche A V, Sawakuchi H O, et al. The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean[J]. Marine Chemistry, 2015, 177: 244-256. doi: 10.1016/j.marchem.2015.06.013
[5] 冯晓娟, 王依云, 刘婷, 等. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB202004010.htm Feng X J, Wang Y Y, Liu T, et al. Biomarkers and their applications in ecosystem research[J]. Chinese Journal of Plant Ecology, 2020, 44(4): 384-394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB202004010.htm
[6] 凌媛, 王永, 王淑贤, 等. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘, 2022, 29(2): 327-342. doi: 10.13745/j.esf.sf.2021.10.35 Ling Y, Wang Y, Wang S X, et al. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity: A review[J]. Earth Science Frontiers, 2022, 29(2): 327-342. doi: 10.13745/j.esf.sf.2021.10.35
[7] Goñi M A, Montgomery S. Alkaline CuO oxidation with a microwave digestion system: Lignin analyses of geochemical samples[J]. Analytical Chemistry, 2000, 72(14): 3116-3121. doi: 10.1021/ac991316w
[8] Klein K, Gross-Schm lders M, Alewell C, et al. Chapter three-heating up a cold case: Applications of analytical pyrolysis GC/MS to assess molecular biomarkers in peat[M]//Advances in Agronomy. Academic Press, 2021: 115-159.
[9] Tsutsuki K, Esaki I, Kuwatsuka S. CuO-oxidation products of peat as a key to the analysis of the paleo-environmental changes in a wetland[J]. Soil Science and Plant Nutrition, 1994, 40(1): 107-116. doi: 10.1080/00380768.1994.10414283
[10] Meuzelaar H L C, Haider K, Nagar B R, et al. Comparative studies of pyrolysis-mass spectra of melanins, model phenolic polymers, and humic acids[J]. Geoderma, 1977, 17(3): 239-252. doi: 10.1016/0016-7061(77)90054-4
[11] Bracewell J M, Robertson G W, Williams B L. Pyrolysis-mass spectrometry studies of humification in a peat and a peaty podzol[J]. Journal of Analytical & Applied Pyrolysis, 1980, 2(1): 53-62.
[12] Page D W. Characterisation of organic matter in sediment from Corin Reservoir, Australia[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 169-183. doi: 10.1016/S0165-2370(02)00130-4
[13] Kumar M, Boski T, Lima-Filho F P, et al. Environmental changes recorded in the Holocene sedimentary infill of a tropical estuary[J]. Quaternary International, 2018, 476: 34-45. doi: 10.1016/j.quaint.2018.03.006
[14] Saiz-Jimenez C, de Leeuw J W. Lignin pyrolysis products: Their structures and their significance as biomarkers[J]. Organic Geochemistry, 1986, 10(4-6): 869-876. doi: 10.1016/S0146-6380(86)80024-9
[15] Tinoco P, Almendros G, Gonzalez-Vila F J. Impact of the vegetation on the lignin pyrolytic signature of soil humic acids from Mediterranean soils[J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(2): 407-420. doi: 10.1016/S0165-2370(02)00041-4
[16] Carr A S, Boom A, Chase B M, et al. Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: An example from the southern cape coastline of South Africa[J]. Journal of Paleolimnology, 2010, 44(4): 947-961. doi: 10.1007/s10933-010-9466-9
[17] Ohra-Aho T, Tenkanen M, Tamminen T. Direct analysis of lignin and lignin-like components from softwood kraft pulp by Py-GC/MS techniques[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1-2): 123-128. doi: 10.1016/j.jaap.2004.11.010
[18] van der Kaaden A, Boon J J, Haverkamp J. The analytical pyrolysis of carbohydrates. 2-Differentiation of homopolyhexoses according to their linkage type, by pyrolysis-mass spectrometry and pyrolysis-gas chromatography/mass spectrometry[J]. Biomedical Mass Spectrometry, 1984, 11(9): 486-492. doi: 10.1002/bms.1200110910
[19] Ninnes S, Tolu J, Meyer-Jacob C, et al. Investigating molecular changes in organic matter composition in two Holocene lake-Sediment records from central Sweden using pyrolysis-GC/MS[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1423-1438. doi: 10.1002/2016JG003715
[20] Melenevskii V, Leonova G, Bobrov V, et al. Transformation of organic matter in the Holocene sediments of Lake Ochki (South Baikal region): Evidence from pyrolysis data[J]. Geochemistry International, 2015, 53(10): 903-921. doi: 10.1134/S0016702915080054
[21] Carr A S, Boom A, Chase B M, et al. Holocene sea level and environmental change on the west coast of South Africa: Evidence from plant biomarkers, stable isotopes and pollen[J]. Journal of Paleolimnology, 2015, 53(4): 415-432. doi: 10.1007/s10933-015-9833-7
[22] Tolu J, Gerber L, Boily J F, et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution: A promising analytical tool in (paleo)limnology[J]. Analytica Chimica Acta, 2015, 880: 93-102. doi: 10.1016/j.aca.2015.03.043
[23] Xie M M, Sun Q, Dong H W, et al. n-Alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China[J]. The Holocene, 2020, 30(10): 1451-1461. doi: 10.1177/0959683620932968
[24] Schellekens J, Buurman P. n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation[J]. Geoderma, 2011, 164(3-4): 112-121. doi: 10.1016/j.geoderma.2011.05.012
[25] Shang W Y, Wang S X, Ling Y, et al. Holocene pyrolytic nitrogen compounds by using pyrolysis-GC/MS and its paleoclimatic implication from Jinchuan peatbog, NE China[J]. Quaternary International, 2022, 616: 109-119. doi: 10.1016/j.quaint.2021.10.006
[26] Kebelmann K, Hornung A, Karsten U, et al. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components[J]. Biomass and Bioenergy, 2013, 49: 38-48. doi: 10.1016/j.biombioe.2012.12.006
[27] Lara-Gonzalo A, Kruge M A, Lores I, et al. Pyrolysis GC-MS for the rapid environmental forensic screening of contaminated brownfield soil[J]. Organic Geochemistry, 2015, 87: 9-20. doi: 10.1016/j.orggeochem.2015.06.012
[28] Moldoveanu S C. Pyrolysis GC/MS, present and future (recent past and present needs)[J]. Journal of Microcolumn Separations, 2001, 13: 102-125. doi: 10.1002/mcs.1028
[29] Schellekens J, Bradley J A, Kuyper T W, et al. The use of plant-specific pyrolysis products as biomarkers in peat deposits[J]. Quaternary Science Reviews, 2015, 123: 254-264. doi: 10.1016/j.quascirev.2015.06.028
[30] Gupta N S. Molecular preservation of Eurypterids[M]//Biopolymers: A molecular paleontology approach. Dordrecht: Springer Netherlands, 2014: 119-134.
[31] Lu X, Ma S, Chen Y, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China[J]. Biomolecules, 2018, 8(4): 154-166. doi: 10.3390/biom8040154
[32] Piñeiro-Juncal N, Kaal J, Moreira J C F, et al. Cover loss in a seagrass Posidonia oceanica meadow accelerates soil organic matter turnover and alters soil prokaryotic communities[J]. Organic Geochemistry, 2021, 151: 104-140.
[33] Zhang Z, Wang J J, Lyu X, et al. Impacts of land use change on soil organic matter chemistry in the Everglades, Florida-A characterization with pyrolysis-gas chromatography-mass spectrometry[J]. Geoderma, 2019, 338: 393-400. doi: 10.1016/j.geoderma.2018.12.041
[34] Zhu R, Versteegh G J M, Hinrichs K U. Detection of microbial biomass in subseafloor sediment by pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 175-180. doi: 10.1016/j.jaap.2016.02.002
[35] Zúñiga D, Kaal J, Villacieros-Robineau N, et al. Tracing sinking organic matter sources in the NW Iberian upwelling system (NE Atlantic Ocean): Comparison between elemental, isotopic and molecular indicators[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 114-122. doi: 10.1016/j.jaap.2019.01.016
[36] 尚文郁, 孙静轶, 谢曼曼, 等. 基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探[J]. 岩矿测试, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009 Shang W Y, Sun J Y, Xie M M, et al. Py-GC/MS analysis method for aliphatic biomarker in desert lake sediment and its application in paleoclimatic study[J]. Rock and Mineral Analysis, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009
[37] 丛浦珠, 苏克曼. 分析化学手册: 质谱分析(第九分册)[M]. 北京: 化学工业出版社, 2000. Cong P Z, Su K M. Handbook of analytical chemistry: Mass spectrometry (Chapter 9)[M]. Beijing: Chemical Industry Press, 2000.
[38] Zhang J, Liu J, Liu R L. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 2015, 176: 288-291. doi: 10.1016/j.biortech.2014.11.011
[39] Garcia-Perez M, Wang X S, Shen J, et al. Fast pyrolysis of Oil Mallee Woody biomass: Effect of temperature on the yield and quality of pyrolysis products[J]. Industrial & Engineering Chemistry Research, 2008, 47(6): 1846-1854.
[40] Zhang H, Liao W, Zhou X, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022, 344: 126273. doi: 10.1016/j.biortech.2021.126273
[41] Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21): 11770-11778.
[42] Cui D, Li J, Zhang X, et al. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 104980. doi: 10.1016/j.jaap.2020.104980
[43] Kruge M A, Permanyer A. Application of pyrolysis-GC/MS for rapid assessment of organic contamination in sediments from Barcelona harbor[J]. Organic Geochemistry, 2004, 35(11): 1395-1408.
[44] Kaal J, Cortizas A M, Rydberg J, et al. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssj n, Sweden[J]. Organic Geochemistry, 2015, 83-84: 253-262. doi: 10.1016/j.orggeochem.2015.04.005
[45] Fabbri D, Sangiorgi F, Vassura I. Pyrolysis-GC-MS to trace terrigenous organic matter in marine sediments: A comparison between pyrolytic and lipid markers in the Adriatic Sea[J]. Analytica Chimica Acta, 2005, 530(2): 253-261. doi: 10.1016/j.aca.2004.09.020
[46] Sigleo A C, Hoering T C, Helz G R. Composition of estuarine colloidal material: Organic components[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1619-1626. doi: 10.1016/0016-7037(82)90318-0
[47] Kaal J. Analytical pyrolysis in marine environments revisited[J]. Analytical Pyrolysis Letters, 2019.
[48] Kaal J, Lavery P S, Martínez Cortizas A, et al. Recon-struction of 7500 years of coastal environmental change impacting seagrass ecosystem dynamics in Oyster Harbour (SW Australia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 558: 109953. doi: 10.1016/j.palaeo.2020.109953
[49] Kaal J, Martinez Cortizas A, Mateo M A, et al. Deciphe-ring organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting[J]. Science of the Total Environment, 2020, 742: 140554. doi: 10.1016/j.scitotenv.2020.140554
[50] Boateng A A, Hicks K B, Vogel K P. Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity[J]. Journal of Analytical & Applied Pyrolysis, 2006, 75(2): 55-64.
[51] Faure P, Jeanneau L, Lannuzel F. Analysis of organic matter by flash pyrolysis-gas chromatography-mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature[J]. Organic Geochemistry, 2006, 37(12): 1900-1912. doi: 10.1016/j.orggeochem.2006.09.008
[52] Zhang J, Wu C, Hou W, et al. Biological calcium carbonate with a unique organic-inorganic composite structure to enhance biochar stability[J]. Environmental Science: Processes & Impacts, 2021, 23(11): 1747-1758.
[53] Chmiel H E, Niggemann J, Kokic J, et al. Uncoupled organic matter burial and quality in boreal lake sediments over the Holocene[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(9): 1751-1763. doi: 10.1002/2015JG002987
[54] Moingt M, Lucotte M, Paquet S, et al. Deciphering the impact of land-uses on terrestrial organic matter and mercury inputs to large boreal lakes of central Québec using lignin biomarkers[J]. Applied Geochemistry, 2014, 41: 34-48. doi: 10.1016/j.apgeochem.2013.11.008
[55] Opsahl S, Benner R. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeo-chemical implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(23): 4889-4904. doi: 10.1016/0016-7037(95)00348-7
[56] Dittmar T, Lara R J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1417-1428. doi: 10.1016/S0016-7037(00)00619-0
[57] Sanjurjo-Sánchez J, Kaal J, Fenollós J L M. Organic matter from bevelled rim bowls of the middle Euphrates: Results from molecular characterization using pyrolysis-GC-MS[J]. Microchemical Journal, 2018, 141: 1-6. doi: 10.1016/j.microc.2018.05.001
[58] Kaal J, Cortizas A M, Biester H. Downstream changes in molecular composition of DOM along a headwater stream in the Harz Mountains (central Germany) as determined by FTIR, pyrolysis-GC-MS and THM-GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 50-61. doi: 10.1016/j.jaap.2017.06.025
[59] 杨丽阳, 吴莹, 黄俊华, 等. 大九湖泥炭柱样的木质素特征[J]. 地球化学, 2009, 38(2): 133-139. doi: 10.3321/j.issn:0379-1726.2009.02.004 Yang L Y, Wu Y, Huang J H, et al. Lignin characteristics in a peat core of Lake Dajiu[J]. Geochimica, 2009, 38(2): 133-139. doi: 10.3321/j.issn:0379-1726.2009.02.004
[60] 刘月, 王敏, 张婷, 等. 杭州湾外泥质区柱状沉积物中木质素的分布特征及其环境指示意义[J]. 海洋环境科学, 2017, 36(1): 8-14. doi: 10.13634/j.cnki.mes.2017.01.002 Liu Y, Wang M, Zhang T, et al. Distribution characteristics of lignin in sediment cores from the mud area off Hangzhou Bay and the implication for regional sedimentary environment[J]. Chinese Journal of Marine Environmental Science, 2017, 36(1): 8-14. doi: 10.13634/j.cnki.mes.2017.01.002
[61] Tuomela M, Hatakka A. Oxidative fungal enzymes for bioremediation[M]//Comprehensive biotechnology (The second edition). Burlington: Academic Press, 2011.
[62] Otsuka Y, Sonoki T, Ikeda S, et al. Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol β-aryl ether linkages[J]. European Journal of Biochemistry, 2003, 270(11): 2353-2362. doi: 10.1046/j.1432-1033.2003.03545.x
[63] Wong D W S. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209. doi: 10.1007/s12010-008-8279-z
[64] Boerjan W, Ralph J, Baucher M. Lignin Biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1): 519-546. doi: 10.1146/annurev.arplant.54.031902.134938
[65] Philben M, Ziegler S E, Edwards K A, et al. Soil organic nitrogen cycling increases with temperature and precipitation along a boreal forest latitudinal transect[J]. Biogeochemistry, 2016, 127(2): 397-410.
[66] Hawkes C V, Kivlin S N, Rocca J D, et al. Fungal community responses to precipitation[J]. Global Change Biology, 2015, 17(4): 1637-1645.
[67] Xiao J, Chang Z, Wen R, et al. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China[J]. Holocene, 2009, 19(6): 899-908. doi: 10.1177/0959683609336574
[68] Wen R, Xiao J, Chang Z, et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China[J]. Boreas, 2010, 39(2): 262-272. doi: 10.1111/j.1502-3885.2009.00125.x
[69] 曾琳, 鹿化煜, 弋双文, 等. 末次盛冰期和全新世大暖期呼伦贝尔沙地的环境变化[J]. 第四纪研究, 2013, 33(2): 243-251. doi: 10.3969/j.issn.1001-7410.2013.02.05 Lin Z, Lu H Y, Yi S W, et al. Environmental changes of Hulun Buir dunefield in northeastern China during the last Glacial maximum and Holocene optimum[J]. Quaternary Sciences, 2013, 33(2): 243-251. doi: 10.3969/j.issn.1001-7410.2013.02.05
[70] Li S H, Sun J. Optical dating of Holocene dune sands from the Hulun Buir Desert, northeastern China[J]. Holocene, 2006, 16(3): 457-462. doi: 10.1191/0959683606hl942rr
[71] 温锐林, 肖举乐, 常志刚, 等. 全新世呼伦湖区植被和气候变化的孢粉记录[J]. 第四纪研究, 2010, 30(6): 1105-1115. doi: 10.3969/j.issn.1001-7410.2010.06.05 Wen R L, Xiao J L, Chang Z G, et al. Holocene vegetation and climate changes reflected by the pollen record of Hulun Lake, north eastern Inner Mongolia[J]. Quaternary Sciences, 2010, 30(6): 1105-1115. doi: 10.3969/j.issn.1001-7410.2010.06.05
[72] Na L, Yu L, Guang B, et al. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean[J]. Journal of Asian Earth Sciences, 2016, 115: 298-307. doi: 10.1016/j.jseaes.2015.10.009
[73] 张风菊, 薛滨, 姚书春. 中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析[J]. 湖泊科学, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htm Zhang F J, Xue B, Yao S C. Organic carbon burial and its driving mechanism in the sediment of Lake Hulun, northeastern Inner Mongolia, since the mid-Holocene[J]. Journal of Lake Sciences, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htm
[74] 董浩伟, 赵佳玉, 曾凡刚, 等. 柱色谱分离-分子筛络合洗脱过程中正构烷烃单体碳同位素分馏研究[J]. 岩矿测试, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063 Dong H W, Zhao J Y, Zeng F G, et al. Study on specific carbon isotope fractionation of n-alkanes during column chromatography separation-molecular sieve complexation adsorption[J]. Rock and Mineral Analysis, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063
[75] 王宁, 朱庆增, 谢曼曼, 等. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素[J]. 岩矿测试, 2015, 34(4): 471-479. doi: 10.15898/j.cnki.11-2131/td.2015.04.016 Wang N, Zhu Q Z, Xie M M, et al. An improved urea adduction method for analyzing carbon isotope of ppm-level n-alkanes in soil and plant samples[J]. Rock and Mineral Analysis, 2015, 34(4): 471-479. doi: 10.15898/j.cnki.11-2131/td.2015.04.016
[76] Routson C C, McKay N P, Kaufman D S, et al. Mid-latitude net precipitation decreased with Arctic warming during the Holocene[J]. Nature, 2019, 568(7750): 83-87. doi: 10.1038/s41586-019-1060-3
-
期刊类型引用(1)
1. 郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 . 本站查看
其他类型引用(0)