• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素

郭家凡, 陈笑语, 孙勇, 仲伟路, 朱少璇, 王琳

郭家凡,陈笑语,孙勇,等. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素[J]. 岩矿测试,2024,43(5):693−702. DOI: 10.15898/j.ykcs.202407180159
引用本文: 郭家凡,陈笑语,孙勇,等. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素[J]. 岩矿测试,2024,43(5):693−702. DOI: 10.15898/j.ykcs.202407180159
GUO Jiafan,CHEN Xiaoyu,SUN Yong,et al. Ultratrace Platinum Group Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulfide Fire Assay[J]. Rock and Mineral Analysis,2024,43(5):693−702. DOI: 10.15898/j.ykcs.202407180159
Citation: GUO Jiafan,CHEN Xiaoyu,SUN Yong,et al. Ultratrace Platinum Group Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulfide Fire Assay[J]. Rock and Mineral Analysis,2024,43(5):693−702. DOI: 10.15898/j.ykcs.202407180159

镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素

基金项目: 河南省自然资源厅2023年度自然资源科研项目(2023-3);豫地矿科研项目([2021]Z-32);豫地矿勘查项目([2021]03)
详细信息
    作者简介:

    郭家凡,硕士,高级工程师,主要从事贵金属分析方法研究。E-mail:guojiafan521@126.com

    通讯作者:

    王琳,教授级高级工程师,主要从事贵金属分析方法研究。E-mail:wanglin0630@126.com

  • 中图分类号: P618.53;O657.63

Ultratrace Platinum Group Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulfide Fire Assay

  • 摘要:

    铂族元素(PGEs)六项元素钌、铑、钯、锇、铱和铂的物理化学性质相近,在地壳中丰度极低且分布不均匀,且具有明显的粒金效应,长期以来准确测定其含量始终是岩矿测试的难题。镍锍试金取样量大,可定量分离富集铂族元素,通常被应用于PGEs分析,但将其应用于超痕量PGEs分析的关键问题是流程空白高,质谱干扰严重。本文报道了一种同时测定样品中超痕量铂钯铑铱锇和钌的方法。检查全流程试剂空白后,使用镍锍试金富集样品中的PGEs,经杂质分离,利用电感耦合等离子体质谱(ICP-MS)动能歧视模式测定六项元素,有效地降低了质谱干扰。结果表明,方法的空白主要来自盐酸和捕集剂镍粉,选择合适厂家的试剂或对试金配料进行提纯,可降低全流程空白。同时,使用ICP-MS法测定六项元素时,在标准模式下,铂和钯的检出限小于0.2ng/g,铑、铱和锇的检出限小于0.02ng/g,钌的检出限大于0.1ng/g,钌的检出限无法满足超痕量PGEs的测定要求。使用动能歧视模式后,钌的背景等效浓度比标准模式降低近两个数量级,从而消除了镍对钌的质谱干扰,钌的检出限降低至0.005ng/g,使六项元素检出限同时满足超痕量PGEs测定要求。该方法用于分析土壤(GBW07288、GBW07294)、水系沉积物标准物质(GBW07289),六项元素的结果与标准值符合,相对误差为−10.9%~11.8%,相对标准偏差为3.85%~9.37%,加标回收率为92%~110%。该方法流程较短、操作简便,满足大批量地质样品中超痕量PGEs的检测要求。

    要点

    (1)通过对锍镍试金配料及各类溶剂空白值的检验,确定空白来源及试剂提纯方法,并采用羰基镍粉有效地降低全流程空白,使痕量铂族六项元素的检出限满足地球化学调查需求。

    (2)通过添加羰基铁粉,优化试金配方,使锍扣在水浸泡的条件下即可自行粉化松散,不仅简化了分析流程,而且避免了因机械碎扣而产生污染的风险。

    (3)采用动能歧视模式测定,有效地消除镍元素的质谱干扰,降低钌元素的背景等效浓度约两个数量级,提高了检测结果的准确性。

    HIGHLIGHTS

    (1) The source of the blank was identified by checking reagent blanks and the purification methods for reagents were given. Carbonyl nickel powder was used as a nickel collector, with the lower reagent blank, and the detection limits for PGEs required by geochemical exploration were achieved.

    (2) Carbonyl iron powder was added to ensure the NiS bead could be smashed in deionized water. In this way, the analysis process was simplified, and the risk of contamination caused by mechanical breakage of NiS bead was avoided.

    (3) Using ICP-MS to determine the solution in the kinetic energy discrimination model effectively eliminated the matrix effect of Ni. The results showed that the background equivalent concentration of ruthenium in kinetic energy discrimination mode was two orders of magnitude lower than that in the standard mode.

    BRIEF REPORT

    Significance: Platinum-group elements (PGEs), such as Pt, Pd, Rh, Ir, Os and Ru exhibit similar physico-chemical properties and significant features, and have been used widely in geochemistry and environmental chemistry. As a result, the accurate determination of the concentration of PGEs in geological samples is very important. Although various analytical methods for PGEs have been developed in the past, accurate and simultaneous determination of PGEs concentrations on the same sample digestion remains a significant challenge. This is mainly due to: (1) their extremely low abundance, sample heterogeneity and the nugget effect, making it necessary to analyze large sample sizes to obtain representative analyses; (2) During sample dissolving, Os and Ru are easy to form volatile OsO4 and RuO4, making it difficult to simultaneously measure the concentrations of PGEs accurately.

      Improved Carius tube combined high-pressure asher (HPA-S) techniques have been widely used for the determination of PGEs to avoid the loss of volatile OsO4 and RuO4. However, the relatively complex procedure does not meet the requirements of ultratrace PGEs determination in large quantities of geological samples. Nickel sulfide (NiS) fire assay is a classical method to completely extract the PGEs from a large sample size into a nickel sulphide button and easily separate it from the slag. This method combined with highly sensitivity instrumental measurement, i.e., inductively coupled plasma-mass spectrometry (ICP-MS), can be used to simultaneously determine multi-elements with high sensitivity and effectively reduce the detection limit. However, it is still difficult to determine ultratrace PGEs because of the high procedural blank that mainly derives from the commercial nickel reagents and polyatomic ion interferences formed by interaction of a sample aerosol with components of the plasma-forming gas (such as C, Ar) and residual Ni and Cu ions in solution. Therefore, the improvement of the method for simultaneous determination of PGEs by ICP-MS combined with nickel sulfide fire assay preconcentration is important.

      An analytical method for accurate and simultaneous determination of ultratrace PGEs in geological samples by ICP-MS combined with nickel sulfide fire assay is proposed. At the same time, it can effectively reduce the procedural blank and suppress/eliminate interferences. More importantly, it provides a practical method for the accurate determination of ultratrace PGE concentrations on the same sample digestion for surveying a large number of geological samples.

    Methods: In the experiment, it is important to reduce the procedural blank and suppress/eliminate interferences. The data show that the high reagent blank is primarily from hydrochloric acid (Table 3) and nickel collector (Table 5). Therefore, the hydrochloric acid after purification or obtained from other manufacturers can be used in the experiment. At the same time, carbonyl nickel powder rather than other type of nickel powder is used as the fire assay collector.

      Before analysis, the PGEs concentrations in the reagent (including hydrochloric acid and nickel powder) were measured. The reagent was not suitable to analyze the ultratrace PGEs, when the results exceeded 0.02ng/mL. (1) 50mL hydrochloric acid was evaporated at low temperature, and 5mL of aqua regia prepared from the same bottle of hydrochloric acid was added. After being extracted at low temperature and adding 20mL of deionized water, the solution was determined by ICP-MS. (2) 1.6g nickel power was mixed well with 2g sulfur, 4g carbonyl iron powder, 25g Na2B4O7∙10H2O, 25g Na2CO3, 4g SiO2, and 1g of edible flour and transferred into a 500mL fire-clay crucible, and fused in a furnace at approximately 1000℃. The furnace door was opened to cool to 800℃. Then the door was closed, and temperature gradually rose to 1050℃ and maintained for 30min. The fluid in the crucible was poured into a cast iron mold. After cooling, the NiS bead was separated from the slag, and placed into a 200mL Triangle bottle with 20mL deionized water until smashed. Then 20mL concentrated HCl was added into the Triangle bottle and heated for 1h until no bubbles formed. Filtering out the sediment through a filter membrane, sediment was transferred into a 200mL Triangle bottle and 5mL aqua regia was added. Next the air-cooled tube was loaded, and the solution was heated to boiling. The cooling solution was diluted to 25mL by the addition of deionized water. Lu (50ng/mL) was added as an internal standard for the determination of Pt, Pd, Ru, Rh and Ir by ICP-MS (Table 1) in kinetic energy discrimination mode.

      Ultratrace PGEs in geological samples were determined after the reagent blanks were checked. 20g sample was mixed well with the above-mentioned flux and collectors (proration shown in Table 2). The fusion procedure was also described above. The solution was determined by ICP-MS in kinetic energy discrimination mode, which can effectively eliminate the matrix effect.

    Data and Results: Determination of ruthenium in geological samples by ICP-MS, showed that the background equivalent concentration of ruthenium in kinetic energy discrimination mode was two orders of magnitude lower than that in the standard mode (Fig.1). In kinetic energy discrimination mode, the detection limit of the method was 0.005ng/g (Table 8). The certified reference materials of soil (GBW07288, GBW07294) and stream sediment (GBW07289) were analyzed to test the method. The determined values were in good agreement with the certified values. The relative errors were between −10.9% and 11.8%, the relative standard deviations (RSD, n=12) were 3.85%−9.37%, the spiked recoveries were between 92% and 110%.

  • X射线荧光光谱定性分析技术经过长期的应用及发展,其应用范围也越来越广泛[1-4]。目前,XRF所带的定性分析软件(SQX)可自动对扫描谱图进行搜索和匹配,包括确定峰位、背景和峰位的净强度[5-7],并从XRF特征谱线数据库中配对确定元素的谱线,这对从事XRF的分析者而言非常便利[8-10]。近年来刘岩等[11]采用XRF无标样分析法检测催化剂,测定结果的相对标准偏差小于1.3%;张红菊等[12]采用XRF无标样分析法检测轻合金铝合金中的主量元素,其测量值与认定值的相对误差低于±5%,测量结果都具有很好的可靠性和准确度。

    自然界矿物种类复杂,应用XRF半定量分析软件(SQX)分析未知样品时,由于SQX软件仅对样品中9F~92U元素进行半定量分析,而对H2O、C这些参数不能直接测定。对于烧失量(LOI)、结晶水(H2O+)含量较高的铝土矿,二氧化碳含量较高的碳酸盐矿物,硫、碳含量较高的硫化物金属矿这类高烧失量矿物样品,平衡归一化计算时对未知样品中的Al2O3、SiO2、CaO、MgO、Fe等主要元素分析结果影响较大,半定量分析数据准确度较低。这就要求XRF分析人员需要掌握未知样品的来源及基本情况,根据测定结果对各元素在样品中的结构状态进行评估,选用更为合理的校正模式,提高半定量分析的准确性[13-15]。为了解决这个问题,本文提出了一种校正模式。该校正模式根据半定量分析初步结果,采用重量法、碘量法、酸碱测定法、红外光谱法有选择性地对未知样品中的LOI、S、C、H2O+等项目进行定量分析,然后将定量分析结果输入SQX该参数的固定结果中,二次平衡归一计算得出新的半定量分析结果。应用该校正模式校正后,铝土矿、碳酸盐矿物、硫化物金属矿等高烧失量矿物的半定量分析结果的准确度得到大幅度提高。

    ZSX PrimusⅣ型顺序扫描波长色散X射线荧光光谱仪(日本理学电机工业株式会社),端窗铑靶X射线管,工作电压20~60kV,工作电流2~160mA,铍窗厚度30μm,视野光栏0.5~30mm,准直器: S2/S4,探测器: PC/SC,分光晶体:RX 25/Ge/PET/LiF200[16-19]。测量元素范围9F~92U。BP-1型压样机(丹东北方科学仪器公司)。各元素具体的测量条件见表 1

    表  1  仪器测量条件
    Table  1.  Measuring conditions of the XRF equipment
    分析元素 数据库 靶材 电流
    (kV)
    电压
    (mA)
    滤光片 衰减器 准直器 晶体 探测器 PHA
    重元素 Standard Rh 50 60 OUT 1/1 S2 LiF(200) SC 100~300
    重元素(1) Sta-Ni400 Rh 50 60 Ni-400 1/1 S2 LiF(200) SC 150~250
    Ca-Kα Standard Rh 40 75 OUT 1/1 S4 LiF(200) PC 100~300
    K-Kα Standard Rh 40 75 OUT 1/1 S2 LiF(200) PC 100~300
    Cl-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    S-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    P-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    Si-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~300
    Al-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~250
    Mg-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250
    Na-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250
    F-Kα Standard Rh 40 75 OUT 1/1 S4 RX25 PC 100~300
    下载: 导出CSV 
    | 显示表格

    XRF半定量分析可选择测定未知样品中F~U或Ti~U之间的元素,分析测试程序完成后会自动报出大于仪检出限的各元素的分析结果,这时应根据测试结果作一个初步判断是否需要进行SQX计算;如不需要,则可以直接报出测定结果;如测定结果与样品实际结构状态有较大差别,则需选用更为合适的校正模式、平衡组分或添加其他方法测试结果后进行SQX计算,以得到更为合理的测定结果。定性分析的基本流程见图 1

    图  1  定性分析基本流程
    Figure  1.  Flow chart of qualitative analysis

    为验证本文提出的半定量分析模式分析校正效果,选用国家标准物质铝土矿GBW(E)70036、碳酸盐矿物GBW07131、硫化物多金属矿GBW07166作为待测样品,在105℃下烘干2h,称取4.5±0.1g,倒入放置于平板模具上的PVC塑料环(外径40mm,内径35mm,高5mm)中,在30t压力下加压30s压制成型,编号,置于样品盒内,用X射线荧光光谱仪半定量分析方法进行测试[20-22]。仪器自动计算出各元素的含量。

    根据XRF半定量初步分析结果,按化学标准方法YS/T 575.19—2007、GB/T 3286.8—2014、GB/T 3286.7—2014、GB/T 14353.12—2010、GB/T 8151.2—2012、SN/T 3598—2013、GB/T 2469—1996、YS/T 575.18—2007选择性分析未知样品中的烧失量(LOI)、硫(S)、碳(C)、结晶水(H2O+),计算出定量结果,备用。

    将化学分析结果作为XRF半定量分析软件(SQX)中该元素的固定结果,重新进行平衡计算出新的半定量结果。

    铝土矿是一种土状矿物,化学组成为Al2O3·nH2O,含水不定,多为单水或三水矿物[23-24]。由于XRF的局限性,对于H2O、C这些未定量的参数,其含量在铝土矿中较高[25],平衡归一化计算时会对Al2O3、SiO2、Fe2O3等元素的影响较大。这时可采用烧失量校正的方法,添加烧失量(LOI)作为该样品的固定值,运行半定量分析软件(SQX)重新计算出新的结果。将GBW(E)70036作为未知样品用XRF定性分析方法进行分析,各种校正模式的计算值与认定值对照结果见表 2

    表  2  铝土矿标准物质GBW(E)70036各种校正模式计算值与认定值对比
    Table  2.  Calculated values and standard values of bauxite standard material GBW(E)70036 in various correction models
    分析元素 氧化物模式测试
    结果(%)
    添加LOI校正结果
    (%)
    H2O作平衡
    校正结果(%)
    GBW(E)70036
    认定值(%)
    氧化物模式测试结果
    相对误差(%)
    LOI校正结果
    相对误差(%)
    MgO 0.136 0.121 0.116 0.120 13.33 0.83
    Al2O3 76.94 67.51 64.46 69.74 10.32 -3.20
    SiO2 7.91 6.62 6.12 4.88 62.09 35.66
    P2O5 0.159 0.132 0.121 0.120 32.50 10.00
    SO3 0.182 0.00 0.139 0.047 - -
    K2O 1.07 0.880 0.810 0.710 50.70 23.94
    CaO 0.258 0.212 0.195 0.180 43.33 17.78
    TiO2 5.10 4.17 3.81 3.97 28.46 5.04
    Fe2O3 7.42 5.97 5.35 6.09 21.84 -1.97
    LOI * 13.70 13.74 - -
    H2O * 18.26 - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或H2O其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    表 2可知,GBW(E)70036以氧化物模式的测试结果与认定值误差较大,当添加LOI校正计算后,其多个元素的平均相对误差由32.8%降至12.3%,准确度大幅提高。此外,在确定未知样品是未经高温灼烧的情况下,还可以采用H2O作为平衡组分直接计算,其计算结果也与认定值较为相近。

    碳酸盐矿物中CO2的占比较高, 而CO2是SQX软件未能定量参数之一,给定性分析结果带来较大误差。为提高定性分析的准确度,可对CO2或烧失量进行定量分析[26],添加烧失量或CO2定量分析结果作为该样品的固定值,运行SQX重新计算出新的结果。将GBW07131作为未知样品用XRF定性分析方法进行分析,各种校正模式的计算值与认定值对照结果见表 3

    表  3  碳酸盐标准物质GBW07131各种校正模式计算值与认定值对比
    Table  3.  Calculated values and standard values of carbonate standard material GBW07131 in various correction models
    分析元素 氧化物模式
    测试结果(%)
    CO2平衡
    校正结果(%)
    添加LOI
    校正结果(%)
    钙镁元素以碳酸盐
    计平衡计算(%)
    GBW07131
    认定值(%)
    氧化物模式测试
    结果相对误差(%)
    LOI校正结果
    相对误差(%)
    MgO 29.73 19.57 19.18 20.4 20.14 47.62 4.77
    Al2O3 0.759 0.454 0.449 0.451 0.290 161.72 -54.83
    SiO2 2.18 1.29 1.27 1.28 1.15 89.57 -10.43
    P2O5 0.051 0.030 0.030 0.030 0.016 218.75 -87.50
    SO3 0.442 0.256 0.00 0.254 - - -
    K2O 0.292 0.161 0.160 0.160 0.160 82.50 0.00
    CaO 64.54 31.76 32.07 31.50 30.93 108.66 -3.69
    TiO2 0.045 0.018 0.0186 0.0178 0.013 246.15 -43.08
    MnO 0.038 0.015 0.016 0.011 0.012 216.67 -33.33
    Fe2O3 0.435 0.169 0.176 0.167 0.170 155.88 -3.53
    CO2 * 45.66 - - - -
    LOI * 45.67 - 45.73 - 0.13
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或CO2其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    表 3可知,GBW07131以氧化物模式测试结果较认定值误差较大。当添加LOI校正计算后,其多个元素的平均相对误差由122.4%降至27.2%,准确度大幅提高。此外,采用滴加稀盐酸确定未知样品是碳酸盐矿物的情况下,可以采用CO2作为平衡组分直接计算或者将CaO、MgO换算成为CaCO3、MgCO3计算模式重新平衡计算,其结果也与认定值较为相近。

    硫化物多金属矿中的碳、硫元素含量较高,以氧化物模式对该类型样品进行半定量分析时误差较大。当采用化学法测定这类样品的烧失量时,硫化物金属矿中的硫在高温下会被空气中的氧替换,不仅会出现烧蚀减量,还会出现烧蚀增量,使得烧失量的结果是不准确的[27-28],因此不能把烧失量校作为该未知样品的固定值对测定结果进行平衡计算。这时可以采用化学法测定该未知样品中的C、S元素,作为该样品的固定值,运行半定量分析软件(SQX)重新计算出新的结果。将GBW07166作为未知样品用XRF半定量程序进行分析,各种校正模式的计算值与认定值对照结果见表 4

    表  4  硫化矿多金属矿标准物质GBW07166各种校正模式计算值与认定值对比
    Table  4.  Calculated values and standard values of sulfide polymetallic ore standard material GBW07166 in various correction models
    分析元素 氧化物模式测试
    结果(%)
    总硫、总碳固定
    平衡计算(%)
    LOI平衡计算
    (%)
    Sulfide模式
    校正结果(%)
    GBW07166
    认定值(%)
    氧化物模式测试
    结果相对误差(%)
    总硫、总碳校正
    结果相对误差(%)
    MgO 0.360 0.350 0.675 0.505 0.310 16.13 12.90
    Al2O3 1.60 1.55 3.03 2.29 1.25 28.00 24.00
    SiO2 3.34 3.50 6.26 4.86 3.78 -11.64 7.41
    S 18.43 33.80 0.00 27.75 33.80 - -
    K2O 0.306 0.433 0.387 0.484 0.320 -4.38 35.31
    CaO 2.05 2.02 2.61 3.27 1.96 4.59 3.06
    Fe 18.22 28.58 27.45 30.84 29.60 -38.45 -3.45
    Cu 15.50 28.00 30.72 28.42 24.20 -35.95 15.70
    Zn 0.025 0.057 0.049 0.055 0.057 -56.14 0.00
    C * 0.138 - - - -
    LOI * 27.04 - - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或C其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    表 4可知,GBW07166以氧化物模式或添加LOI校正计算结果后,测试结果较认定值误差较大,当添加全硫、全碳校正计算结果后,其多个元素的平均相对误差由27.2%降至9.5%,准确度大幅提高。此外,在没有条件测定全硫、全碳元素时,选用SQX软件中Sulfide校正模式重新平衡计算,其结果也与认定值较为相近。

    选取3件不同类型的未知样品,应用XRF半定量程序分析,根据XRF半定量初步分析结果,计算对照结果见表 5。未知样品1、2在添加烧失量(LOI)校正计算后半定量分析结果与化学法分析结果比较,多个元素的平均相对误差分别由46.2%降至18.0%和37.6%降至7.1%。未知样品3添加总硫、总碳校正计算结果后,其多个元素的平均相对误差由28.1%降至10%,准确度得到了明显提高。若与DZ/T 130—2006《地质矿产实验室测试质量管理规范》要求定量分析规范中误差允许限(Yc)相比较,除少部分项目能满足规范要求外,大部分项目还是达不到定量分析要求。但是如铝土矿中的Al2O3,碳酸盐矿物中的CaO、MgO,硫化物多金属矿中Fe、Zn、Cu、Pb等元素的相对误差均在5%以内,与DZ/T 130—2006要求较为接近。

    表  5  某未知样品各种校正模式的计算值与化学分析值对比
    Table  5.  Calculated values and chemical analysis values of various correction modes for the unknown sample
    样品编号 分析元素 氧化物模式测试
    结果(%)
    平衡校准计算
    结果(%)
    化学法测定值
    (%)
    氧化物模式测试
    结果相对误差(%)
    平衡校准计算结果
    相对误差(%)
    允许限Yc
    (%)
    Al2O3 86.97 76.11 78.01 11.49 -2.44 0.63
    SiO2 2.94 1.82 1.31 124.43 38.93 4.17
    Fe2O3 3.26 2.54 2.55 24.84 -0.46 5.11
    TiO2 4.29 3.4 3.10 38.38 9.78 4.80
    未知样品1 K2O 0.19 0.17 0.16 18.75 6.25 10.45
    CaO 0.33 0.31 0.31 6.45 0.00 9.00
    MgO 0.29 0.25 0.20 45.00 25.00 9.95
    P2O5 0.28 0.22 0.14 100.00 61.37 10.76
    LOI * 14.6 14.6 - - 2.58
    Na2O 0.76 0.71 0.781 -2.59 -8.72 7.17
    MgO 0.29 0.24 0.21 39.14 14.95 9.84
    Al2O3 0.48 0.39 0.31 54.13 26.16 9.00
    SiO2 1.15 0.93 0.83 38.66 12.45 7.05
    P2O5 1.24 1.00 0.97 28.34 2.88 6.77
    Fe2O3 1.70 1.21 1.18 44.18 2.13 6.41
    未知样品2 S 4.72 3.21 47.04 - 4.74
    CaO 1.13 0.81 0.83 36.64 -2.40 7.05
    Cr 18.49 13.09 12.89 43.46 1.53 2.75
    Ni 22.81 16.18 16 42.55 1.12 2.47
    Cu 14.53 10.31 10.33 40.62 -0.23 3.04
    Zn 3.04 2.16 2.02 43.24 5.94 5.49
    LOI * 37.00 37.00 - - -
    MgO 0.21 0.200 0.185 14.49 8.11 10.12
    Al2O3 0.53 0.472 0.427 23.87 10.61 8.34
    SiO2 2.18 1.818 1.650 32.00 10.15 5.83
    P2O5 0.02 0.024 0.028 -34.29 -13.21 14.91
    S 18.84 34.02 34.02 - - -
    K2O 0.05 0.048 0.042 15.44 13.31 13.77
    未知样品3 CaO 0.15 0.127 0.137 7.72 -7.50 10.81
    TiO2 0.03 0.031 0.026 30.98 20.78 15.18
    Fe 4.52 6.942 6.720 -32.81 3.31 3.64
    Cu 0.68 1.057 1.218 -44.37 -13.18 6.36
    Zn 32.24 50.517 48.250 -33.18 4.70 1.15
    Pb 1.58 2.505 2.646 -40.46 -5.33 5.05
    C * 1.21 1.21 - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI有测量结果时,该项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    实验证明采用本文提出的校正模式进行校正,分析铝土矿、碳酸盐矿物和硫化物多金属矿中多元素的平均准确度提高了2.6~4.5倍,半定量分析结果准确度大幅提高。其中,铝土矿中的Al2O3,碳酸盐矿物中的CaO、MgO,硫化物矿物中Fe、Zn、Cu、Pb等主量元素的相对误差均在5%以内,与化学法分析结果较为相近。本方法可快速、较为准确地测定铝土矿、碳酸盐矿物和硫化物矿物中多元素的含量。

    这种化学法与半定量分析软件相结合的半定量校正模式,不仅可用于铝土矿、碳酸盐矿物和硫化物矿物,还适用于烧失量较高的锰矿、磷矿等矿物的压片半定量分析[29-30]。对于硫化物矿物等多金属矿的定量全分析,因为这类矿物容易腐蚀铂坩埚而很少采用熔片制样XRF分析[31],通常采用化学分析法,但流程繁琐,本文研究方法可作为一种有效的矿石全分析的补充手段。

  • 图  1   两种模式下干扰元素镍对钌测定的影响

    Figure  1.   Effect of interference element Ni on the determination of Ru in two modes

    表  1   ICP-MS仪器工作参数

    Table  1   Working parameters of ICP-MS instrument

    工作参数 设定值 工作参数 设定值
    射频功率 1550W 冷却气流速 15L/min
    采样深度 8mm 载气流速 1L/min
    雾化室温度 2℃ 辅助气流速 1L/min
    提取透镜电压 −165V 碰撞气(He)流速 3.6L/min
    下载: 导出CSV

    表  2   镍锍试金配料组成

    Table  2   Composition of nickel sulfide fire assay ingredients

    样品类型 称样量
    (g)

    (g)
    羰基镍
    (g)
    羰基铁
    (g)
    硼砂
    (g)
    碳酸钠
    (g)
    二氧化硅
    (g)
    面粉
    (g)
    土壤 20 2 1.6 4 25 20 5 1
    水系沉积物 20 2 1.6 4 25 20 6 1
    下载: 导出CSV

    表  3   不同盐酸对应的流程空白

    Table  3   Blank values corresponding to different classes of hydrochloric acid

    试剂 Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    Ⅰ-分析纯 0.0350 0.0003 0.0023 0.0006 <0.0001 0.0019
    Ⅰ-优级纯 0.0346 0.0004 0.0013 0.0005 <0.0001 0.0015
    Ⅱ-分析纯 0.0018 0.0001 0.0016 0.0002 <0.0001 0.0012
    Ⅱ-优级纯 0.0015 0.0002 0.0013 0.0002 <0.0001 0.0011
    下载: 导出CSV

    表  4   不同熔剂用量对应的流程空白

    Table  4   Blank values corresponding to different amounts of flux

    熔剂用量
    (g)
    Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    20 0.390 0.051 0.340 0.010 0.014 0.141
    40 0.511 0.076 0.366 0.008 0.008 0.126
    60 0.303 0.071 0.361 0.009 0.009 0.125
    80 0.414 0.064 0.349 0.010 0.009 0.128
    下载: 导出CSV

    表  5   不同镍基体的铂族元素含量

    Table  5   PGE contents in different Ni matrices

    试剂 Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    镍粉 0.469 0.095 0.509 4.977 1.962 0.590
    硝酸镍 0.779 0.169 0.918 1.107 0.573 0.753
    氧化镍 0.560 0.159 0.452 0.480 0.744 0.597
    Ⅴ-羰基镍 0.175 0.109 0.096 0.050 0.006 0.120
    Ⅵ-羰基镍 0.012 0.010 0.091 0.009 0.009 0.125
    下载: 导出CSV

    表  6   镍元素对钌元素测定结果的影响

    Table  6   Influence of Ni on the determination results of Ru

    样品编号 Ru的加入量
    (ng/mL)
    Ni的加入量
    (ng/mL)
    Ru的测定值
    (ng/mL)
    Ru的回收率
    (%)
    1 0.04 500 0.042 105
    2 0.04 1000 0.047 116
    3 0.04 5000 0.053 133
    4 0.04 10000 0.060 150
    5 0.04 50000 0.086 214
    6 0.04 100000 0.122 304
    7 0.04 500000 0.209 521
    下载: 导出CSV

    表  7   动能歧视模式下铂族元素检出限和测定下限

    Table  7   Detection limits and quantification limits for PGEs in kinetic energy discrimination model.

    方法参数 Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    空白平均值 0.013 0.008 0.155 0.015 0.011 0.112
    检出限(3s) 0.005 0.008 0.050 0.012 0.007 0.058
    测定下限(10s) 0.015 0.024 0.150 0.036 0.021 0.174
    下载: 导出CSV

    表  8   标准物质分析结果

    Table  8   Analytical results of PGEs in national reference materials

    标准物质编号 元素 测定值
    (ng/g)
    RSD
    (%)
    标准值
    (ng/g)
    相对误差
    (%)
    加标量
    (ng/g)
    测定总值
    (ng/g)
    回收率
    (%)
    GBW07288
    (土壤)
    Ru 0.053 7.21 0.05 6.00 0.05 0.101 94
    Rh 0.019 7.31 0.017 11.8 0.05 0.068 98
    Pd 0.290 9.23 0.26 11.5 0.5 0.750 92
    Os 0.055 8.05 0.05 10.0 0.05 0.109 108
    Ir 0.035 8.55 0.032 9.38 0.05 0.081 92
    Pt 0.280 6.93 0.26 7.69 0.5 0.790 102
    GBW07289
    (水系沉积物)
    Ru 0.110 5.38 0.1 10.0 0.1 0.220 110
    Rh 0.103 7.08 0.095 8.42 0.1 0.198 95
    Pd 2.200 7.66 2.3 −4.35 5 7.660 109
    Os 0.066 7.96 0.06 10.0 0.05 0.120 108
    Ir 0.054 7.16 0.05 8.00 0.05 0.103 98
    Pt 1.700 5.33 1.6 6.25 1 2.790 109
    GBW07294
    (土壤)
    Ru 0.588 6.28 0.66 −10.9 0.5 1.051 93
    Rh 1.080 5.88 1.1 −1.82 1 2.010 93
    Pd 15.100 3.85 15.2 −0.66 10 25.600 105
    Os 0.650 9.37 0.64 1.56 0.5 1.170 104
    Ir 1.110 3.88 1.2 −7.50 1 2.131 102
    Pt 14.100 3.99 14.7 −4.08 10 23.500 94
    下载: 导出CSV
  • [1] 王烨, 于亚辉, 王琳, 等. 地质样品中贵金属元素的预处理方法研究进展[J]. 岩矿测试, 2020, 39(1): 15−29. doi: 10.15898/j.cnki.11-2131/td.201905160064

    Wang Y, Yu Y H, Wang L, et al. Research progress on pretreatment methods for analysis of precious metal elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 15−29. doi: 10.15898/j.cnki.11-2131/td.201905160064

    [2]

    Chandhuri H, Lim C R, Yun Y S. Amino- and sulfur-containing POSS for highly efficient and selective extraction of platinum group elements from acidic solution[J]. Journal of Ceaner Qroduction, 2024, 434: 139912. doi: 10.1016/j.jclepro.2023.139912

    [3] 杨生鸿, 张明, 辛连君. 电感耦合等离子体质谱(ICP-MS)法测定碳质板岩样品中铂族元素[J]. 中国无机分析化学, 2019, 9(2): 42−45. doi: 10.3969/j.issn.2095-1035.2019.02.009

    Yang S H, Zhang M, Xin L J. Determination of platinum group elements in graphite rock samples by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2): 42−45. doi: 10.3969/j.issn.2095-1035.2019.02.009

    [4]

    Mosai A K, Tutu H. Adsorption of platinum group elements (Pd(Ⅱ), Ir(Ⅲ) and Rh(Ⅲ) from aqueous solutions using 3-aminopropyl(diethoxy)methylsilane (APDEMS) functionalised bentonite[J]. Minerals Engineering, 2022, 176: 107342. doi: 10.1016/j.mineng.2021.107342

    [5] 刘杨, 范兴祥, 董海刚, 等. 贵金属物料的溶解技术及进展[J]. 贵金属, 2013, 34(4): 65−72. doi: 10.3969/j.issn.1004-0676.2013.04.015

    Liu Y, Fan X X, Dong H G, et al. Dissolving techniques of precious metal materials and their development[J]. Precious Metals, 2013, 34(4): 65−72. doi: 10.3969/j.issn.1004-0676.2013.04.015

    [6] 漆亮, 周美夫, 严再飞, 等. 改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量[J]. 地球化学, 2006, 35(6): 667−674. doi: 10.19700/j.0379-1726.2006.06.013

    Qi L, Zhou M F, Yan Z F, et al. An improved carius tube technique for digesting geological samples in the determination of PGEs and Re by ICP-MS[J]. Geochimica, 2006, 35(6): 667−674. doi: 10.19700/j.0379-1726.2006.06.013

    [7] 赵正, 漆亮, 黄智龙, 等. 地质样品中铂族元素的分析测定方法[J]. 地学前缘, 2009, 16(1): 181−193. doi: 10.3321/j.issn:1005-2321.2009.01.021

    Zhao Z, Qi L, Huang Z L, et al. The analytical methods for determination of platinum group elements in geological samples[J]. Earth Science Frontiers, 2009, 16(1): 181−193. doi: 10.3321/j.issn:1005-2321.2009.01.021

    [8] 毋喆, 胡家祯, 高志军, 等. 镍锍试金-电感耦合等离子体质谱法测定铜精矿中6种铂族元素的含量[J]. 理化检验(化学分册), 2024, 60(7): 725−730. doi: 10.11973/lhjy-hx230321

    Wu Z, Hu J Z, Gao Z J, et al. Determination of 6 platinum group elements in copper concentrate by inductively coupled plasma mass spectrometry with nickel sulphide fire assay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(7): 725−730. doi: 10.11973/lhjy-hx230321

    [9] 刘芳美, 甘聪, 廖彬玲, 等. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑[J]. 岩矿测试, 2023, 42(2): 298−306. doi: 10.15898/j.cnki.11-2131/td.202205160102

    Liu F M, Gan C, Liao B L, et al. Determination of iridium and rhodium in copper anode slime by inductively coupled plasma-mass spectrometry with nickel sulphide fire assay[J]. Rock and Mineral Analysis, 2023, 42(2): 298−306. doi: 10.15898/j.cnki.11-2131/td.202205160102

    [10] 郭家凡, 来新泽, 王琳, 等. 火试金反应原理及熔渣影响因素探究[J]. 冶金分析, 2022, 42(12): 1−11. doi: 10.13228/j.boyuan.issn1000-7571.011985

    Guo J F, Lai X Z, Wang L, et al. Discussion on the slag of fire assay[J]. Metallurgical Analysis, 2022, 42(12): 1−11. doi: 10.13228/j.boyuan.issn1000-7571.011985

    [11] 王君玉, 毋喆, 胡家贞, 等. 黑色岩系样品中铂族元素的分析方法[J]. 黄金, 2011, 32(7): 62−64. doi: 10.3969/j.issn.1001-1277.2011.07.015

    Wang J Y, Wu Z, Hu J Z, et al. Analysis method of platinum group elements in black rock samples[J]. Gold, 2011, 32(7): 62−64. doi: 10.3969/j.issn.1001-1277.2011.07.015

    [12] 于亚辉, 王琳, 王明军, 等. 电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J]. 冶金分析, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issn1000-7571.010151

    Yu Y H, Wang L, Wang M J, et al. Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issn1000-7571.010151

    [13] 倪文山, 孟亚兰, 姚明星, 等. 铅试金富集-塞曼石墨炉原子吸收光谱法测定矿石样品中的铂钯铑铱[J]. 冶金分析, 2010, 30(3): 23−26. doi: 10.13228/j.issn.1000-7571.2010.03.016

    Ni W S, Meng Y L, Yao M X, et al. Determination of platinum, palladium, rhodium and iridium in ore samples by lead assay-Pieter Zeeman graphite furnace atomic absorption spectroscopy[J]. Metallurgical Analysis, 2010, 30(3): 23−26. doi: 10.13228/j.issn.1000-7571.2010.03.016

    [14] 李可及, 刘淑君, 邵坤. 铋锑试金测定硫化铜镍矿中钌铑钯铱铂[J]. 分析化学, 2014, 42(6): 909−912. doi: 10.3724/SP.J.1096.2014.31193

    Li K J, Liu S J, Shao K. Determination of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores by bismuth-antimony fire-assay[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6): 909−912. doi: 10.3724/SP.J.1096.2014.31193

    [15] 王君玉, 孙自军, 袁润蕾, 等. 锡试金富集-电感耦合等离子体质谱法测定黑色页岩中的铂族元素[J]. 理化检验(化学分册), 2013, 49(8): 972−978.

    Wang J Y, Sun Z J, Yuan R L, et al. ICP-MS determination of platinum metals in black shale enriched by tin fire assay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(8): 972−978.

    [16] 吕彩芬, 何红蓼, 周肇茹, 等. 锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金 Ⅱ. 分析流程空白的降低[J]. 岩矿测试, 2002, 21(1): 7−11. doi: 10.3969/j.issn.0254-5357.2002.01.002

    Lyu C F, He H L, Zhou Z R, et al. Determination of the platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay-ICP-MS Ⅱ. Reduction of reagent blank[J]. Rock and Mineral Analysis, 2002, 21(1): 7−11. doi: 10.3969/j.issn.0254-5357.2002.01.002

    [17] 毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7): 40−46. doi: 10.13228/j.boyuan.issn1000-7571.011021

    Mao X J, Xiao F, Liu L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 40−46. doi: 10.13228/j.boyuan.issn1000-7571.011021

    [18]

    Ni W S, Mao X J, Zhang H L. Determination of ultratrace platinum, palladium, ruthenium, rhodium, and iridium in rocks and minerals by inductively coupled-plasma mass spectrometry following nickel sulfide fire assay preconcentration and open mixed acid digestion[J]. Analytical Letters, 2019, 52(11): 1699−1710. doi: 10.1080/00032719.2019.1566348

    [19] 高颂, 张艳, 庞晓辉, 等. 高分辨电感耦合等离子体质谱法测定高纯镍中25种痕量元素[J]. 冶金分析, 2021, 41(6): 35−43. doi: 10.13228/j.boyuan.issn1000-7571.011262

    Gao S, Zhang Y, Pang X H, et al. Determination of 25 trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(6): 35−43. doi: 10.13228/j.boyuan.issn1000-7571.011262

    [20] 杨国武, 侯艳霞, 刘庆斌, 等. 萃取分离-电感耦合等离子体质谱法测定高温合金中痕量镉[J]. 冶金分析, 2019, 39(4): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010600

    Yang G W, Hou Y X, Liu Q B, et al. Determination of trace cadmium in superalloys by extraction separation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(4): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010600

    [21] 张馨元, 胡净宇, 侯艳霞, 等. 碰撞反应池-电感耦合等离子体质谱法测定镍基高温合金中痕量铜锌钡[J]. 冶金分析, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.011643

    Zhang X Y, Hu J Y, Hou Y X, et al. Determination of trace copper, zinc and barium in nickel-based superalloy by inductively coupled plasma mass spectrometry with collision reaction cell[J]. Metallurgical Analysis, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.011643

  • 期刊类型引用(5)

    1. 刘畅,胡骏翔,苑芷茜. 应用PXRF与ICP-OES法测定土壤中锰的比对研究. 环境科学与管理. 2023(07): 115-119 . 百度学术
    2. 田戈,刘卫,郭颖超,马春红,张文宇,谷周雷. 恒温振荡浸提-电感耦合等离子体发射光谱法测定土壤中的交换性锰. 中国土壤与肥料. 2023(08): 243-248 . 百度学术
    3. 杨晓红,陈丽琼,刘婉秋. X射线荧光光谱法在环境监测中的发展与应用. 理化检验-化学分册. 2022(07): 861-868 . 百度学术
    4. 徐冬梅,陈晋,张敏. WDXRF法测定污染土壤和沉积物中金属元素. 环境监测管理与技术. 2022(06): 52-55+68 . 百度学术
    5. 刘宏,付淑惠,李海霞,靳晧琛,余恒. X射线荧光光谱仪滤光片故障解决思路探讨. 四川环境. 2022(06): 254-259 . 百度学术

    其他类型引用(2)

图(1)  /  表(8)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  31
  • PDF下载量:  63
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-08-25
  • 录用日期:  2024-09-01
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-09-29

目录

/

返回文章
返回