• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

环境中典型植物生长调节剂分析测试技术研究进展

胡晓蕾, 陈亮, 侯杰, 吴少培, 王蕾

胡晓蕾, 陈亮, 侯杰, 吴少培, 王蕾. 环境中典型植物生长调节剂分析测试技术研究进展[J]. 岩矿测试, 2023, 42(2): 254-270. DOI: 10.15898/j.cnki.11-2131/td.202205050091
引用本文: 胡晓蕾, 陈亮, 侯杰, 吴少培, 王蕾. 环境中典型植物生长调节剂分析测试技术研究进展[J]. 岩矿测试, 2023, 42(2): 254-270. DOI: 10.15898/j.cnki.11-2131/td.202205050091
HU Xiaolei, CHEN Liang, HOU Jie, WU Shaopei, WANG Lei. Review on the Analysis and Testing Method of Typical Plant Growth Regulators in Environment[J]. Rock and Mineral Analysis, 2023, 42(2): 254-270. DOI: 10.15898/j.cnki.11-2131/td.202205050091
Citation: HU Xiaolei, CHEN Liang, HOU Jie, WU Shaopei, WANG Lei. Review on the Analysis and Testing Method of Typical Plant Growth Regulators in Environment[J]. Rock and Mineral Analysis, 2023, 42(2): 254-270. DOI: 10.15898/j.cnki.11-2131/td.202205050091

环境中典型植物生长调节剂分析测试技术研究进展

基金项目: 

国家自然科学基金项目 41772245

国家自然科学基金项目 42277046

详细信息
    作者简介:

    胡晓蕾,硕士研究生,主要研究方向为水资源、水环境保护与修复。E-mail: huxiaolei@tju.edu.cn

    通讯作者:

    陈亮,博士,副教授,主要研究方向为渗流过程水量水质变化及污染物治理新技术。E-mail: liangchen@tju.edu.cn

  • 中图分类号: S482.8;O657.7;O657.63

Review on the Analysis and Testing Method of Typical Plant Growth Regulators in Environment

  • 摘要:

    近年来,植物生长调节剂被广泛应用于农业领域,主要有加速或延缓种子萌发、打破植物休眠、刺激或减少芽伸长、诱导开花结果以及影响衰老过程等功效,对植物的生长有着重要作用。但是,由于其施用量不断增加,导致植物生长调节剂在环境介质中被多次检出,且经过一系列环境行为产生的中间产物可能具有更强的毒性,严重威胁环境安全乃至人体健康。通过总结植物生长调节剂分析测试相关国内外研究文献发现,果蔬、肥料和土壤等固态基质样品的前处理多采用固相萃取方法,而水体、食用油和营养液等液态基质样品的前处理则多以液液萃取方法为主。同时,大多数植物生长调节剂的辛醇水分配系数在0~4之间,具有极强的亲水性,而高效液相色谱-串联质谱法(HPLC-MS/MS)具有较低检出限和较高准确度等优点,使其成为目前使用最多的植物生长调节剂分析测试技术。其次,部分植物生长调节剂沸点低、易挥发,也可以采用气相色谱法或气相色谱-质谱联用法(GC-MS)进行检测。几种常用分析测试技术检出限的大小顺序大致为:气相色谱法>液相色谱法>色谱-质谱联用法,其中,色谱-质谱联用法的仪器检出限可低至10-5mg/kg。但是,由于大部分植物生长调节剂溶解度高、自然衰减速率快,导致其在土壤和水体等复杂环境基质中的检出浓度偏低,关于土壤和水体中痕量植物生长调节剂及其中间产物的分析测试问题仍亟待解决。未来,相关研究应聚焦于植物生长调节剂中间产物的分析测试,并开发基于新材料、新技术的植物生长调节剂分析测试方法。

    要点

    (1) 固相萃取或液液萃取是植物生长调节剂最常用的前处理方法,QuEChERS方法是最常用的净化技术。

    (2) 高效液相色谱-串联质谱法(HPLC-MS/MS)是植物生长调节剂最常用的分析测试技术,适用于果蔬、肥料等不同环境介质中植物生长调节剂的检测。

    (3) 考虑到植物生长调节剂自然衰减速率较快且其中间产物毒性较高,未来研究应重点关注痕量植物生长调节剂及其中间产物的分析测试。

    HIGHLIGHTS

    (1) The most widely used pretreatment methods for the detection of plant growth regulators are solid phase extraction or liquid-liquid extraction, and the most widely used purification technique is the QuEChERS method.

    (2) The most widely used analytical test technique for plant growth regulators is high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), which could be used for the detection of plant growth regulators in different environmental media such as fruits, vegetables and fertilizers.

    (3) Considering the quick natural attenuation ability of plant growth regulators and the higher toxicity of their intermediates, future research should focus on the analysis and test method of the trace plant growth regulators and its intermediates.

  • 花岗质岩岩石是地球大陆地壳有别于其他行星的重要标志,且与大量的岩浆-热液矿床在时空和成因上密切相关[1-3],有关花岗质岩石的形成与演化一直是地质学者研究的热点。花岗质岩石主要矿物组成比较简单,一般由长石、云母和石英组成,但有关其岩石起源与演化一系列问题一直存在激烈的争议。绝大多数情况下,人们大多借助元素和同位素地球化学来限定花岗质岩石成因,如以往常采用全岩的Sr、Nd、Pb等放射成因同位素来进行示踪,遗憾的是这些同位素在很多情况下难以对花岗质岩浆的形成与演化提供明确的制约[4-5]。这是因为全岩同位素示踪存在三个方面的局限性:①岩浆在侵位过程当中如果发生了多次岩浆改造(Modification),如岩浆混合、围岩同化混染和结晶分异等,Sr-Nd同位素测定值代表的是均一化后某一个时间点(snapshot)的信息,无疑会隐藏许多岩浆来源的信息[6];②全岩放射成因同位素能够较合理地监测到古老地壳和软流圈地幔物质,但很难监测到年轻物质的具体混入量,因为后者的放射成因子体同位素难以准确测量,而且年轻的幔源岩石或者岛弧火山岩在参与花岗岩形成之前如果遭受热液蚀变,Sr同位素只有少量变化,而Nd和Pb同位素没有变化[4],故难以准确地判断其源岩性质;③使用全岩放射成因同位素分析问题时,我们通常假定岩石中各矿物相具有相同的来源并且保持同位素平衡,但近年来人们发现一些矿物与其寄主岩石在同位素组成上可以存在很大差别[7]。因此,仅借助全岩放射成因同位素来示踪岩浆来源,许多详细的岩浆来源信息及源岩性质变化细节不能被有效地揭露出来,况且与成矿有关的花岗质岩石常普遍遭受不同程度的热液蚀变,这就给用全岩化学成分限定岩浆起源与形成过程带来了更大难度。

    为了攻克这个难题,越来越多的研究者试图利用花岗岩中矿物的元素和同位素来揭示岩石成因和演化过程,但由于侵入岩缓慢的冷却过程,亚固相线下大部分矿物的化学成分得到重新平衡,许多详细的岩石成因信息已经丢失[8]。而副矿物具有难熔、惰性和化学性质稳定等特征,一般不易受后期热事件的影响[8-9],即使在特定的条件下发生改变,也能通过结构及成分有效地辨别出来[10-12]。同时,副矿物中含有岩石中大部分高场强元素和稀土元素,这些元素和相关同位素在副矿物中扩散速率缓慢,其结晶过程随着岩浆物理化学条件的改变而表现出不同的结构与地球化学特征,甚至能保存元素和同位素环带,被视为岩浆来源和演化过程的监测器,最大限度地保留了岩浆来源与演化过程的地球化学指纹[12-13]。近年来,随着激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)和激光剥蚀多接收等离子体质谱(LA-MC-ICP-MS)等微区原位分析技术的快速发展和日趋成熟,使得对副矿物进行原位成分测定、获得高精度微量元素和同位素组成得以实现,极大地促进了副矿物在岩石成因中的应用[13-14]。如Bruand等[13]通过对副矿物锆石、磷灰石和榍石进行了原位氧同位素分析,识别出古老花岗岩受后期变质作用的影响,而全岩分析无法揭示出来。越来越多的研究表明,副矿物榍石[CaTi(SiO4)O]微区原位元素和Nd同位素组成,也能够详细揭示岩浆来源和岩浆变化的细节,可显著提高岩浆作用过程的空间分辨率,是探讨岩浆来源与岩石成因的新的有效手段,避免了利用全岩分析为我们探讨花岗岩类成因带来的困扰[15-17, 14]

    湘南构造岩浆带是华南地区花岗质岩浆活动的重要组成部分,发育有多个高钾钙碱性花岗闪长质小岩体,如水口山、宝山和铜山岭等,这些闪长质小岩体主要形成于155~160Ma[18-19],在时空和成因上与铜铅锌多金属成矿密切相关,普遍遭受了不同程度的热液蚀变作用[19-21]。以往基于全岩元素和Sr-Nd-Pb同位素分析,先后提出壳-幔混合成因、残留体再造及中下地壳脱水熔融等多种不同成因模型[22-23],有关这些花岗闪长质岩体的源区特征及岩浆性质一直存在非常大的争议。本文以铜山岭岩体为对象,在详细的野外和镜下观察基础上,采用电子探针(EPMA)、激光剥蚀等离子体质谱(LA-ICP-MS)技术对暗色包体和花岗闪长岩两种岩石类型中榍石的主量、微量元素进行原位分析,采用激光剥蚀多接收等离子体质谱(LA-MC-ICP-MS)技术分析两类样品中榍石的原位Nd同位素组成,准确限定花岗闪长质岩石形成的源区特征和岩浆物理化学性质,为深入理解该地区花岗闪长质岩石成因及其大规模铜铅锌多金属成矿机制提供重要支撑。

    湘南位于华夏地块和扬子地块的结合部位,其东为华夏地块,西为扬子地块,是一个极富特色的铜铅锌多金属成矿密集区(图 1a)[24-25]。该地区主要出露的地层为古生界灰岩、碎屑岩[26]。岩浆作用强烈,花岗闪长质小岩体成带状密集分布,区域上自北向南分布的水口山、宝山、铜山岭是该地区铜铅锌多金属成矿有关的花岗闪长质小岩体的典型代表。

    图  1  (a)湘南地区地质简图和(b)铜山岭岩体分布图(据文献Wang等[24]和卢友月等[25]修改)。湘东南的花岗闪长质侵入体位于华夏和扬子地块的结合部位,铜山岭岩体位于湘东南的南部,由Ⅰ、Ⅱ、Ⅲ等3个小岩体组成,本次研究的样品采自Ⅰ号岩体
    Figure  1.  (a)The simplified geological map of southern Hunan Province and (b) the distribution of the Tongshanling granitic pluton (modified from Wang, et al.[24] and Lu, et al.[25]). Granodioritic pluton in southeast Hunan Province (South China) emplaced at the junction between Cathaysia and Yangtze bocks. The Tongshanling pluton is located in the south of southeast Hunan Province, and is composed of three small plutons Ⅰ, Ⅱ and Ⅲ. The studied samples were collected from No.Ⅰ pluton.

    铜山岭岩体位于湘东南地区南部,由Ⅰ、Ⅱ、Ⅲ三个小岩体组成,近东西向分布,总面积12km2(图 1b)。该岩体侵入于寒武纪浅变质岩、泥盆纪海相碳酸盐岩夹碎屑岩地层中,形成年龄为159±1Ma[18]。岩体周边分布一系列铜铅锌多金属矿床(点),自北向南有铜山岭矽卡岩型-热液脉型铜多金属矿床、江永矽卡岩型银铅锌矿床、桥头铺矽卡岩型铜钼多金属矿床(图 1b)。前人通过年代学、同位素(S、Pb、C)及流体包裹体研究,大多认为这些矿床与铜山岭岩体在时空和成因上密切相关[21, 25, 27-28]

    本次研究的所有样品均采自铜山岭Ⅰ号岩体,岩性主要为角闪石黑云母花岗闪长岩(图 2a),主要矿物组成为角闪石、黑云母、长石和石英,角闪石一般呈棕色和浅绿色(图 2),局部可见有明显的蚀变特征。岩体中发育有大量的铁镁质暗色包体如图 2b所示。主要由角闪石和黑云母等暗色矿物组成。

    图  2  铜山岭岩体岩性特征和暗色包体照片及榍石透射光和背散射电子图像。铜山岭岩体中的花岗闪长岩主要由角闪石、长石、石英和黑云母组成。榍石在反射光和背散射电子图像中没有显示出明显的成分环带
    a—花岗闪长岩的主要矿物组合;b—花岗闪长岩中暗色包体;c—代表性花岗闪长岩镜下照片;d—角闪石镜下特征;e—透射光下榍石照片;f—榍石的背散射电子图像。
    Figure  2.  Characteristics of mafic microgranular enclave and hosted granodiorite, and photomicrographs of accessory mineral titanite.
    a—The major mineral assemblages of granodiorite; b—The mafic microgranular enclave hosted by granodiorite; c—Photomicrograph of the representative granodiorite; d—Photomicrograph of amphibole; e—Photomicrograph of titanite under transmission light; f—Black scatter electric image of titanite. The granodiorites are mainly composed of amphibole, feldspar, quartz, and biotite. Accessory mineral titanite grains in the MME and host granodiorite of the Tongshanling granitic pluton show little or no intra-grain concentric zoning in transmission and BSE images.

    本文对花岗闪长岩和暗色包体样品进行粉碎后采用电磁法分选榍石,将分选的榍石颗粒制成环氧树脂靶,然后对榍石进行抛光处理,之后对榍石进行透反射光和背散射照相(图 2e,f),检查榍石的内部结构,选择无裂痕、无微小矿物包裹体和表面平整的区域进行激光原位分析。

    榍石主量元素利用EPMA进行分析,在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,仪器型号为日本电子生产的JXA8530F-plus型场发射电子探针。仪器工作条件为:加速电压25kV,加速电流10nA,束斑5μm。采用自然界和人工合成国际标样对榍石中元素进行校正,用Kaersutite角闪石国际标样校正榍石的Na、K、Mg、Al、Si、Ca、Mn和Fe等元素的含量,磷灰石和金红石标样分别用来校正榍石中F和Ti的含量。元素特征峰测试时间为10s,背景测试时间为5s,所有测试数据均进行了ZAF校正处理。

    榍石微量元素分析实验在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS完成。激光剥蚀系统为GeoLasPro 193nm ArF准分子激光器,电感耦合等离子体质谱为Agilent 7900。激光剥蚀过程中采用氦气为载气,氩气为补偿气,并加入少量氮气提高灵敏度,三者在进入ICP之前通过一个T形接头混合。样品仓为标配的剥蚀池,其中加入树脂制作的模具来获得一个较小体积的取样空间,以降低记忆效应,提高冲洗效率。分析过程中,激光工作参数频率为5Hz,能量密度5J/cm2,束斑44μm,分析点靠近电子探针点的位置,每个样品的总测试时间为90s,采集背景信号15s,样品剥蚀时间60s,冲洗管路和样品池时间15s。在测试之前用美国地调局研制的硅酸盐玻璃NIST610对ICP-MS性能进行优化,使仪器达到最佳的灵敏度和电离效率(U/Th≈1)、尽可能小的氧化物产率(ThO/Th < 0.3%)和低的背景值。微量元素含量校正、仪器灵敏度漂移校正等都采用ICPMSDateCal软件处理,以对应点电子探针获得的Ca含量作为内标,标准物质NIST610和NIST612玻璃作为外标进行数据校正,微量元素分析的准确度优于10%。

    榍石Sm-Nd同位素分析实验在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-MC-ICP-MS完成。激光剥蚀系统是澳大利亚瑞索公司生产的RESOlution-155 ArF193-nm,多接收电感耦合等离子体质谱仪是英国Nu公司生产的Nu Plasma Ⅲ。分析过程中,激光的束斑72μm,剥蚀频率6Hz,能量密度6J/cm2。使用144Sm/147Sm=0.205484和146Nd/144Nd=0.7129分别校正Sm同位素和Nd同位素的质量歧视[29]。利用144Sm/149Sm=0.22332校正144Sm对144Nd的同质异位数干扰[30]。榍石标样BLR-1作为外标校正147Sm/144Nd的质量歧视和元素分馏。实验测得的4个监控标样MAD、Otter Lake、LAP和SAP的143Nd/144Nd比值分别为0.511352±0.000008、0.511956±0.000008、0.511355±0.000015、0.511011±0.000007,与相应样品的143Nd/144Nd参考值在误差范围内基本一致(MAD:0.511322±0.000053、Otter Lake:0.512940±0.000009、LAP:0.512352±0.000024、SAP:0.511007±0.000030)[17]

    榍石主量、微量元素含量分别见表 1表 2

    表  1  铜山岭花岗闪长岩和暗色包体中榍石电子探针分析数据
    Table  1.  Representative EPMA data of titanite in granodiorite and mafic microgranular enclave of the Tongshanling pluton
    元素/分析点 暗色包体(%) 花岗闪长岩(%)
    TSL4-1 TSL4-2 TSL4-3 TSL4-4 TSL4-5 TSL5-1 TSL5-2 TSL5-3 TSL5-4 TSL5-5 TSL5-6
    Na2O 0.014 0.013 - 0.056 0.009 - - 0.003 - - -
    K2O 0.009 0.004 0.001 0.006 0.008 - - - - - -
    F 1.45 0.48 1.45 1.69 1.23 1.84 0.255 1.57 1.10 1.09 1.07
    MgO - 0.003 0.001 - 0.005 0.031 0.001 0.017 - - 0.002
    Al2O3 3.62 2.70 3.60 4.14 3.31 5.61 1.81 4.68 3.03 3.37 2.48
    SiO2 31.7 31.4 31.2 31.3 30.7 31.3 31.1 31.4 31.6 31.0 31.6
    Cl 0.017 - 0.008 0.012 0.002 0.005 - - 0.007 - 0.004
    CaO 29.4 29.3 30.0 29.9 29.4 29.9 29.6 29.0 29.6 29.5 29.4
    TiO2 33.9 35.7 35.1 33.7 34.0 30.6 38.2 32.9 35.0 34.2 36.8
    MnO 0.059 0.043 0.024 0.045 0.061 0.028 0.044 0.053 0.066 0.024 0.027
    FeO 0.220 0.356 0.366 0.190 0.184 0.465 0.378 0.191 0.606 0.456 0.432
    总计 100 99.9 102 101 98.9 99.7 101 99.8 101 99.7 102
    以O=5计算的阳离子个数(afpu)
    Na 0.001 0.001 - 0.003 0.001 - - - - - -
    Mg - - - - - 0.001 - 0.001 - - -
    Al 0.069 0.052 0.068 0.078 0.064 0.107 0.034 0.089 0.057 0.065 0.047
    Si 1.021 1.020 0.996 1.004 1.008 1.013 1.001 1.015 1.016 1.010 1.007
    Ca 1.013 1.020 1.026 1.025 1.032 1.038 1.020 1.002 1.020 1.030 1.006
    Ti 0.822 0.872 0.841 0.812 0.840 0.745 0.925 0.800 0.847 0.839 0.883
    Mn 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001
    Fe 0.006 0.010 0.010 0.005 0.005 0.013 0.010 0.005 0.016 0.012 0.012
    F 0.008 0.003 0.008 0.009 0.007 0.010 0.001 0.008 0.006 0.006 0.006
    F和Cl 0.001 - - 0.001 - - - - - - -
    Al+Fe 0.075 0.061 0.078 0.083 0.069 0.120 0.044 0.094 0.074 0.077 0.058
    注:“-”代表低于检测限,下同。
    下载: 导出CSV 
    | 显示表格
    表  2  铜山岭花岗闪长岩和暗色包体中榍石原位微量元素组成
    Table  2.  Trace element compositions of titanite in granodiorite and mafic microgranular enclave of the Tongshanling pluton
    元素/分析点 暗色包体(μg/g) 花岗闪长岩(μg/g)
    TSL4-1 TSL4-2 TSL4-3 TSL4-4 TSL4-5 TSL5-1 TSL5-2 TSL5-3 TSL5-4 TSL5-5 TSL5-6
    Li 0.431 0.565 0.141 0.264 0.050 1.17 - 0.082 0.260 0.942 -
    V 1461 571 610 1317 701 781 553 643 687 795 717
    Ni 0.178 0.560 0.417 0.032 0.619 0.042 0.185 0.431 - 0.338 -
    Cu 0.532 0.510 0.589 0.329 0.761 0.648 0.596 0.265 0.357 0.347 0.651
    Zn 2.22 2.36 3.49 1.91 2.59 1.76 1.02 2.94 1.15 2.21 1.31
    Ga 8.27 6.41 6.58 7.61 6.31 3.56 3.88 7.71 7.68 2.23 6.38
    As 0.776 2.36 0.632 0.365 2.66 7.54 1.51 2.63 3.80 3.25 0.796
    Rb 0.063 0.742 0.088 - 0.003 0.242 0.051 0.033 0.137 0.087 0.099
    Sr 4.66 6.61 6.16 4.74 6.29 7.23 7.51 6.22 7.62 11.3 6.42
    Y 270 74.0 131 32.4 90.9 118 872 333 1706 74.9 906
    Zr 16.5 143 26.8 59.4 486 11.1 154 190 536 474 67.0
    Nb 384 584 354 306 1489 650 625 1069 1455 1217 963
    Sn 861 4116 3960 1353 6594 90 1162 3503 1233 829 651
    Cs 0.112 0.320 0.038 0.039 0.004 0.317 0.002 0.005 0.044 0.110 0.011
    Ba 0.093 0.342 0.055 0.108 0.053 1.323 - 0.080 0.033 1.263 0.048
    La 5.33 9.87 8.07 4.19 5.92 16.5 4.37 14.1 15.8 15.7 2.75
    Ce 24.8 43.1 48.4 16.6 21.5 63.9 43.2 73.9 98.1 51.4 25.7
    Pr 5.45 6.39 9.19 2.58 3.91 11.9 15.5 15.8 27.0 7.02 9.56
    Nd 37.6 29.6 49.9 13.1 24.9 69.8 135.2 97.8 214 32.6 86.8
    Sm 19.8 7.79 13.2 4.95 10.7 22.2 86.8 35.8 135 26.4 68.5
    Eu 8.94 10.9 13.4 5.71 15.7 10.2 46.0 17.4 32.5 28.8 20.3
    Gd 29.7 9.59 16.2 5.09 13.8 22.6 118 42.2 192 25.9 108
    Tb 5.95 1.58 2.85 0.84 2.18 3.50 21.7 7.20 37.03 1.42 21.3
    Dy 42.7 10.5 19.8 5.3 13.3 20.1 143 47.5 259 9.8 151
    Ho 9.84 2.45 4.44 1.12 3.05 4.20 30.2 10.9 55.4 2.14 31.2
    Er 29.0 7.2 13.5 3.3 9.0 11.0 85.5 33.9 166.4 6.5 89.3
    Tm 4.63 1.18 2.21 0.51 1.40 1.58 13.73 5.69 26.6 1.12 13.6
    Yb 32.1 10.3 17.2 3.5 9.8 10.1 103 47.5 206 10.8 100
    Lu 4.52 1.97 3.38 0.52 1.29 1.49 17.3 9.48 33.0 1.91 14.1
    Hf 0.639 5.09 0.849 2.10 19.0 0.387 7.36 6.77 21.0 16.4 2.13
    Ta 28.4 52.1 34.0 24.7 109.5 56.0 56.2 85.7 104.8 91.0 80.3
    W 10.2 167 50.5 13.3 173 11.1 3.24 609 366 144 6.15
    Pb 0.495 1.386 0.502 0.280 1.14 5.52 0.540 1.43 1.39 1.68 0.427
    Th 2.13 3.76 1.44 6.40 2.52 2.35 5.04 63.5 62.0 6.92 2.41
    U 17.2 52.8 16.9 18.2 19.8 4.39 18.0 262 205 45.4 10.1
    ΣREE 258 152 222 67 136 269 864 459 1498 187 742
    LaN/YbN 0.12 0.69 0.34 0.85 0.43 1.17 0.03 0.21 0.06 1.04 0.02
    T(℃) 762 878 786 828 956 743 883 895 963 954 834
    Eu/Eu* 1.13 3.86 2.80 3.48 3.94 1.39 1.39 1.37 0.62 1.10 0.72
    Ce/Ce* 1.13 1.33 1.38 1.24 1.09 1.12 1.29 1.22 1.17 1.20 1.23
    Zr/Hf 25.9 28.1 31.5 28.3 25.6 28.7 21.0 28.0 25.5 29.0 31.4
    Nb/Ta 13.5 11.2 10.4 12.4 13.6 11.6 11.1 12.5 13.9 13.4 12.0
    Y/Ho 27.4 30.2 29.6 28.8 29.8 28.0 28.9 30.7 30.8 35.0 29.0
    下载: 导出CSV 
    | 显示表格

    分析结果显示,铜山花岗闪长岩及暗色包体中榍石的主量元素变化范围基本一致,SiO2为31.0%~31.7%,Al2O3为1.81%~5.61%,CaO为29.0%~30.0%,TiO2为30.6%~38.2%,FeO为0.184%~0.606%,F为0.48%~1.84%。对榍石原位微量元素分析显示,单个样品的微量元素含量变化范围不大,没有明显的成分环带。两类样品中榍石的稀土元素总量变化范围较大,为67~1498μg/g,但二者稀土配分模式存在一定差别(图 3)[31],暗色包体中榍石具有微弱的重稀土富集,LaN/YbN比值为0.12~0.85,具有明显的Eu正异常,Eu/Eu*值为1.13~3.94;而花岗闪长岩中榍石稀土配分模式变化较大,Eu正异常变小,部分分析点显示出负异常,Eu/Eu*值为0.62~1.39。两类样品中榍石的微量元素对Zr/Hf、Nb/Ta、Y/Ho比值变化范围较小(表 2),Zr/Hf比值为21.0~31.5,Nb/Ta比值为10.4~13.9,Y/Ho比值为27.4~35.0。

    图  3  铜山岭榍石稀土元素配分模式图,暗色包体中榍石的稀土含量低于花岗闪长岩中榍石的稀土含量并具有明显的正Eu异常,而花岗闪长岩中的榍石显示出弱的正Eu或者负Eu异常。球粒陨石标准化数据据Sun和McDonough[31]
    Figure  3.  Chondrite-normalized REE patterns for titanite from the Tongshanling granitic pluton. Titanite from MME is characterized by Eu positive anomaly. The titanite from granodiorite has REE content higher than those from MME and shows weak positive or negative Eu anomaly on REE pattern. It is indicate that the granitic melts of the Tongshanling are characterized by high oxygen fugacity (The chondrite values are from Sun and McDonough[31]).

    3个样品中榍石的微区原位Sm-Nd同位素分析结果见表 3。单颗粒榍石的Sm-Nd同位素组成非常均一,暗色包体中榍石的147Sm/144Nd比值为0.2399~0.4026,144Nd/143Nd变化范围为0.512321~0.512675,εNd(t)值为-3.5~-8.9,平均值为-7.2±2.4。花岗闪长岩中榍石147Sm/144Nd比值为0.2850~1.4020,144Nd/143Nd变化范围为0.512269~0.513399,εNd(t)值为-5.4~-9.9,平均值为-6.9±2.4。花岗闪长岩中榍石的Sm-Nd同位素比值变化范围略大于暗色包体中榍石的Sm-Nd同位素比值,但两者的初始Nd同位素组成非常相似(图 4)。

    表  3  榍石原位Sm-Nd同位素组成
    Table  3.  In-situ Sm-Nd isotope compositions in titanite from granodiorite and mafic microgranular enclave of the Tongshanling pluton
    暗色包体分析点 147Sm/144Nd 2σ 143Nd/144Nd 2σ εNd(t) 2σ fSm/Nd 2σ
    T4TNd07 0.3415 0.0099 0.512337 0.000442 -8.9 0.6 0.736 0.050
    T4TNd09 0.3894 0.0010 0.512392 0.000095 -8.8 1.9 0.980 0.005
    T4TNd10 0.4026 0.0026 0.512675 0.000057 -3.5 1.1 1.047 0.013
    T4TNd11 0.2416 0.0048 0.512321 0.000283 -7.1 1.5 0.228 0.024
    T4TNd12 0.2399 0.0072 0.512504 0.000744 -3.5 1.5 0.220 0.037
    T4TNd13 0.2626 0.0018 0.512346 0.000509 -7.0 0.9 0.335 0.009
    花岗闪长岩分析点 147Sm/144Nd 2σ 143Nd/144Nd 2σ εNd(t) 2σ fSm/Nd 2σ
    T3TNd01 1.4020 0.0098 0.513399 0.000267 -9.9 1.2 6.127 0.050
    T5TNd01 0.4059 0.0026 0.512580 0.000166 -5.4 1.2 1.063 0.013
    T5TNd02 0.5917 0.0046 0.512761 0.000140 -5.7 0.7 2.008 0.023
    T5TNd05 0.3743 0.0047 0.512404 0.000270 -8.2 1.3 0.903 0.024
    T3TNd03 0.2850 0.0048 0.512269 0.000693 -9.0 3.5 0.449 0.024
    下载: 导出CSV 
    | 显示表格
    图  4  铜山岭花岗闪长岩和暗色包体中榍石Sm-Nd同位素组成,暗色包体和花岗闪长岩中的榍石具有相似的初始Nd同位素组成
    a—榍石147Sm/144Nd与143Nd/144Nd相关图;b—榍石147Sm/144Nd与εNd(t)相关图;c—榍石εNd(t)加权平均值;d—榍石εNd(t)柱状图。
    Figure  4.  The Sm-Nd isotope compositions of titanite from the Tongshanling granitic pluton. All titanite grains have coincident negative initial Nd isotopic compositions.
    (a) Plot of 147Sm/144Nd against 143Nd/144Nd for titanite; (b) Plot of 147Sm/144Nd against εNd(t) for titanite; (c) Weighted mean εNd value(t) for titanite; (d) Histogram of εNd(t) value for titanite. Titanite from MME has homogenous Nd isotope compositions. Their present 144Nd/143Nd ranges from 0.512321 to 0.512675, corresponding to εNd(t) value from -3.5 to -8.9 with an average of -7.2±2.4 (N=6). Titanite from granodiorite overall have 144Nd/143Nd ratio ranging from 0.512269 to 0.513399. Their time-corrected initial εNd(t) value vary between -5.4 and -9.9 with an average of -6.9±2.4 (N=5). All titanite grains have negative initial Nd isotopic compositions.

    副矿物榍石主量元素通常存在较大的差异,且含有较高的稀土元素和高场强元素,常被应用于判别榍石成因进而揭示寄主岩石的形成条件。因此,元素在榍石晶格位的替代方式得到了地质学者的广泛关注[32]。铜山岭花岗闪长岩及其中暗色包体中榍石普遍含有Al、Fe和F等元素,具有相似的元素变化趋势,Al+Fe与Ti具有明显的负相关关系(图 5a),暗示Al和Fe主要通过替代八面体位置上的Ti进入榍石,具体的替代方式是(Al,Fe3+)+(F,OH)=Ti4++O2-。然而,在Al+Fe和F的关系图中,Al和Fe超过了(Al,Fe3+)+(F,OH)=Ti4++O2-理论替换线(图 5b),说明还有额外的Al通过替换进入榍石晶格。铜山岭花岗闪长岩及暗色包体中榍石具有较高的REE含量,很可能还发生了Al+Fe+REE一起替换了Ti位和Ca位,替代方式是(Al,Fe3+)+REE=Ti4++O2-。因此,榍石中微量元素可能同时通过上述两种替代方式进入其晶格中。

    图  5  铜山岭榍石主量元素(a,b)和微量元素比值(c,d,e,f)相关图。榍石中主微量元素受离子半径和电荷控制,不受热液活动的影响,能反映初始岩浆的信息
    a—Ti和Al+Fe相关图;b—F和Al+Fe相关图;c—Zr/Hf比值和Nb/Ta比值相关图;d—Zr/Hf比值和Y/Ho比值相关图;e—Eu异常Eu/Eu*和Zr/Hf比值相关图;f—Eu异常Eu/Eu*和Ce异常Ce/Ce*相关图。
    Figure  5.  Selected major element variational diagrams (a, b) and trace element ratios variational diagrams (c-f) for titanite. The variation of Zr/Hf, Nb/Ta and Y/Ho ratios of titanite grains range from 21.0 to 31.5, 10.4 to 13.9 and 27.4 to 35.0, respectively. These trace element ratios are consistent with those of normal crust and are not fractionated. Therefore, the trace elements of titanite were completely controlled by ion radius and charge, and not affected by late hydrothermal alteration.

    元素进入榍石晶格与其形成条件密切相关[33-35]。一般而言,岩浆成因榍石具有低CaO和TiO2含量,高FeO、Na2O和MgO含量,稀土和高场强元素含量较高,稀土元素配分模式呈现出平坦的中-重稀土型式,这些地球化学特征明显有别于热液和变质成因的榍石[36-37, 35]。当有流体参与作用时,矿物中的等价微量元素对Zr-Hf、Nb-Ta和Y-Ho会发生明显分异,偏离地壳岩石的正常范围[38-40],由于流体作用中,这些元素在矿物和熔体之间的分配不再受电价和离子半径控制[41]。铜山岭花岗闪长岩与铜多金属成矿在时空和成因上密切相关,岩体普遍遭受了强烈的热液蚀变作用[25, 27-28],热液活动是否对榍石的形成存在影响目前尚不明确。本次研究的榍石具有平坦的中-重稀土元素配分模式(图 3),与苏鲁大别超高压变质岩中残留岩浆榍石的稀土配分模式完全一致[34]。所有榍石均具有低的CaO、Al2O3和TiO2含量及高的Fe2O3和MgO含量(表 1),元素的含量也与苏鲁大别超高压变质岩中残留岩浆榍石及三江地区碱性岩中岩浆榍石的元素含量相当[36, 34-35]。这些元素地球化学特征均说明所研究的榍石都属于岩浆成因。而且,铜山岭花岗闪长岩和暗色包体中榍石中Nb/Ta、Zr/Hf和Y/Ho比值变化范围非常小(图 5),Nb/Ta比值一般小于13.5,Zr/Hf比值一般大于21,Y/Ho比值大于27.4,完全处于离子半径和电价控制的范围。因此,榍石未受热液活动的影响,保持岩浆初始信息,可以用于限定寄主岩石的岩浆性质。

    已有实验研究表明,微量元素Zr可以取代榍石中的Ti,其取代量的多少与体系的温度和压力相关,因此,榍石被广泛应用于地质温压条件的估算[42-44]。系统的实验研究证实,榍石中Zr含量与温压条件存在以下关系式[42]

    $$ \begin{aligned} \log \left(\mathrm{Zr}_{\text {榍石 }}\right) & =10.52( \pm 0.10)-7708( \pm 101) / T- \\ & 960( \pm 10) P / T-\log \left(\alpha_{\mathrm{TiO}_2}\right)-\log \left(\alpha_{\mathrm{SiO}_2}\right) \end{aligned} $$

    式中:Zr榍石为榍石中Zr含量(μg/g);T为温度(K);P为压力(GPa),αTiO2αSiO2分别为Ti和Si的活度。

    前人通过角闪石的Al压力计获得了铜山岭花岗闪长岩形成的压力约为2.0GPa[22]。由于铜山岭花岗闪长岩中含有金红石和石英,假定αTiO2αSiO2均为1,即Ti和Si的活度均为1,根据榍石中Zr含量,计算得到暗色包体中榍石的形成温度为762~956℃,略高于花岗闪长岩中榍石的形成温度743~963℃(表 2),并明显高于前人通过角闪石、黑云母和斜长石等矿物计算的温度[22]。因此,榍石记录的是初始岩浆温度条件,暗色包体中的榍石形成时间略早于寄主花岗岩闪长中的榍石。根据Chappell等[45]提出的高温和低温花岗岩类分类标准,铜山岭花岗闪长岩属于高温花岗岩类。同时,榍石中Ce和Eu异常通常与岩浆氧化还原状态密切相关,由于不同的氧化还原条件下,Ce可以Ce3+和Ce4+,Eu可以Eu2+和Eu3+存在[46, 35]。还原条件下,Ce主要以低价态的Ce3+形式存在,Ce3+离子半径为1.02Å,与7次配位Ca2+离子半径1.06Å相似,容易置换榍石中的Ca2+进入晶格,从而导致较高的Ce/Ce*比值;而Eu主要以Eu2+形式存在,Eu2+离子半径为1.17 Å,与榍石中7次配位Ca2+离子半径相差较大,难以置换进入榍石晶格,从而具有较低的Eu/Eu*比值[46]。氧化条件下,榍石中Ce/Ce*比值和Eu/Eu*比值则反之。铜山岭花岗闪长岩暗色包体中榍石具有Eu的正异常,而花岗闪长岩中榍石分析点大部分显示出Eu的弱负异常,少量点具有Eu正异常(图 3),Eu/Eu*比值降低(图 5),二者的Ce/Ce*比值都大于1.0,且与Eu/Eu*比值变化存在相关性(图 5)。因此,榍石中Eu、Ce异常说明岩浆的初始氧逸度较高,随着岩浆演化,氧逸度有降低趋势。

    铜山岭花岗闪长岩具有明显的富钾、高铝特征[47, 28],全岩初始Sr-Nd同位素变化范围较大,初始87Sr/86Sr变化范围为0.707962~0.710396,εNd(t)值为-2.3~-7.0[47, 28]。基于全岩Sr-Nd同位素和元素特征,前人认为铜山岭花岗闪长岩主要由壳幔物质混合形成或者残留体再造[45-46]。由于花岗质岩石在风化和热液蚀变过程中Sm-Nd同位素体系容易重置,难以限定岩浆源区特征,而榍石抗风化抗热液蚀变能力强,其原位Sm-Nd同位素代表了榍石结晶时岩浆的Nd同位素组成,可以有效地示踪岩浆来源和演化过程物质的变化细节,榍石原位Nd同位素成为了示踪岩浆源区和演化过程一个新的有效手段[15, 14, 35]。铜山岭花岗闪长岩中暗色包体的榍石εNd(t)值为-3.5~-8.9,平均值为-7.2±2.4,花岗闪长岩中榍石εNd(t)值为-5.4~-9.9,平均值为-6.9±2.4,二者变化范围相似(图 4),而且同一颗粒不同生长环带的Nd同位素组成比较均一,说明在榍石结晶过程中岩浆来源没有发生明显变化,没有明显的岩浆混合特征。

    在Nd同位素演化曲线上,铜山岭花岗闪长岩和暗色包体中榍石都具有负的初始Nd同位素组成,靠近华南大陆中下地壳Nd同位素区域,与湘南地区下地壳麻粒岩包体的Nd同位素组成相似[εNd(t)值为-6.59~-7.34][48],处于元古代麻源群中基性变质岩的范围(图 6)。因此,铜山岭地区的花岗闪长岩很可能由均一的镁铁质中下壳熔融形成。然而,中下地壳什么样的物质能产生富钾、富铝的岩浆?前人通过实验研究发现,角闪岩脱水熔融过程产生的水不饱和岩浆具有高铝、高钾特征,而产生的水饱和岩浆具有高铝、高钙,但亏损铁、镁和钾特征[52-53],因此,铜山岭岩体很可能由镁铁质角闪岩相中下地壳发生脱水熔融形成的水不饱和岩浆形成。

    图  6  铜山岭榍石Nd同位素演化曲线。铜山岭榍石的初始Nd同位素靠近华南中下地壳Nd同位素演化线,暗示铜山岭花岗闪长质岩石的物质源区是华南中下地壳物质。所有初始同位素比值根据年龄159±1Ma进行校正,华南中下地壳Sr-Nd同位素数据据Yu等[49]和孔华等[48],元古代中基性变质岩数据据袁忠信等[50],Nd同位素演化曲线据Chen等[51]
    Figure  6.  Nd isotopic evolution diagrams for titanite from the Tongshanling granodiorite. All titanite grains have negative initial Nd isotopic compositions, which is consistent with the evolution trend of Nd isotopes of the middle-lower continental crust of South China. It is indicated that granodiorites from the Tongshanling pluton were probably formed by the amphibole-dehydration melting of a mafic source in the middle-lower crust beneath South China. All the initial ratios were corrected to 159±1Ma. The Nd isotopic data of middle/lower crust are from Yu, et al[49] and Kong, et al[48]. The data of Proterozoic metamorphic rocks are from Yuan, et al[50]. Nd isotopic evolution diagram was modified after Chen, et al[51].

    利用LA-ICP-MS和LA-MC-ICP-MS等现代原位分析测试技术,精确测定了铜山岭岩体中镁铁质暗色包体(MME)和寄主花岗闪长岩中副矿物榍石的微量元素和Nd同位素组成,确定了REE与Al和Fe主要通过(Al,Fe3+)+REE=Ti4++O2-方式替换榍石的Ti位和Ca位而进入晶格。榍石中微量元素对Zr/Hf、Nb/Ta、Y/Ho比值变化范围完全受控于离子半径和电荷,不受热液蚀变的影响,保留岩浆初始信息。榍石原位化学组成对示踪岩浆性质和起源具有明显的优势。

    榍石微量元素分析结果表明铜山岭花岗闪长质岩浆初始氧逸度高,随岩浆演化有降低趋势。暗色包体和寄主花岗闪长岩中榍石具有均一的、负的Nd同位素组成,变化范围较小,与华南大陆中下地壳Nd同位素演化趋势一致,暗示铜山岭花岗闪长岩很可能由镁铁质角闪岩相中下地壳脱水熔融形成的水不饱和岩浆形成。

  • 表  1   植物生长调节剂的分类及作用[5]

    Table  1   Classification and function of plant growth regulators[5]

    植物生长调节剂分类 作用 典型产品
    植物生长促进剂 促进机体细胞分裂和新生器官分化 生长素、细胞分裂素、赤霉素、胺鲜酯、乙烯利及油菜素甾醇类化合物等
    植物生长抑制剂 导致茎伸长,从而抑制植物的顶端优势,促进植物侧叶增多 肉桂酸、香豆素和脱落酸等
    植物生长延缓剂 抑制植株节间伸长,使得植株变矮 矮壮素、多效唑、烯效唑、氟节胺和吡啶醇等
    下载: 导出CSV

    表  2   部分典型植物生长调节剂的化学式、结构式和常用理化性质

    Table  2   Chemical formula, structural formula and common physical and chemical properties of the typical plant growth regulators

    植物生长调节剂分类 典型代表 化学式 熔点(℃) 沸点(℃) 密度(g/cm3) 水中溶解度(g/L) 正辛醇-水分配系数 结构式
    植物生长促进剂 赤霉酸 C19H22O6 227 628.60±55 1.50±0.10 20℃:5.00 0.01
    吲哚乙酸 C10H9NO2 165~169 415 1.36 20℃:8.00 1.43
    氯吡脲 C12H10ClN3O 170 308.40 1.42 22℃:0.04 3.83
    乙烯利 C2H6ClO3P 70~72 333.40 1.57 23℃:1000 -1.42
    2,4-二氯苯氧乙酸 C8H6Cl2O3 140.5 160 1.56 20℃:0.89 2.59
    植物生长抑制剂 脱落酸 C15H20O4 163 458.70 1.19 20℃:3~5 1.70
    肉桂酸 C9H8O2 133 300 1.25 20℃:0.40 2.41
    香豆素 C9H6O2 68~73 298 0.94 25℃:2.50100℃:20 1.39
    植物生长延缓剂 矮壮素 C5H13Cl2N 239~243 260.30 1.22 20℃:0.74 0.93
    多效唑 C15H20ClN3O 165~166 460.90 1.19 20℃:0.03 2.99
    下载: 导出CSV

    表  3   植物生长调节剂分析测试时固态基质样品和液态基质样品常用的前处理方法

    Table  3   Common pretreatment methods of solid matrix samples and liquid matrix samples for the analysis and test of the plant growth regulators

    介质类型 测定物质 样品前处理方法 提取剂 回收率(%) 参考文献
    固态基质 肥料 茉莉酸、多效唑、水杨酸、反式玉米素、赤霉素、吲哚乙酸、脱落酸、芸苔素内酯、胺鲜酯 液液萃取 甲醇 92.00~104.70 [41]
    果蔬 赤霉酸、脱落酸、吲哚丙酸、对氯苯氧乙酸、噻苯隆、4-苯氧基乙酸、调果酸、2,4-二氯苯氧乙酸、氯吡脲、抗倒胺、环丙酸酰胺、吲哚乙酸、6-氨基嘌呤、吲哚丁酸、抗倒酯、多效唑、烯效唑、抑芽唑 QuEChERS 乙酸-乙腈溶液 70.10~116.20 [42]
    大米 五氟磺草胺、哌草丹、乙草胺、多效唑、烯效唑、矮壮素、脱落酸、2,4-二氯苯氧乙酸 QuEChERS 乙腈-水-甲酸溶液 75.10~115.00 [43]
    黄瓜番茄 4-氯苯氧乙酸、6-糖基氨基嘌呤、吲哚丁酸、α-萘乙酸、氯吡脲等 分散固相萃取 乙腈-二氯甲烷(含0.5%甲酸) 71.90~113.80 [44]
    豆芽 4-氯苯氧乙酸、2-萘乙酸、吲哚乙酸、吲哚丁酸、4-氟苯氧乙酸、2,3,5-三碘苯甲酸、4-溴苯氧乙酸、2,4-二氯苯氧乙酸、2,4,5-三氯苯氧乙酸、2,6-二甲基苯氧乙酸 超声-固相萃取 乙腈 96.30~102.10 [20]
    液态基质 植物营养剂 赤霉酸、多效唑、异戊烯腺嘌呤、5-硝基邻甲氧苯酚钠、6-苄基腺嘌呤、4-氯苯氧乙酸、吲哚丁酸、烯效唑、4-氟苯氧乙酸、氯吡脲、噻苯隆 超声-固相萃取 甲醇 92.50~103.50 [45]
    食用油 赤霉酸、吲哚乙酸、吲哚丙酸、吲哚丁酸、1-萘乙酸、2-萘乙酸 微波辅助萃取 甲醇 96.10~104.40 [26]
    下载: 导出CSV

    表  4   高效液相色谱/超高效液相色谱及液相色谱-串联质谱法分析条件及部分植物生长调节剂检出情况

    Table  4   Analysis conditions of high performance liquid chromatography/ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry and detection limits of some plant growth regulators

    测试技术 固态/液态介质 PGRs种类 色谱仪 检测器 检出限(土壤、肥料、果蔬mg/kg;水ng/L) 回收率(%) 参考文献
    型号 色谱柱
    HPLC 肥料 赤霉酸 Agilent 1260 Waters Atlantis T3 UV 0.60 70.40~107.20 [74]
    脱落酸 0.20
    萘乙酸 0.20
    氯吡脲 1.90
    烯效唑 5.10
    土壤 多效唑 Waters Alliance 2695 Capcell PAK C18 MGⅡ 0.80×10-2 98.30~102.10 [75]
    水体 氯吡脲 Shimadzu LC6A Li-Chrospher 100 RP-8 0.40 90.00~92.00 [76]
    UPLC 黄瓜 噻苯隆 Agilent 1290-infinity Poroshell 120 EC-C18 DAD 1.90×10-2 86.20~95. 00 [44]
    西瓜 氯吡脲 0.50×10-2 85.00~90.50
    番茄 脱落酸 1.90×10-2 101.20~110.00
    葡萄 2, 4-二氯苯氧乙酸 7.60×10-2 96.60~103.80
    HPLC-MS/MS 苹果 丁酰肼 Waters Alliance 2690 Hypersil APS-2 质谱 0.80×10-2 98.0~102.0 [77]
    叶子 0.02 112.0~116.0
    土壤 烯效唑 LC-20A Agilent Poroshell 120 SB-C18 10-5 84.00~87.00 [78]
    UPLC-MS/MS 麦冬 多效唑 Waters Corp Acquity HSS T3 column 质谱 30 86.90~115.40 [79]
    土壤 烯效唑 50 81.30~108.20
    水产品 水杨酸 Waters TQ-S C18 0.26×10-2 69.10~97.30 [80]
    肥料 嘧啶醇 Agilent 1290 Waters Acquity UPLC BEH C18 0.09~2.51 85.40~95.30 [81]
    调节膦
    三唑醇
    缩节胺
    土壤 胺鲜酯 Agilent 1200 VarianVF-5ms 三重四极杆质谱 0.80×10-2 89.40~103.30 [82]
    UPLC-HRMS 水体 青霉素 Agilent 1290 ZORB-AX RRHD SB-C18 高分辨质谱 1~10 91.20~106.40 [9]
    下载: 导出CSV

    表  5   气相色谱法及气相色谱-质谱联用法分析条件及部分植物生长调节剂检出情况

    Table  5   Analysis conditions of gas chromatography and gas chromatography-mass spectrometry and detection limits of some plant growth regulators

    测试技术 固态/液态介质 PGRs种类 色谱仪 检测器 检出限(mg/kg) 回收率(%) 参考文献
    型号 色谱柱
    GC 肥料 胺鲜酯多效唑烯效唑 Agilent 7890B HP-5毛细管柱 FID 10.0 80.60~97.10 [23]
    杨梅
    苹果
    枣树
    卷心菜
    西兰花
    2,4-二氯苯氧乙酸
    1-萘乙酸
    吲哚乙酸
    吲哚丁酸
    Agilent 7890A HP-5毛细管柱 12.0
    23.0
    15.0
    18.0
    83.00~96.00 [83]
    水体 胺鲜酯 Varian CP-3800 CP 7625 / 79.00~107.00 [84]
    土壤 多效唑 Agilent 7890A HP-5毛细管柱 NPD 0.03 72.50~108.80 [85]
    GC-MS 豆芽番茄 对氯苯氧乙酸
    2,4-二氯苯氧乙酸
    1-萘乙酸
    吲哚乙酸
    吲哚丁酸
    Agilent 7890A/5975C HP-5MS 质谱 1.50×10-2 70.00~127.00 [86]
    土壤 胺鲜酯 Agilent 6890-5975B HP-5MS 0.10×10-2 83.00~98.50 [87]
    多效唑 GCMS-QP2010 VF-1701毛细管柱 0.42×10-2 106.0~124.0 [88]
    下载: 导出CSV
  • [1]

    Rademacher W. Plant growth regulators: Backgrounds and uses in plant production[J]. Journal of Plant Growth Regulation, 2015, 34(4): 845-872. doi: 10.1007/s00344-015-9541-6

    [2]

    Sarabi V, Arjmand-Ghajur E. Exogenous plant growth regulators/plant growth promoting bacteria roles in mitigating water-deficit stress on chicory (Cichorium Pumilum Jacq.) at a physiological Level[J]. Agricultural Water Management, 2021, 245: 106439. doi: 10.1016/j.agwat.2020.106439

    [3]

    Huang G M, Liu Y R, Guo Y L, et al. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type[J]. Field Crops Research, 2021, 260: 107982. doi: 10.1016/j.fcr.2020.107982

    [4] 张义, 刘云利, 刘子森, 等. 植物生长调节剂的研究及应用进展[J]. 水生生物学报, 2021, 45(3): 700-708.

    Zhang Y, Liu Y L, Liu Z S, et al. The research and application progress of plant growth regulators[J]. Acta Hydrobiologica Sinica, 2021, 45(3): 700-708.

    [5]

    Nguyen C T, Dang L H, Nguyen D T, et al. Effect of GA3 and Gly plant growth regulators on productivity and sugar content of sugarcane[J]. Agriculture, 2019, 9(7): 136. doi: 10.3390/agriculture9070136

    [6] 许艳秋, 王广成, 高立明, 等. 麦冬种植中植物生长调节剂使用情况、残留现状及影响综述[J]. 农药学学报, 2021, 23(6): 1073-1084.

    Xu Y Q, Wang G C, Gao L M, et al. Review on uses, residues and effects of plant growth regulators in the cultivation of ophiopogon japonicus[J]. Chinese Journal of Pesticide Science, 2021, 23(6): 1073-1084.

    [7] 颜伟华, 周莹, 郭浩炜, 等. UPLC-MS/MS快速筛查豆芽中27种植物生长调节剂和抗生素类药物[J]. 食品科学, 2020, 48(12): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202112041.htm

    Yan W H, Zhou Y, Guo H W, et al. Rapid screening of 27 plant growth regulator and antibiotic residues in bean sprouts by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Science, 2020, 48(12): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202112041.htm

    [8] 王丽荣, 贾文君, 陈明敏, 等. 高效液相色谱法(HPLC)测定芒果多种植物生长调节剂含量[J]. 植物生理学报, 2022, 58(5): 981-988.

    Wang L R, Jia W J, Chen M M, et al. Determination of contents of several plant growth regulators in mango by high performance liquid chromatography (HPLC)[J]. Plant Physiology Journal, 2022, 58(5): 981-988.

    [9] 黄思静, 汪义杰, 朱斌, 等. 超高效液相色谱-高分辨质谱法测定水体中青霉素残留[J]. 中国给水排水, 2021, 37(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS202102024.htm

    Huang S J, Wang Y J, Zhu B, et al. Determination of penicillin residues in water by ultra high performance liquid chromatography-high resolution mass spectrometry[J]. China Water & Wastewater, 2021, 37(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS202102024.htm

    [10] 汤涛, 张昌朋, 吴珉, 等. 固相萃取/超高效液相色谱-串联质谱法分析乙烯利在棉籽、棉叶和土壤中的残留[J]. 分析测试学报, 2019, 38(1): 69-74. doi: 10.3969/j.issn.1004-4957.2019.01.010

    Tang T, Zhang C P, Wu M, et al. Determination of ethephon residues in cotton seed, cotton leaf and soil by solid phase extraction/ultrahigh performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38(1): 69-74. doi: 10.3969/j.issn.1004-4957.2019.01.010

    [11] 陈亮, 侯杰, 胡晓蕾, 等. 植物生长调节剂在土壤中的环境行为综述[J]. 环境科学, 2022, 43(1): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202201002.htm

    Chen L, Hou J, Hu X L, et al. Environmental behaviors of plant growth regulators in soil: A review[J]. Environmental Science, 2022, 43(1): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202201002.htm

    [12]

    Zhang L, Sun Y, Xu Z, et al. Insights into pH-dependent transformation of gibberellic acid in aqueous solution: Transformation pathway, mechanism and toxicity estimation[J]. Journal of Environmental Sciences, 2021, 104: 1-10. doi: 10.1016/j.jes.2020.11.009

    [13]

    Sun W K, Liu C F, Luo J Y, et al. Residue analysis of gibberellic acid isomer (iso-GA3) in brewing process and its toxicity evaluation in mice[J]. Regulatory Toxicology and Pharmacology, 2020, 110: 104514. doi: 10.1016/j.yrtph.2019.104514

    [14]

    Liu B, Peng X J, Han L J, et al. Effects of exogenous spermidine on root metabolism of cucumber seedlings under salt stress by GC-MS[J]. Agronomy, 2020, 10(4): 459. doi: 10.3390/agronomy10040459

    [15] 薛佳. 液相色谱-原子荧光光谱联用法测定土壤砷铬锑硒元素价态[J]. 岩矿测试, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028

    Xue J. Determination of valences of As, Cr, Sb and Se in soil using HPLC-HG-AFS[J]. Rock and Mineral Analysis, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028

    [16] 周添, 刘菲. 小体积液液萃取气相色谱-质谱法测定地下水中的克百威与3-羟基克百威[J]. 岩矿测试, 2021, 40(3): 358-364. doi: 10.15898/j.cnki.11-2131/td.202009050122

    Zhou T, Liu F. Determination of carbofuran and 3-hydroxycarbofuran in groundwater by small volume liquid-liquid extraction combined with GC-MS[J]. Rock and Mineral Analysis, 2021, 40(3): 358-364. doi: 10.15898/j.cnki.11-2131/td.202009050122

    [17]

    Yalçın S, Okudan E S, Karakaç Ö, et al. Identification and quantification of some phytohormones in seaweeds using UPLC-MS/MS[J]. Journal of Liquid Chromatography & Related Technologies, 2019, 42(15-16): 475-484.

    [18]

    Pu C H, Lin S K, Chuang W C, et al. Modified QuEChERS method for 24 plant growth regulators in grapes using LC-MS/MS[J]. Journal of Food and Drug Analysis, 2018, 26(2): 637-648. doi: 10.1016/j.jfda.2017.08.001

    [19] 张志伟, 叶泰, 徐斐, 等. 核酸修饰的金纳米粒子用于分光光度法检测卡那霉素[J]. 分析试验室, 2020, 39(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202001009.htm

    Zhang Z W, Ye T, Xu F, et al. Nucleic acid modified gold nanoparticles for spectrophotometric detection of kanamycin[J]. Chinese Journal of Analysis Laboratory, 2020, 39(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202001009.htm

    [20] 白新伟, 陈定梅, 邓红江. 毛细管电泳分析检测豆芽中植物生长调节剂残留[J]. 分析科学学报, 2021, 37(1): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202101024.htm

    Bai X W, Chen D M, Deng H J. Detection of residual plant growth regulators in bean sprouts by capillary electrophoresis[J]. Journal of Analytical Science, 2021, 37(1): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202101024.htm

    [21]

    Liu B, Feng J, Sun X, et al. Development of an enzyme-linked immunosorbent assay for the detection of difenoconazole residues in fruits and vegetables[J]. Food Analytical Methods, 2018, 11(1): 119-127. doi: 10.1007/s12161-017-0983-2

    [22]

    Hu Y, Wang X D, Wang C, et al. A multifunctional ratiometric electrochemical sensor for combined determination of indole-3-acetic acid and salicylic acid[J]. RSC Advances, 2020, 10(6): 3115-3121. doi: 10.1039/C9RA09951D

    [23] 苏本玉, 刘爽, 朱海荣, 等. 气相色谱法测定肥料中3种植物生长调节剂含量[J]. 安徽农业科学, 2020, 48(18): 191-193. doi: 10.3969/j.issn.0517-6611.2020.18.052

    Su B Y, Liu S, Zhu H R, et al. The content of three plant growth regulators in fertilizer determined by gas chromatography[J]. Journal of Anhui Agricultural Sciences, 2020, 48(18): 191-193. doi: 10.3969/j.issn.0517-6611.2020.18.052

    [24]

    Patil R, Khan Z, Pudale A, et al. Comprehensive multi-residue determination of pesticides and plant growth regulators in grapevine leaves using liquid and gas chromatography with tandem mass spectrometry[J]. Journal of Chromatography A, 2018, 1579: 73-82. doi: 10.1016/j.chroma.2018.10.025

    [25]

    Hau J, Riediker S, Varga N, et al. Determination of the plant growth regulator chlormequat in food by liquid chromatography-electrospray ionisation tandem mass spectrometry[J]. Journal of Chromatography A, 2000, 878(1): 77-86. doi: 10.1016/S0021-9673(00)00286-7

    [26]

    Liu M G, Chen G, Guo H L, et al. Accurate analysis and evaluation of acidic plant growth regulators in transgenic and nontransgenic edible oils with facile microwave-assisted extraction-derivatization[J]. Journal of Agricultural and Food Chemistry, 2015, 63(36): 8058-8067. doi: 10.1021/acs.jafc.5b02489

    [27] 陈建波, 黄兰淇, 马琳, 等. 附蒸发光散射检测器的高效液相色谱法测定水溶性肥料中3种季铵盐类植物生长调节剂的含量[J]. 理化检验(化学分册), 2022, 58(3): 299-303.

    Chen J B, Huang L Q, Ma L, et al. Determination of 3 quaternary ammonium salt plant growth regulators in water-soluble fertilizer by high performance liquid chromatography with evaporation light scattering detector[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(3): 299-303.

    [28]

    Chen S, Wang X J, Tan G F, et al. Gibberellin and the plant growth retardant paclobutrazol altered fruit shape and ripening in tomato[J]. Protoplasma, 2020, 257(3): 853-861. doi: 10.1007/s00709-019-01471-2

    [29]

    Guzmán Y, Pugliese B, González C V, et al. Spray with plant growth regulators at full bloom may improve quality for storage of "superior seedless" table grapes by modifying the vascular system of the bunch[J]. Postharvest Biology and Technology, 2021, 176: 111522. doi: 10.1016/j.postharvbio.2021.111522

    [30] 李响, 熊亚男, 靳亚忠, 等. 乙烯、脱落酸以及乙醇对采后薄皮甜瓜果实软化及调节酶活性的影响[J]. 北方园艺, 2021(21): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY202121014.htm

    Li X, Xiong Y N, Jin Y Z, et al. Effects of ETH, ABA and EtOH on softening and regulatory enzyme activities in postharvest oriental melon[J]. Northern Horticulture, 2021(21): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY202121014.htm

    [31]

    Lal M, Mir M M, Iqbal U, et al. Response of prohe-xadione calcium and paclobutrazol on growth and physio-chemical characteristics of pear Cv. Clapp's favorite[J]. Indian Journal of Horticulture, 2018, 75(2): 191. doi: 10.5958/0974-0112.2018.00035.X

    [32]

    Luo Y, Lu S, Sun X, et al. Paclobutrazol exposure indu-ces apoptosis and impairs autophagy in hepatocytes via the AMPK/mTOR signaling pathway[J]. Journal of Biochemical and Molecular Toxicology, 2021, 35(10): e22874.

    [33]

    Wang W D, Wu C Y, Lonameo B K. Toxic effects of paclobutrazol on developing organs at different exposure times in Zebrafish[J]. Toxics, 2019, 7(4): 62. doi: 10.3390/toxics7040062

    [34]

    Jiang X L, Wang Y N, Xie H, et al. Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants[J]. Environmental Science and Pollution Research, 2019, 26(26): 27385-27395. doi: 10.1007/s11356-019-05947-9

    [35] 黄春玲, 陈雪梅, 李芳芳, 等. 乙烯利暴露对早孕小鼠子宫内膜蜕膜化的影响[J]. 中国细胞生物学学报, 2021, 43(5): 939-946.

    Huang C L, Chen X M, Li F F, et al. Effects of ethephon exposure on endometrial decidualization in mice during early pregnancy[J]. Chinese Journal of Cell Biology, 2021, 43(5): 939-946.

    [36]

    Jahangirfard R, Najafi G, Shalizar-Jalali A, et al. Ethephon causes reproductive malfunction in adult male mice: Histological and biochemical evidence[J]. Veterinary Research Forum, 2021, 12(3): 333-338.

    [37]

    Gaaied S, Oliveira M, Barreto A, et al. 2, 4-dichloro-phenoxyaceticacid (2, 4-D) affects DNA integrity and retina structure in Zebrafish Larvae[J]. Environmental Science and Pollution Research, 2022, 29(56): 85402-85412. doi: 10.1007/s11356-022-21793-8

    [38]

    Salla G B F, Bracht L, Parizotto A V, et al. Kinetics of the metabolic effects, distribution spaces and lipid-bilayer affinities of the organo-chlorinated herbicides 2, 4-D and picloram in the liver[J]. Toxicology Letters, 2019, 313: 137-149. doi: 10.1016/j.toxlet.2019.06.008

    [39]

    Kaur G, Verma R, Mukhopadhyay C S, et al. Elevated pulmonary levels of Axin2 in mice exposed to herbicide 2, 4-D with or without endotoxin[J]. Journal of Biochemical and Molecular Toxicology, 2021, 35(12): e22912.

    [40] 王慧卿, 于劲松, 徐斐, 等. 食品农药残留检测中样品前处理技术研究进展[J]. 广东农业科学, 2013, 40(8): 111-114. doi: 10.3969/j.issn.1004-874X.2013.08.034

    Wang H Q, Yu J S, Xu F, et al. Sample preparation techniques for detection of pesticide residues in foods[J]. Guangdong Agricultural Sciences, 2013, 40(8): 111-114. doi: 10.3969/j.issn.1004-874X.2013.08.034

    [41] 王庆彬, 孟慧, 彭春娥, 等. 高效液相色谱法同时检测肥料中9种植物生长调节剂[J]. 分析科学学报, 2021, 37(6): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202106014.htm

    Wang Q B, Meng H, Peng C E, et al. Simultaneous detection of nine plant growth regulators in fertilizers by HPLC[J]. Journal of Analytical Science, 2021, 37(6): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202106014.htm

    [42] 姚恬恬, 刘翻, 金鑫, 等. QuEChERS-超高效液相色谱-串联四极杆飞行时间质谱法同时测定果蔬中19种植物生长调节剂残留[J]. 分析科学学报, 2019, 35(5): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201905003.htm

    Yao T T, Liu F, Jin X, et al. Simultaneous detemination of nineteen plant growth regulators in fruits and vegetables by QuEChERS-UPLC-Q-TOF-MS/MS[J]. Journal of Analytical Science, 2019, 35(5): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201905003.htm

    [43] 赵健, 付岩, 王全胜, 等. 超高效液相色谱-串联质谱法测定大米中8种除草剂和植物生长调节剂残留量[J]. 农药科学与管理, 2020, 41(5): 43-47, 59. doi: 10.3969/j.issn.1002-5480.2020.05.007

    Zhao J, Fu Y, Wang Q S, et al. Determination of the residues of 8 herbicides and plant growth regulators in rice by ultra performance liquid chromatography tandem mass spectrometry[J]. Pesticide Science and Administration, 2020, 41(5): 43-47, 59. doi: 10.3969/j.issn.1002-5480.2020.05.007

    [44] 胡晓科, 孙丹红, 罗晓飞. QuEChERS-超高效液相色谱法检测瓜果中14种植物生长调节剂残留量[J]. 中国食品卫生杂志, 2019, 31(1): 29-34.

    Hu X K, Sun D H, Luo X F. Simultaneous determination of 14 plant growth regulator residues in melons and fruits by QuEChERS-ultra-high performance liquid chromatography[J]. Chinese Journal of Food Hygiene, 2019, 31(1): 29-34.

    [45] 姚帮本, 乔东晴, 童宁, 等. 超高效液相色谱串联质谱法同时检测13种植物生长激素残留物[J]. 食品安全质量检测学报, 2020, 11(11): 3500-3507. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202011022.htm

    Yao B B, Qiao D Q, Tong N, et al. Simultaneous determination of 13 plant growth regulators residues by ultra performance liquid chromatography/tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2020, 11(11): 3500-3507. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202011022.htm

    [46]

    Wang M, Nie H, Han D, et al. Cauliflower-like resin microspheres with tuneable surface roughness as solid-phase extraction adsorbent for efficient extraction and determination of plant growth regulators in cucumbers[J]. Food Chemistry, 2019, 295: 259-266.

    [47]

    Liu L, Tu H C, Liu F, et al. Hydroxyl group-enriched microporous organic network for high-performance solid-phase extraction of triazine herbicides: Experiment and DFT calculation on adsorption behavior[J]. Chemical Engineering Journal, 2022, 442: 136171.

    [48]

    Tahir N I, Hussain S, Javed M, et al. Nature of aflatoxins: Their extraction, analysis, and control[J]. Journal of Food Safety, 2018, 38(6): 12561.

    [49] 黄肇章, 王超, 齐炜红, 等. 超声提取-在线固相萃取浓缩/液相色谱法测定大气颗粒物中超痕量多环芳烃[J]. 分析测试学报, 2021, 40(7): 1025-1030.

    Huang Z Z, Wang C, Qi W H, et al. Determination on ultra-trace of polycyclic aromatic hydrocarbons in atmospheric particulate matters by liquid chromatography coupled with ultrasonic extraction and online solid phase extraction concentration[J]. Journal of Instrumental Analysis, 2021, 40(7): 1025-1030.

    [50]

    Chen W, Liu Y M, Song L R, et al. Automated accelerated solvent extraction method for total lipid analysis of microalgae[J]. Algal Research, 2020, 51: 102080.

    [51]

    Alhallaf W, Bishop K, Perkins L B. Optimization of acce-lerated solvent extraction of phenolic compounds from Chaga using response surface methodology[J]. Food Analytical Methods, 2022, 15(10): 2777-2790.

    [52]

    Veeranan T, Kasirajaan R, Gurunathan B, et al. A novel approach for extraction of algal oil from marine macroalgae ulva Fasciata[J]. Renewable Energy, 2018, 127: 64-73.

    [53]

    Pavlic B, Bera O, Teslic N, et al. Chemical profile and antioxidant activity of sage herbal dust extracts obtained by supercritical fluid extraction[J]. Industrial Crops and Products, 2018, 120: 305-312.

    [54]

    Rodsamran P, Sothornvit R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions[J]. Food Bioscience, 2019, 28: 66-73.

    [55] 朱霞萍, 王勇, 安艳, 等. 环境样中有机磷农药残留检测前处理技术研究进展[J]. 中国测试, 2021, 47(9): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202109009.htm

    Zhu X P, Wang Y, An Y, et al. Development on pretreatment techniques for detection of organo-phosphorus pesticide residues in environmental samples[J]. China Measurement & Test, 2021, 47(9): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202109009.htm

    [56]

    Li N, Wu D, Li X T, et al. Effective enrichment and detection of plant growth regulators in fruits and vegetables using a novel magnetic covalent organic framework material as the adsorbents[J]. Food Chemistry, 2020, 306: 125455.

    [57]

    Hou S H, Sun X W, Chen L Z, et al. Amino-modified scholl-coupling mesoporous polymer for online solid-phase extraction of plant growth regulators from bean sprouts[J]. Food Chemistry, 2020, 321: 126702.

    [58]

    Chen J Y, Cao S R, Xi C X, et al. A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with high recognition capability for 5 plant growth regulators[J]. Food Chemistry, 2018, 239: 911-919.

    [59]

    Li M J, Li N, Xu G, et al. Magnetic boron nitride nanosheets as a novel magnetic solid-phase extraction adsorbent for the determination of plant growth regulators in tomatoes[J]. Food Chemistry, 2021, 348: 129103.

    [60]

    Rutkowska E, Łozowicka B, Kaczyński P. Modification of multiresidue quechers protocol to minimize matrix effect and improve recoveries for determination of pesticide residues in dried herbs followed by GC-MS/MS[J]. Food Analytical Methods, 2018, 11(3): 709-724.

    [61] 戴唯, 李巧, 朱明, 等. QuEChERS-同位素内标-高效液相色谱-串联质谱法测定动物源性食品中植物生长调节剂类农药残留[J]. 色谱, 2021, 39(11): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202111008.htm

    Dai W, Li Q, Zhu M, et al. Determination of plant growth regulators in animal-derived foods using QuEChERS-isotope-labeled internal standards with high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2021, 39(11): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202111008.htm

    [62] 毕军, 任君, 赵云峰, 等. QuEChERS-冷冻诱导液液萃取/液相色谱-高分辨质谱法测定蔬菜水果中77种农药残留[J]. 分析测试学报, 2021, 40(9): 1318-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202109008.htm

    Bi J, Ren J, Zhao Y F, et al. Determination of 77 pesticide residues in vegetables and fruits by liquid chromatography-high resolution mass spectrometry coupled with QuEChERS and cold induced liquid-liquid extraction[J]. Journal of Instrumental Analysis, 2021, 40(9): 1318-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202109008.htm

    [63]

    Devrnja N, Krstic-Milosevic D, Janosevic D, et al. In vitro cultivation of Tansy (Tanacetum Vulgare L.): A tool for the production of potent pharmaceutical agents[J]. Protoplasma, 2021, 258(3): 587-599.

    [64]

    Das S, Sultana K W, Chandra I. In vitro micropropagation of Basilicum Polystachyon (L.) Moench and identification of endogenous Auxin through HPLC[J]. Plant Cell, Tissue and Organ Culture, 2020, 141(3): 633-641.

    [65] 梁玉俊, 田红莲, 张建聪. 气相色谱-质谱法测定粮食种植土壤中6种农药的残留量[J]. 理化检验(化学分册), 2022, 58(3): 341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202203017.htm

    Liang Y J, Tian H L, Zhang J C, et al. Determination of 6 pesticide residues in grain planting soil by gas chromatography-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(3): 341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202203017.htm

    [66] 李忠煜, 李艳广, 黎卫亮, 等. 衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239-249. doi: 10.15898/j.cnki.11-2131/td.202007080101

    Li Z Y, Li Y G, Li W L, et al. Determination of 19 phenolic pollutants in reclaimed land samples by derivation gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239-249. doi: 10.15898/j.cnki.11-2131/td.202007080101

    [67] 陈建波, 马琳, 黄兰淇, 等. 离子色谱法测定水溶性肥料中矮壮素和甲哌鎓的含量[J]. 农药, 2022, 61(4): 271-273. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZZ202204007.htm

    Chen J B, Ma L, Huang L Q, et al. Determination of chlormequat mepiquat chloride content in water soluble fertilizer by ion chromatography[J]. Agrochemicals, 2022, 61(4): 271-273. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZZ202204007.htm

    [68] 吴璟, 罗林, 肖治理, 等. 直接竞争酶联免疫法测定食品中的丙烯酰胺含量[J]. 分析化学, 2014, 42(8): 1149-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201408020.htm

    Wu J, Luo L, Xiao Z L, et al. Direct competitive enzyme-linked immunosorbent assay for detection of acrylamide in food samples[J]. Chinese Journal of Analytical Chemistry, 2014, 42(8): 1149-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201408020.htm

    [69] 华彦涛, 刘波, 赵炫, 等. 微孔侧流免疫层析法检测农产品中2, 4-二氯苯氧乙酸残留[J]. 食品与发酵工业, 2021, 47(12): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202112037.htm

    Hua Y T, Liu B, Zhao X, et al. Detection of residual 2, 4-dichlorophenoxyacetic acid in agriculture products by microwell lateral flow immunochromatography assay[J]. Food and Fermentation Industries, 2021, 47(12): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202112037.htm

    [70]

    Hong R, Wu P, Lin J, et al. Three phase hollow fiber liquid-phase microextraction combined with HPLC for determination of three trace acidic plant growth regulators in Anoectochilus Roxburghii (Wall.) Lindl[J]. Journal of Separation Science, 2020, 43(14): 2773-2783.

    [71]

    Gormez E, Golge O, Kabak B. Quantification of fosetyl-aluminium/phosphonic acid and other highly polar residues in pomegranates using quick polar pesticides method involving liquid chromatography-tandem mass spectrometry measurement[J]. Journal of Chromatography A, 2021, 1642: 462038.

    [72]

    Luo Z L, Zhang L X, Mou Y, et al. Multi-residue analysis of plant growth regulators and pesticides in traditional Chinese medicines by high-performance liquid chromatography coupled with tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2019, 411(11): 2447-2460.

    [73]

    Duchowicz P R. QSPR studies on water solubility, octanol-water partition coefficient and vapour pressure of pesticides[J]. SAR and QSAR in Environmental Research, 2020, 31(2): 135-148.

    [74] 程化鹏, 耿平兰, 钟宏波, 等. 高效液相色谱法同时测定肥料中11种植物生长调节剂[J]. 农药, 2021, 60(9): 674-677, 690.

    Cheng H P, Geng P L, Zhong H B, et al. Simultaneous determination of 11 plant growth regulators in fertilizers by high performance liquid chromatography[J]. Agrochemicals, 2021, 60(9): 674-677, 690.

    [75] 包媛媛, 张新永, 邵金良. 固相萃取-高效液相色谱法测定番茄和土壤中多效唑残留量[J]. 西南农业学报, 2015, 28(1): 163-167.

    Bao Y Y, Zhang X Y, Shao J L. Determination of paclobutrazol residue in tomato and soil by SPE-high performance liquid chromatography[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 163-167.

    [76]

    Sharma D, Awasthi M D. Behaviour of forchlorfenuron residues in grape, soil and water[J]. Chemosphere, 2003, 50(5): 589-594.

    [77]

    Mol H G J, van Dam R C J, Vreeken R J, et al. Deter-mination of daminozide in apples and apple leaves by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 1999, 833(1): 53-60.

    [78] 马婧玮, 李通, 周玲, 等. 烯效唑在棉花及土壤中的残留及消解动态[J]. 农药学学报, 2017, 19(3): 374-380.

    Ma J W, Li T, Zhou L, et al. Residue and dissipation of uniconazole in Gossypium spp. and soil[J]. Chinese Journal of Pesticide Science, 2017, 19(3): 374-380.

    [79]

    Zhao X, Mu Y, Yang M. A simple multi-residue method for determination of plant growth retardants in Ophiopogon Japonicus and soil using ultra-performance liquid chromatography-tandem mass spectrometry[J]. Chemosphere, 2018, 207: 329-336.

    [80] 朱晓玲, 刘杰, 吴婉琴, 等. 水产品中水杨酸的液相色谱-串联质谱检测及其残留来源分析[J]. 现代食品科技, 2019, 35(3): 218-224, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201903033.htm

    Zhu X L, Liu J, Wu W Q, et al. Determination and source analysis of salicylic acid in aquatic products by high performance liquid chromatography-tandem mass spectrometry[J]. Modern Food Science and Technology, 2019, 35(3): 218-224, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201903033.htm

    [81] 朱仁愿, 刘兴国, 丁辉, 等. UPLC-MS/MS同时测定"壮根灵"类农肥中18种植物生长调节剂的含量[J]. 化学试剂, 2021, 43(12): 1699-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202112012.htm

    Zhu R Y, Liu X G, Ding H, et al. Simultaneous determination of contents of 18 plant growth regulators in agricultural fertilizer of "Zhuanggenling" by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chemical Reagents, 2021, 43(12): 1699-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202112012.htm

    [82]

    Jiang Y P, Jiang Y T, He S, et al. Dissipation of diethyl aminoethyl hexanoate (DA-6) Residues in Pakchoi, cotton crops and soil[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(4): 533-537.

    [83]

    Wang C J, Ding C, Wu Q W, et al. Molecularly imprinted polymers with dual template and bifunctional monomers for selective and simultaneous solid-phase extraction and gas chromatographic determination of four plant growth regulators in plant-derived tissues and foods[J]. Food Analytical Methods, 2019, 12(5): 1160-1169.

    [84] 郭敏, 石利利, 单正军, 等. 水体中胺鲜酯残留量的测定及其光解特性[J]. 生态与农村环境学报, 2007, 23(4): 45-48.

    Guo M, Shi L L, Shan Z J, et al. Determination and the photolytic characteristics of hexanoic acid 2-(diethylamino) ethylester (DA-6) in water[J]. Journal of Ecology and Environment, 2007, 23(4): 45-48.

    [85] 赵锋, 李光耀, 黄璐璐, 等. 多效唑在花生和土壤中的残留分析及消解动态[J]. 南方农业学报, 2017, 48(8): 1421-1426.

    Zhao F, Li G Y, Huang L L, et al. Residues and degradation dynamics of paclobutrazol in peanut and soil[J]. Journal of Southern Agriculture, 2017, 48(8): 1421-1426.

    [86] 张文华, 谢文, 侯建波, 等. 气相色谱-串联质谱法测定豆芽与番茄中6种植物生长调节剂[J]. 分析测试学报, 2016, 35(10): 1241-1247.

    Zhang W H, Xie W, Hou J B, et al. Determination of 6 plant growth regulators in bean sprout and tomato by gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2016, 35(10): 1241-1247.

    [87] 梁林, 薄瑞, 蒋家珍, 等. 胺鲜酯在大白菜和土壤中的残留分析及消解动态[J]. 农药学学报, 2011, 13(1): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-NYXB201101019.htm

    Liang L, Bo R, Jiang J Z, et al. Residue analysis and dissipation of diethyl aminoethyl hexanoate (DA-6) in Chinese cabbage and soil[J]. Chinese Journal of Pesticide Science, 2011, 13(1): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-NYXB201101019.htm

    [88] 黄琦, 黄战威, 陈振威, 等. 气相色谱-质谱法快速检测芒果园土壤中多效唑[J]. 南方农业学报, 2015, 46(6): 1042-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201506017.htm

    Huang Q, Huang Z W, Chen Z W, et al. Rapid determination of paclobutrazol in soil of mango orchards by gas chromatography-tandem mass spectrometry[J]. Journal of Southern Agriculture, 2015, 46(6): 1042-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201506017.htm

    [89] 陈小花, 侯彦杰, 杨丙成, 等. 常规离子色谱系统-电容耦合非接触式电导检测器的构建[J]. 色谱, 2018, 36(8): 822-826. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201808017.htm

    Chen X H, Hou Y J, Yang B C, et al. Fabrication of conventional ion chromatography-capacitively coupled contactless conductivity detector[J]. Chinese Journal of Chromatography, 2018, 36(8): 822-826. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201808017.htm

    [90]

    Muhammad N, Subhani Q, Wang F, et al. Simultaneous determination of two plant growth regulators in ten food samples using ion chromatography combined with QuEChERS extraction method (IC-QuEChERS) and coupled with fluorescence detector[J]. Food Chemistry, 2018, 241: 308-316.

    [91]

    Melton L M, Taylor M J, Flynn E E. The utilisation of ion chromatography and tandem mass spectrometry (IC-MS/MS) for the multi-residue simultaneous determination of highly polar anionic pesticides in fruit and vegetables[J]. Food Chemistry, 2019, 298: 125028.

    [92]

    Bauer A, Luetjohann J, Rohn S, et al. Ion chromatogra-phy tandem mass spectrometry (IC-MS/MS) multimethod for the determination of highly polar pesticides in plant-derived commodities[J]. Food Control, 2018, 86: 71-76.

    [93] 张莉, 陈亮, 刘菲. 快速分光光度法同步测定地下水中赤霉素和草甘膦的相互影响[J]. 光谱学与光谱分析, 2015, 35(4): 966-970. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504023.htm

    Zhang L, Chen L, Liu F. Mutual effect on determination of gibberellins and glyphosate in groundwater by spectrophotometry[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 966-970. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504023.htm

    [94] 黄报亮, 邓金花, 秦惠, 等. 分光光度法快速测定水中氰尿酸[J]. 理化检验(化学分册), 2020, 56(10): 1134-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202010022.htm

    Huang B L, Deng J H, Qin H, et al. Spectrophotometry rapid determination of cyanuric acid in water[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(10): 1134-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202010022.htm

    [95] 张璇, 李秋莹, 钟克利, 等. 混合溶液中茶多酚、植酸含量的分光光度法测定及干扰消除[J]. 中国食品学报, 2020, 20(10): 262-267.

    Zhang X, Li Q Y, Zhong K L, et al. Concentration determination and interference elimination of the mixed solution of tea polyphenols and phytic acid[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(10): 262-267.

    [96]

    Maragou N C, Balayiannis G. Determination of ethephon in pesticide formulations by ion exchange chromato-graphy with indirect spectrophotometric detection[J]. Analytical Letters, 2020, 53(5): 795-806.

    [97]

    Yi M, Zhao L, Wu K, et al. Simultaneous detection of plant growth regulators jasmonic acid and methyl jasmonate in plant samples by a monoclonal antibody-based ELISA[J]. The Analyst, 2020, 145(11): 4004-4011.

    [98] 陈卫军, 张耀海, 李云成, 等. 果蔬中常用植物生长调节剂分析方法研究进展[J]. 食品科学, 2012, 33(11): 283-289.

    Chen W J, Zhang Y H, Li Y C, et al. Research advances in analytical methods of plant growth regulators for fruits and vegetables[J]. Food Science, 2012, 33(11): 283-289.

    [99] 张玉芬, 席海山, 谢凤山, 等. 毛细管胶束电泳测定番茄中环境激素2, 4-滴的含量[J]. 农药, 2007, 46(9): 607-608, 611. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZZ200709012.htm

    Zhang Y F, Xi H S, Xie F S, et al. Assay of 2, 4-D from tomatoes by micellar electrokinetic capillary electro-phoresis[J]. Agrochemicals, 2007, 46(9): 607-608, 611. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZZ200709012.htm

    [100] 陈宗保. 聚合物整体柱微萃取-毛细管电泳法测定食品中植物激素[J]. 化学研究与应用, 2021, 33(5): 935-941. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ202105021.htm

    Chen Z B. Determination of plant hormones in food by ploymer monolithic column microextraction coupled with capillary electrophoresis[J]. Chemical Research and Application, 2021, 33(5): 935-941. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ202105021.htm

    [101] 张艳, 杜海军, 杜科志, 等. 电化学传感器检测植物生长调节剂的研究进展[J]. 化学试剂, 2021, 43(4): 458-465. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202104011.htm

    Zhang Y, Du H J, Du K Z, et al. Progress on the detection of plant growth regulators by electrochemical sensors[J]. Chemical Reagents, 2021, 43(4): 458-465. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202104011.htm

    [102]

    Wang Y, Zhou Y L, Xu L, et al. Photoelectrochemical Apta-biosensor for Zeatin detection based on graphene quantum dots improved photoactivity of graphite-like carbon nitride and streptavidin induced signal inhibition[J]. Sensors and Actuators B: Chemical, 2018, 257: 237-244.

    [103]

    Zhu X D, Zeng Y B, Zhang Z L, et al. A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine[J]. Biosensors and Bioelectronics, 2018, 18: 38-45.

    [104]

    Li H Y, Wang C, Wang X D, et al. Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings[J]. Biosensors and Bioelectronics, 2019, 126: 193-199.

  • 期刊类型引用(1)

    1. 郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 . 本站查看

    其他类型引用(0)

表(5)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  38
  • PDF下载量:  33
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-10-17
  • 录用日期:  2022-12-03
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-03-27

目录

/

返回文章
返回