• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

同位素技术应用于示踪矿山环境污染研究进展

赵睿涵, 韩志伟, 付勇

赵睿涵, 韩志伟, 付勇. 同位素技术应用于示踪矿山环境污染研究进展[J]. 岩矿测试, 2022, 41(6): 947-961. DOI: 10.15898/j.cnki.11-2131/td.202203100049
引用本文: 赵睿涵, 韩志伟, 付勇. 同位素技术应用于示踪矿山环境污染研究进展[J]. 岩矿测试, 2022, 41(6): 947-961. DOI: 10.15898/j.cnki.11-2131/td.202203100049
ZHAO Ruihan, HAN Zhiwei, FU Yong. A Review of Research Progress of Isotope Technology in Tracing Pollution Process in the Mine Environment[J]. Rock and Mineral Analysis, 2022, 41(6): 947-961. DOI: 10.15898/j.cnki.11-2131/td.202203100049
Citation: ZHAO Ruihan, HAN Zhiwei, FU Yong. A Review of Research Progress of Isotope Technology in Tracing Pollution Process in the Mine Environment[J]. Rock and Mineral Analysis, 2022, 41(6): 947-961. DOI: 10.15898/j.cnki.11-2131/td.202203100049

同位素技术应用于示踪矿山环境污染研究进展

基金项目: 

国家重点研发计划项目 2018YFC1801705

国家自然科学基金委员会—贵州省人民政府喀斯特科学研究中心项目 U1612442

贵州省人才基地建设项目 RCJD2018-21

详细信息
    作者简介:

    赵睿涵,硕士研究生,环境科学与工程专业。E-mail:zhaoruihan1114@163.com

    通讯作者:

    韩志伟,博士,教授,主要研究方向为环境地球化学。E-mail:zwhan@gzu.edu.cn

  • 中图分类号: X820.4

A Review of Research Progress of Isotope Technology in Tracing Pollution Process in the Mine Environment

  • 摘要:

    随着采矿等矿业活动在全球范围内的大面积进行,人们对矿山及其周边环境问题的关注度持续增加。电感耦合多接收等离子体质谱仪(MC-ICP-MS)的出现推动了同位素的地球化学研究,也使得同位素示踪技术被广泛应用于探究矿山环境中的各类问题。为强调同位素示踪技术在复杂矿山环境中应用的重要性及其能解决科学问题的多样性,本文调研和分析了截至2022年7月国内外学者公开发表的借助同位素示踪技术测试、分析矿山水文环境中的地球化学过程及污染物来源/影响等方面的论文及其数据,研究区涵盖二十多个国家、四十多个地区。通过总结发现:水体氢、氧同位素示踪技术是矿山水源解析、水力联系研究及酸性矿山废水(AMD)源识别的有效工具;硫酸盐硫、氧同位素示踪技术为研究矿山环境中的硫酸盐来源、AMD酸化过程及污染、细菌硫酸盐的还原作用与元素迁移转化等提供重要支持;重金属(铅、镉、锌、汞等)同位素示踪技术是探究矿山及附近环境中的金属污染来源及不同来源贡献率的有效手段。大量研究表明,虽然同位素技术在解析矿山环境污染物来源和特征污染物迁移转化机制以及揭示矿山水文地球化学过程等方面起到重要作用,但目前的大部分研究局限于应用单一/少数同位素对矿山环境介质进行短时间示踪研究。因此,未来需进一步发展多同位素示踪技术,并对矿山环境中存在的各类问题进行长期、持续地监测调查,提出有效的污染防治新方法。

    要点

    (1) MC-ICP-MS的出现推动了同位素在环境、化学行为等方面的研究。

    (2) 同位素示踪技术是矿山污染物源解析和环境地球化学过程研究的重要手段。

    (3) 多同位素联合示踪为识别复杂矿山环境问题和研究其过程机制提供多维度支撑。

    HIGHLIGHTS

    (1) The advent of MC-ICP-MS has promoted the study of isotopes in the environment, their chemical behavior, and so on.

    (2) Isotope tracing technology is an important tool for source analysis of mine contaminants and studying environmental geochemical processes.

    (3) Combined multi-isotope tracing provides multidimensional support for identifying complex mine environmental problems and studying their process mechanisms.

  • 全氟化合物(perfluorinated compounds,PFCs)是指一系列人工合成的氟代有机化合物,因具有疏水疏油、表面活性、耐酸耐碱、耐氧化还原等特性,被广泛用于工业、商业和民用多个领域,例如电镀、消防泡沫、纺织、造纸、室内装潢、洗发水、杀虫剂等[1]。20世纪50年代,美国明尼苏达矿业及机器制造公司(3M公司)首次通过电化学氟化法制得全氟化合物,随后中国便开始生产并大量使用PFCs相关物质,2006年年产量为248吨,达到历史峰值[2],直至2010年仍有100余吨。PFCs作为持久性有机污染物的一种,具有持久性、生物毒性与生物蓄积性,可远距离传输和迁移,并且在环境中难以降解[2-3]。全氟辛烷基磺酸及其盐类(PFOS)和全氟辛酸及其盐类(PFOA)是环境中最典型的两种PFCs,分别于2009年和2019年被列入《斯德哥尔摩公约》[4-6],其生产和使用都受到限制。

    虽然世界一些国家和地区已陆续制定了相关规定来限制PFCs的生产和使用[7],但由于多年来的使用和积累,PFCs在全球范围内的大气[8]、水体[9]、沉积物[10]、土壤[11]、生物体[12-13]等多种介质中均有检出,甚至在北极和青藏高原等极端气候区域也发现了PFCs的污染踪迹[14-16]。国内外有关水体中的PFCs污染已有大量研究,大多集中于河水[17-18]、海水[19-21]、湖水[22-23]等地表水系,而对于浓度相对较低的地下水中PFCs存在情况研究相对较少,但也陆续开展了一定研究。Michio等[24]测定了日本东京市16个地下水和泉水样品中的PFCs浓度,主要检出物质为PFOS、全氟庚酸(PFHpA)、PFOA和全氟壬酸,浓度范围分别为0.28~133ng/L、未检出~20ng/L、0.47~60ng/L、0.1~94ng/L,且部分样品中PFCs的浓度与废水中的水平相当。Yao等[25]检测分析了山东潍坊地下水中20种PFCs,结果表明PFOA为主要污染物,其次为PFHpA和PFHxA。Zhu等[26]在淮河流域采集了29个地下水样品,PFOS、PFOA、PFNA和全氟己酸(PFHxA)检出率均大于79%,平均浓度分别为2.9ng/L、1.2ng/L、0.13ng/L和0.13ng/L。整体上,在PFCs的相关研究中地下水属于相对低浓度的环境介质,但PFOS和PFOA仍然出现高浓度的检出。

    PFCs的高毒性已被证实[6, 27-28],地下水是人类生存和发展必不可少的物质基础,因此有必要对地下水中PFCs的存在现状进行探寻。北京是中国较早利用再生水进行农业灌溉的城市,该市通州、大兴区境内的再生水灌区是重点区域[29],目前尚没有该区域地下水中PFCs污染现状的相关研究,本文通过使用固相萃取-高效液相色谱-串联质谱法测定该区域地下水中PFCs浓度水平,探究了该区域PFCs污染现状及生态风险,为今后开展地下水中PFCs的动态监测和环境治理工作提供基础数据支持。

    研究区位于北京市通州、大兴区境内的再生水灌区,总面积789km2,主要分布有潮白河、永定河、凉水河、新凤河、凤港减河等水系。该区是典型的农业种植区,农业面积占总面积的58.9%,1960年开始使用城市排放污水直接灌溉[30],污水通过凉水河、凤港减河以及主干输水渠道进行农业灌溉。研究区内共有2个垃圾填埋场,主要处理生活垃圾。为了探究垃圾填埋场是否对周围地下水中PFCs浓度产生影响,本项目选择位于通州区的西田阳垃圾填埋场为重点研究区域,垃圾填埋场建在废弃的鱼坑基面上,自2000年9月投入使用至今,设计日处理量为300m3,总占地面积0.217km2

    综合考虑研究区历史污灌情况、灌渠分布及水文地质条件,本研究在全区拟定40个地下水采样点位。经勘查,有2个点位的监测井因人为破坏、废弃物掩盖等原因无法到达。其余38个采样点位中,共有22口浅层(50m以浅)监测井、30口深层(50m以深)监测井。其中,垃圾填埋场作为重点监测目标,在周边四个方向共设5个采样点位,包括4口浅井和5口深井。具体采样位置如图 1所示。

    图  1  研究区采样点分布图
    Figure  1.  Location map of sampling sites in the study area

    样品采集时间为2020年5~6月,使用不锈钢桶采集地下水样品共52个,每个采样点用500mL聚丙烯瓶(polypropylene,PP)采集平行样品2个,样品采集后当天运回实验室于4℃冰箱内冷藏储存待分析。空白样为试剂空白纯净水。

    标准品为全氟丁酸(PFBA)、全氟戊酸(PFPeA)、全氟己酸(PFHxA)、全氟庚酸(PFHpA)、全氟辛酸(PFOA)、全氟壬酸(PFNA)、全氟癸酸(PFDA)、全氟丁基磺酸盐(PFBS)、全氟己基磺酸盐(PFHxS)、全氟辛基磺酸盐(PFOS)的混合标准,购自加拿大Wellington Laboratories公司,纯度均大于95%。甲醇(HPLC级)购自德国Merck公司;醋酸铵(纯度97%)、氨水和醋酸(纯度99.9%)均购自美国Fluka公司。实验用水为超纯水(18.2MΩ·cm)。

    样品前处理方法主要参考朴海涛等[31]、So等[32]和Sachi等[33]并加以结合。所采集的地下水样品先用0.45μm尼龙滤膜过滤,去除水中悬浮颗粒物后用WAX固相萃取小柱进行萃取。具体萃取步骤如下:固相萃取柱先后用4mL 0.1%的氨水-甲醇溶液、甲醇、Milli-Q水进行活化,取200mL水样以2~3滴/秒的速度进行萃取。待所有样品通过固相萃取柱后,用4mL 25mmol/L醋酸盐缓冲液(pH=4)淋洗小柱,淋洗去除杂质后小柱再以3000r/min的速率离心10min,离心除水后,用4mL甲醇淋洗小柱,舍弃淋洗液,再用4mL 0.1%氨水-甲醇溶液洗脱目标物。所得洗脱液用高纯氮气吹定容至200μL,经0.22μm尼龙针孔过滤器过滤后装入聚丙烯进样瓶中,在4℃下冷藏保存,待上机测定。

    高效液相色谱-串联质谱联用系统为Agilent 1200高效液相色谱仪(美国Agilent公司)和API 4000三重四极杆串联质谱仪(加拿大AB公司);24位真空固相萃取装置(美国Supelco公司);PALL Cascada超纯水机(美国PALL公司);固相萃取小柱Oasis WAX (6mL,150mg,30μm,美国Waters公司)。

    色谱条件:使用美国Waters公司的XBridge-C18色谱柱(3.5μm×4.6mm×150mm);流动相A为2mmol/L醋酸铵溶液,流动相C为甲醇(HPLC级),流速300μL/min,柱温40℃,进样量10μL,洗脱梯度初始比例为90%A+10%C;0.8~12.8min变为20%A+80%C;12.8~17.8min是0%A+100%C;17.8~27.0min比例从0%A+100%C降至初始状态。

    质谱条件:采用电喷雾离子化源(ESI),负离子模式;电喷雾电压4000kV,离子源温度350℃;气帘气压力1.0MPa,雾化气压力5.0MPa,去溶剂气压力5.0MPa,锥孔气流速20L/h。多反应监测模式(MRM),碰撞气压1.0MPa。PFCs的其他MRM参数工作条件见表 1

    表  1  PFCs化合物的MRM参数
    Table  1.  Multiple reaction monitoring (MRM) parameters for PFCs
    PFCs化合物 中文名称 母离子
    (m/z)
    特征子离子
    (m/z)
    去簇电压
    DP(V)
    入口电压
    EP(V)
    碰撞能量
    CE(V)
    碰撞室出口电压
    CXP(V)
    PFBA 全氟正丁酸 213 169 -29 -10 -14 -10
    PFPeA 全氟正戊酸 263 219 -30 -10 -13 -15
    PFHxA 全氟正己酸 313 269 -35 -10 -13 -18
    PFHpA 全氟正庚酸 363 319 -40 -10 -14 -6
    PFOA 全氟正辛酸 413 369 -43 -10 -16 -8
    PFNA 全氟正壬酸 463 419 -40 -10 -15 -20
    PFDA 全氟正癸酸 513 469 -45 -10 -15 -6
    PFBS 全氟丁烷磺酸 299 299 -70 -10 -55 -10
    PFHxS 全氟己烷磺酸 399 399 -90 -10 -75 -6
    PFOS 全氟辛烷磺酸 499 499 -90 -10 -90 -8
    下载: 导出CSV 
    | 显示表格

    在样品采集和前处理全过程中避免接触和使用聚四氟器皿,选择经严格检测其空白值的聚丙烯材质器皿,色谱管路采用PEEK塑料管路或者不锈钢管路,所有容器在使用前用甲醇清洗。用外标法进行定量分析,标准曲线由7个不同浓度的标准溶液确定(10、20、50、100、200、500、1000ng/L),得到的线性回归系数范围均在0.9916~0.9996之间。测定过程中,每10个样品设置一个试剂空白(纯甲醇)检测仪器的稳定性,用200mL Milli-Q纯净水作为流程空白以保证检测结果的准确性。以3倍信噪比计算仪器检出限(LOD),以10倍信噪比计算仪器定量限(LOQ),所有空白均低于检出限。使用空白加标(n=6)计算目标物回收率,回收率在64%~83%之间(表 2)。

    表  2  目标物检出限(LOD)、定量限(LOQ)和回收率
    Table  2.  List of target object detection limit (LOD), quantitative limit (LOQ), and recovery rate
    目标物 中文名称 检出限LOD
    (ng/L)
    定量限LOQ
    (ng/L)
    回收率
    (%)
    PFBA 全氟正丁酸 0.08 0.28 82.78
    PFPeA 全氟正戊酸 0.08 0.27 79.46
    PFHxA 全氟正己酸 0.17 0.58 64.64
    PFHpA 全氟正庚酸 0.07 0.23 77.57
    PFOA 全氟正辛酸 0.09 0.30 79.12
    PFNA 全氟正壬酸 0.13 0.43 67.84
    PFDA 全氟正癸酸 0.20 0.68 69.70
    PFBS 全氟丁烷磺酸 0.23 0.76 76.70
    PFHxS 全氟己烷磺酸 0.14 0.47 77.94
    PFOS 全氟辛烷磺酸 0.17 0.57 80.78
    下载: 导出CSV 
    | 显示表格

    在被检测的52件地下水样品中,10种目标PFCs有不同程度的检出,全氟羧酸类化合物(perfluoroalkyl carboxylic acids, PFCAs)检出率较高,其中PFOA、PFBA和PFNA三种化合物检出率为100%,其次是PFPeA、PFHxA、PFHpA、PFDA,均能在90%以上的样品中检出,而全氟磺酸类化合物(perfluoroalkane sulfonic acids, PFSAs)检出率相对较低,PFBS和PFOS在70%以上的样品中检出,PFHxS仅在56%的样品中检出。地下水体中PFCs总浓度(∑PFCs)为1.07~24.19ng/L,平均值为8.88ng/L。其中,PFBA和PFOA是检出浓度最高和次高的PFCs,平均浓度各为2.94±2.42ng/L、2.88±3.45ng/L,分别占PFCs总量的34%、27%;再者便是PFBS与PFPeA,平均浓度各为1.15±2.05ng/L、0.94±0.79ng/L,分别占PFCs总量的13%和11%;PFDA、PFHxS和PFOS检出浓度很低,平均浓度均小于0.1ng/L,合计仅占PFCs总量的3%;其余三种化合物平均浓度由高到低依次是PFHxA、PFHpA、PFNA。显然,在北京再生水灌区地下水中PFCs以短中链的PFCAs为主,合计占总量的87%,而PFSAs中仅PFBS有较高浓度的检出。

    对比中国部分地区已报道的地下水中PFCs数据(表 3)可知,目前中国地下水中PFCs污染物基本上以短中链全氟羧酸和全氟磺酸为主,这与本研究结果相似。相比于珠三角地区[34],研究区内PFHpA、PFOA检出平均浓度较高以外,其余几种均较小,与浙江[35]和江苏[35]两地相比,PFBA和PFPeA两种物质的检出最大值浓度值均偏高,这可能与近年来短链PFCs使用增加有关,PFHxA、PFOA检出则与浙江较为相近,检出最大值分别相差0.37ng/L和0.01ng/L,但均小于2013年高杰等[2]在北京所测值,尤其是PFHxA。在几个地区中,天津郊区[38]所检出的PFCs除PFOS高于本研究外,其余化合物浓度值均处于较低水平;而山东[36]和辽宁[37]两个地区PFCs都有较高浓度的检出,特别是山东,这应该是受两地采样点周围氟化工业园区的影响。针对地下水中普遍存在多检出短链PFCs(C4~C6)的现象,可以从三个角度进行解释。一是地表污染源迁移及前驱物质在土壤通过生物降解后生成短链物质; 二是短链PFCs单体的疏水性较低而长链单体的疏水性较高,这就导致了地表污染源中长碳链PFCs单体在土壤中易稳定地吸附于土壤有机质中,使得其进入水体的总量较少[8, 24, 26]; 除此之外,多个国家已使用短链PFCs替代长链PFCs进行生产和使用,导致环境中更多的短链PFCs被检出[27]

    表  3  中国不同地区地下水PFCs污染水平
    Table  3.  PFCs pollution levels in groundwater in different regions of China
    PFCs化合物 珠三角
    (ng/L)
    浙江
    (ng/L)
    江苏
    (ng/L)
    山东
    (ng/L)
    北京
    (ng/L)
    辽宁
    (ng/L)
    天津
    (ng/L)
    本文研究
    (ng/L)
    PFBA - 0.16~6.78 ND~2.58 ND~24178 ND~42.9
    (7.7)
    - - 0.22~9.78
    (2.94)
    PFPeA - ND~3.53 ND~1.45 ND~7257 ND~18.7
    (3.7)
    - - ND~4.81
    (0.94)
    PFHxA ND~1.07
    (2.04)
    0.29~3.88 ND~0.94 ND~4950 ND~32.8
    (6.8)
    - (0.17) ND~3.51
    (0.60)
    PFHpA ND~1.49
    (0.28)
    ND~3.92 ND~0.75 ND~
    1950
    ND~11.0
    (11.0)
    -
    (0.13)
    ND~1.53
    (0.33)
    PFOA 0.07~7.76
    (1.78)
    0.51~14.68 0.46~6.29 0.52~111516 ND~6.1
    (7.9)
    4.85~524
    (0.81)
    0.08~14.67
    (2.88)
    PFNA 0.02~1.75
    (0.34)
    ND~1.84 ND~0.42 ND~37.2 ND~20.3
    (< MQLs)
    ND~0.47
    (0.06)
    ND~0.99
    (< LOQs)
    PFDA ND~1.26
    (0.22)
    ND~3.92 ND ND~23 ND ND
    (0.06)
    ND~0.70
    (< LOQs)
    PFBS - ND ND~1.32 ND~42.5 ND~23.2
    (6.7)
    1.19~872 - ND~9.21
    (1.15)
    PFHxS ND~2.46
    (0.25)
    - - ND~4.62 ND~3.4
    (0.5)
    ND~0.68 - ND~0.48
    (< LOQs)
    PFOS ND~41.4
    (3.53)
    ND~0.37 ND ND~37.8 ND~7.4
    (2.5)
    ND~0.73 (1.1) ND~0.22
    (< LOQs)
    参考文献 [34] [35] [35] [36] [2] [37] [38] -
    注:“ND”表示低于仪器检出限;“ < MQLs”表示低于方法定量限;括号内数据为平均值;“-”表示未检测。
    下载: 导出CSV 
    | 显示表格

    分别取浅井和深井地下水中的PFCs平均浓度值进行分析,结果如图 2所示。浅井与深井中PFCs的组分组成具有很好的一致性,主要组成均为PFBA、PFOA、PFPeA、PFBS四种化合物;浅井中四者合计占比为85%,深井中为86%。此外,可明显看出随着井深的增加,PFCs平均浓度总值呈现下降趋势,浅井PFCs平均浓度总值最高,为10.51ng/L,而深井PFCs平均浓度总值则降至8.23ng/L,这也说明了浅层地下水更易受到地上污染源的影响,而深层地下水由于非饱和层固体吸附以及稀释作用导致其浓度较低[39-40],在前期研究中也有相同结果的报道[40-41]

    图  2  不同井深地下水中不同类型PFCs浓度水平及组成
    Figure  2.  Concentration level and composition of PFCs in different well-deep groundwater

    PFCAs在浅井中平均浓度总值为8.77ng/L,深井中为7.32ng/L。在PFCAs七种化合物中,PFPeA与PFHpA浅井到深井变化较大,PFPeA的平均浓度由1.18ng/L变为0.77ng/L,PFHpA的平均浓度由0.40ng/L变为0.27ng/L,分别降低了35%与31%;其次是PFHxA也有较为明显的变化,深井比浅井相对减少了25%;其余四种化合物变化范围在6%~17%。PFSAs中PFBS有较为显著的变化,平均浓度由浅井中的1.59ng/L降低到深井中的0.8ng/L。

    垃圾填埋场周围采样点在组分组成上与区域内其他采样点一致,依旧是以PFBA、PFPeA、PFHxA、PFHpA、PFOA和PFBS六种化合物为主,其中PFBA、PFOA和PFBS三者占比达76%,∑PFCs水平在1.77~24.20ng/L之间,平均值为12.19ng/L,在全区属于较高水平,其中又以PFBA浓度为主导地位,占总量的32%。这一结果与Jan等[42]在德国调查的22个垃圾填埋场的结果相似。

    垃圾填埋场渗滤液是地下水中PFCAs和PFSAs的重要来源[43],为了探究地下水与垃圾填埋场的距离远近是否对PFCs含量造成影响。以垃圾填埋场为中心,每5km为一个范围,分析25km以内各采样点到垃圾填埋场距离与其浓度间的关系,结果如图 3所示。随着距离的增加,PFCs含量有明显减少的趋势,距离垃圾填埋场越近的区域,地下水中PFCs浓度越高,反之则越少。在距离垃圾填埋场5km(n=14)范围内,PFCs平均浓度最高,为10.54ng/L;在距离5~10km(n=12)和10~15km(n=12)范围内,PFCs平均浓度相差不大,分别为8.07ng/L、7.99ng/L;但在距离15~20km(n=11)范围内PFCs平均浓度有异常升高,有研究显示PFCs浓度与人口密度之间有很强的正相关性[31],所以两个处于北京市朝阳区的高值点可能与该区人口密度相对较大有关,但具体原因需要进一步调查确认;在距离20~25km(n=2)范围内PFCs平均浓度最低,仅为4.87ng/L。

    图  3  PFCs浓度与垃圾填埋场距离关系
    Figure  3.  Relationship between PFCs concentration and landfill distance

    随着与垃圾填埋场距离的变化,各组分浓度也产生一定的差异,但20~25km范围内样本量较少,故此处讨论前四个范围(0~5km、5~10km、10~15km、15~20km)的变化情况。PFBA在15km以内变化不大,平均浓度在3.03~3.20ng/L之间,之后则开始递减,结合纵向浓度变化情况(图 2),说明地下水中的PFBA不仅可以在水平方向上能更好地向远距离输送,垂直方向上也可向更深层渗透。而PFPeA与PFBS一直呈递减趋势,值得一提的是PFHxA、PFHpA与PFOA在后10~20km内有反常增加的现象,尤其是PFOA有较大的变化幅度,在距离10~15km范围内平均浓度为2.32ng/L,到15~20km范围内便增加至4.69ng/L。

    距离垃圾填埋场50m以内,岩性为砂黏、黏砂与粉砂、细砂互层,且含水层有较好的防污性能,属于正规垃圾填埋场,又综上所述可知虽然垃圾填埋对周围地下水中PFCs污染水平产生了一定影响,但总体检出浓度较低,这也得益于该填埋场选址的正确性以及日常运作管理的规范化。

    使用反距离插值法得到全区浅层井和深层井中∑PFCs、∑PFCAs和∑PFSAs的空间分布(图 4)。浅井中∑PFCs和∑PFCAs(图 4中的a、c)的分布情况相近,高值区分布在灌区中部以及东南部,低值主要在西部地区;∑PFSAs(图 4e)高值仅分布在西部小范围内,其余地区浓度值偏低。同样的,深井中∑PFCs和∑PFCAs(图 4中的b、d)也有相近的分布情况,在灌区西北部、中部和东北部出现了浓度高值区,但范围较小,低值区仍然以西部为主,∑PFSAs(图 4f)大部分地区依旧是较低浓度值,仅有一明显高值位于西部。从图 4中的a和b可看出,深浅井中的∑PFCs高值分布均以中部为主,这可能与位于中部的垃圾填埋场和此处较多灌溉渠有关,但在东南处并无明显灌溉渠与河道浅井中却也出现∑PFCs浓度高值,表明PFCs可能还有其他的来源,具体情况需要进一步确认。图 4的c和d中∑PFCAs浅井的浓度高值为9.39~19.07ng/L,深井的浓度高值为9.00~18.51ng/L,二者的浓度区间相差不大,说明PFCAs在垂向上有较好的迁移能力。另外,从总体空间分布上可看出,深浅井中的∑PFCs和∑PFCAs都有较为相似的分布情况,说明深浅井中的∑PFCs高值均由∑PFCAs所贡献。

    图  4  不同井深地下水中PFCs浓度空间分布
    Figure  4.  Spatial distribution of PFCs concentrations in groundwater from different wells

    由于所采集的地下水并非为饮用水源,因此风险评价仅考虑生态风险而非健康风险。关于PFCs风险评价目前应用较多的是商值法,又称比率法,属于生态风险表征方法中的确定性风险评价,是目前普遍应用的污染物环境生态风险评价方法[1]。通过式(1)计算得到风险商值(risk quotient, RQ),可对某个污染水平较低单体的生态风险进行较为粗略的估计。

    $$ R Q=\frac{M E C \text { 或 } P E C}{P N E C} $$ (1)

    式中:MEC是实测环境浓度(the measured environmental concentration);PEC为预测环境浓度(the predicted environmental concentration);PNEC为预测无影响浓度(predicted no effect concentration)。当RQ>1,说明存在风险;当RQ值在0.1~1之间,说明存在潜在风险;若RQ < 0.1,则说明此化合物对生态环境无风险。

    对于本研究区PFCs生态风险评价,参考武倩倩[5]、杜国勇等[44]和乔肖翠等[45]研究,采用其中较为严苛的参数对环境中两种典型的污染物PFOA和PFOS以及检出浓度最高的PFBA进行评价,其PNEC值分别为100000ng/L、1000ng/L和7000ng/L。将各采样点数值代入公式(1),得到整个灌区三者RQ值分别为0~0.0001、0~0.0002、0~0.0014,远远低于具有潜在风险的临界值0.1,即使浓度最高的垃圾填埋场及周围地下水中三种污染物的RQ最高值也仅为0.0012。因此,可以认为灌区地下水中PFCs浓度对生态环境风险微乎其微。

    北京市再生水灌区地下水中主要PFCs物质是PFBA(0.22~9.78ng/L)、PFOA(0.88~14.67ng/L),检出率为100%,二者合计占总量的61%,而PFNA、PFDA、PFHxS和PFOS四种物质只有极少量的检出,且检出浓度较低,最大浓度值小于1ng/L。灌区内地下水中PFCs的平均浓度总值随着井深的增加而有所减少。灌区中部有一垃圾填埋场,在简要分析地下水中∑PFCs浓度与垃圾填埋场距离关系后发现二者呈显著反比关系,即距离垃圾填埋场越远,地下水中∑PFCs浓度越低。值得一提的是,PFHxA、PFHpA与PFOA在距离填埋场10~15km与15~20km范围内有反常增加的现象。

    虽然灌区内垃圾填埋场对周围地下水中PFCs污染水平产生了一定影响,但由于该填埋场选址的正确性以及日常运作管理的规范化,PFCs的检出浓度总体较低,且整个灌区PFOA、PFOS和PFBA三种的污染物的风险商RQ均远小于0.1,暂无潜在的生态风险。目前市场上对全氟及多氟化合物仍有巨大需求,更多新型替代物被使用,如全氟烷基膦酸和次膦酸,鉴于该类物质的高毒性、强持久性及强迁移能力,本文提出应持续关注此类物质的浓度变化和风险情况。

  • 图  1   矿山环境中硫酸盐的主要来源

    Figure  1.   Main sources of sulfate in the mine environment

  • [1] 李玉喜, 修艳敏. 关于矿产资源勘查开采过程中关键节点的探讨[J]. 中国矿业, 2021, 30(S2): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S2010.htm

    Li Y X, Xiu Y M. Discussion on the key nodes in the process of mineral resources exploration and mining[J]. China Mining Magazine, 2021, 30(S2): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S2010.htm

    [2]

    Kitula A G N. The environmental and socio-economic impacts of mining on local livelihoods in Tanzania: A case study of Geita District[J]. Journal of Cleaner Production, 2006, 14(3-4): 405-414. doi: 10.1016/j.jclepro.2004.01.012

    [3]

    Dudka S, Adriano D C. Environmental impacts of metal ore mining and processing: A review[J]. Journal of Environmental Quality, 1997, 26(3): 590-602.

    [4] 刘宏磊. 矿山环境修复治理和开发利用模式的理论与实践研究[D]. 北京: 中国矿业大学, 2020.

    Liu H L. Theoretical and practical research on the model of mine environment remediation and development and utilization[D]. Beijing: China University of Mining and Technology, 2020.

    [5]

    Cao J, Xie C Y, Hou Z R. Ecological evaluation of heavy metal pollution in the soil of Pb-Zn mines[J]. Ecotoxicology, 2022, 31: 259-270. doi: 10.1007/s10646-021-02505-3

    [6] 李小倩, 张彬, 周爱国, 等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质, 2014, 41(6): 103-109. doi: 10.16030/j.cnki.issn.1000-3665.2014.06.019

    Li X Q, Zhang B, Zhou A G, et al. Sulfur-oxygen isotope tracing of groundwater pollution in Heshan by acid mine wastewater[J]. Hydrogeology and Engineering Geology, 2014, 41(6): 103-109. doi: 10.16030/j.cnki.issn.1000-3665.2014.06.019

    [7]

    Marco D, Barbara S, Riccardo P, et al. Oxygen and hydrogen isotopic composition of waters in a past-mining area of southern Apuan Alps (Italy): Hydrogeological characterization and implications on the fate of potentially toxic elements[J]. Journal of Geochemical Exploration, 2019, 205(C): 106338.

    [8] 温冰. 湖南锡矿山水环境中锑来源及迁移转化的多元同位素解析[D]. 武汉: 中国地质大学(武汉), 2017.

    Wen B. Multiple isotope analysis of antimony sources and transport transformations in the water environment of Hunan tin mines[D]. Wuhan: China University of Geosciences (Wuhan), 2017.

    [9]

    Chen S, Zhang C P, Qiu L J, et al. Biogeochemical transformation of sulfur and its effects on arsenic mobility in paddy fields polluted by acid mine drainage[J]. Chemosphere, 2022, 293: 133605. doi: 10.1016/j.chemosphere.2022.133605

    [10]

    Zhang X B, Li X, Gao X B. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China[J]. Environmental Science and Pollution Research, 2016, 23: 6286-6299. doi: 10.1007/s11356-015-5838-z

    [11]

    Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562-581. doi: 10.1039/jr9470000562

    [12] 黄方, 田笙谕. 若干金属稳定同位素体系的研究进展: 以中国科大实验室为例[J]. 矿物岩石地球化学通报, 2018, 37(5): 793-811. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201805003.htm

    Huang F, Tian S Y. Progress in the study of some metal stable isotope systems: An example from the laboratory of China University of Science and Technology[J]. Mineral and Rock Geochemistry Bulletin, 2018, 37(5): 793-811. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201805003.htm

    [13]

    Johnson C M, Beard B L, Albarede F. Overview and general concepts[J]. Geochemistry of Non-Traditional Stable Isotopes, 2004, 55: 1-24.

    [14] 陈陆望, 桂和荣, 许光泉, 等. 皖北矿区煤层底板岩溶水氢氧稳定同位素特征[J]. 合肥工业大学学报(自然科学版), 2003(3): 374-378. doi: 10.3969/j.issn.1003-5060.2003.03.013

    Chen L W, Gui H R, Xu G Q, et al. Hydrogen-oxygen stable isotope characteristics of karst water at the bottom of coal seam in North Anhui mining area[J]. Journal of Hefei University of Technology (Natural Science Edition), 2003(3): 374-378. doi: 10.3969/j.issn.1003-5060.2003.03.013

    [15] 朱红艳, 任佳, 杨强, 等. 基于氢氧稳定同位素组成解析庐江矾矿酸性废水来源[J]. 长江流域资源与环境, 2021, 30(12): 2938-2948. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202112013.htm

    Zhu H Y, Ren J, Yang Q, et al. Hydrogen and oxygen stable isotope composition analysis of acidic wastewater from Lujiangalunite mine[J]. Yangtze River Basin Resources and Environment, 2021, 30(12): 2938-2948. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202112013.htm

    [16] 闫朋阳. 西南地区某岩溶水矿山地下水同位素分析[J]. 陕西水利, 2018(1): 110-112, 115. doi: 10.16747/j.cnki.cn61-1109/tv.2018.01.040

    Yan P Y. Groundwater isotope analysis of a karst water mine in southwest China[J]. Shaanxi Water Resources, 2018(1): 110-112, 115. doi: 10.16747/j.cnki.cn61-1109/tv.2018.01.040

    [17]

    de Carvalho Filho C A, Moreira R M, Branco O E A, et al. Combined hydrochemical, isotopic, and multivariate statistics techniques to assess the effects of discharges from a uranium mine on water quality in neighboring streams[J]. Environmental Earth Sciences, 2017, 76: 830. doi: 10.1007/s12665-017-7165-9

    [18]

    Qin W J, Han D M, Song X F, et al. Environmental isotopes (δ18O, δ2H, 222Rn) and hydrochemical evidence for understanding rainfall-surface water-groundwater transformations in a polluted karst area[J]. Journal of Hydrology, 2021, 592: 125748. doi: 10.1016/j.jhydrol.2020.125748

    [19]

    Wang J, Zhou Y, Dong X, et al. Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy[J]. Chemosphere, 2020, 242: 125172. doi: 10.1016/j.chemosphere.2019.125172

    [20]

    Lermi A, Sunkari E D. Geochemistry, risk assessment, and Pb isotopic evidence for sources of heavy metals in stream sediments around the Ulukisla Basin, Nigde, southern Turkey[J]. Turkish Journal of Earth Sciences, 2020, 29(7): 1167-1188. doi: 10.3906/yer-2001-9

    [21] 汪福顺, 刘丛强, 梁小兵, 等. 矿山活动影响下湖泊沉积物-水界面硫酸盐还原作用的微生物及其同位素研究[C]//中国矿物岩石地球化学学会第十届学术年会论文集, 2005: 347.

    Wang F S, Liu C Q, Liang X B, et al. Microbial and isotopic studies of sulfate reduction at the lake sediment-water interface under the influence of mining activities[C]//Proceedings of the 10th Annual Meeting of the Chinese Society of Mineral and Rock Geochemistry, 2005: 347.

    [22]

    Ruhela M, Sharma K, Bhutiani R, et al. GIS-based impact assessment and spatial distribution of air and water pollutants in mining area[J]. Environmental Science and Pollution Research, 2022, 29: 31486-31500. doi: 10.1007/s11356-021-18009-w

    [23]

    Li J, Li Z, Brandis K J, et al. Tracing geochemical pollutants in stream water and soil from mining activity in an alpine catchment[J]. Chemosphere, 2020, 242: 125167. doi: 10.1016/j.chemosphere.2019.125167

    [24]

    Ta D, Cao S, Steyl G, et al. Prediction of groundwater inflow into an iron mine: A case study of the Thach Khe iron mine, Vietnam[J]. Mine Water and the Environment, 2019, 38(2): 310-324. doi: 10.1007/s10230-019-00595-4

    [25] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 2013, 35(4): 104-112. doi: 10.3969/j.issn.1672-6561.2013.04.012

    Wang J Z, Wu J L, Zeng H A, et al. Isotopic and hydrochemical characteristics of water bodies in the Inner Mongolia Loop Plain[J]. Journal of Earth Science and Environment, 2013, 35(4): 104-112. doi: 10.3969/j.issn.1672-6561.2013.04.012

    [26] 高娟琴, 于扬, 王登红, 等. 新疆阿勒泰地区地表水体氢氧同位素组成及空间分布特征[J]. 岩矿测试, 2021, 40(3): 397-407. doi: 10.15898/j.cnki.11-2131/td.202101140007

    Gao J Q, Yu Y, Wang D H, et al. Hydrogen and oxygen isotope composition and spatial distribution of surface waters in the Altay region of Xinjiang[J]. Rock and Mineral Analysis, 2021, 40(3): 397-407. doi: 10.15898/j.cnki.11-2131/td.202101140007

    [27] 查君珍, 姜春露, 陈星, 等. 淮南采煤沉陷区积水水文地球化学及氢氧稳定同位素特征[J]. 湖泊科学, 2021, 33(6): 1742-1752. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202106011.htm

    Zha J Z, Jiang C L, Chen X, et al. Hydrogeochemistry and hydrogen-oxygen stable isotope characteristics of ponded water in Huainan coal mining subsidence area[J]. Journal of Lake Science, 2021, 33(6): 1742-1752. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202106011.htm

    [28]

    Zhang J, Chen L W, Hou X W, et al. Multi-isotopes and hydrochemistry combined to reveal the major factors affecting Carboniferous groundwater evolution in the Huaibei coalfield, North China[J]. Science of the Total Environment, 2021, 791: 148420. doi: 10.1016/j.scitotenv.2021.148420

    [29]

    LeDoux S T M, Szynkiewicz A, Faiia A M, et al. Chemical and isotope compositions of shallow groundwater in areas impacted by hydraulic fracturing and surface mining in the central Appalachian Basin, eastern United States[J]. Applied Geochemistry, 2016, 71: 73-85. doi: 10.1016/j.apgeochem.2016.05.007

    [30]

    Gammons C H, Duaime T E, Parker S R, et al. Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA[J]. Chemical Geology, 2010, 269(1-2): 100-112. doi: 10.1016/j.chemgeo.2009.05.026

    [31]

    Gammons C H, Brown A, Poulson S R, et al. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage[J]. Applied Geochemistry, 2013, 31(2): 228-238.

    [32] 张磊, 秦小光, 刘嘉麒, 等. 淮南采煤沉陷区积水来源的氢氧稳定同位素证据[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1502-1514. doi: 10.13278/j.cnki.jjuese.201505205

    Zhang L, Qin X G, Liu J Q, et al. Hydrogen-oxygen stable isotope evidence for the source of ponded water in Huainan coal mining subsidence area[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(5): 1502-1514. doi: 10.13278/j.cnki.jjuese.201505205

    [33]

    Salifu M, Hällström L, Aiglsperger T, et al. A simple model for evaluating isotopic (18O, 2H and 87Sr/86Sr) mixing calculations of mine—Impacted surface waters[J]. Journal of Contaminant Hydrology, 2020, 232: 103640. doi: 10.1016/j.jconhyd.2020.103640

    [34]

    Huang H, Chen Z H, Wang T, et al. Origins and mixing contributions of deep warm groundwater in a carbonate-hosted ore deposit, Sichuan—Yunnan—Guizhou Pb-Zn triangle, southwestern China[J]. Journal of Hydrology, 2020, 590: 125400. doi: 10.1016/j.jhydrol.2020.125400

    [35]

    Migaszewski Z M, Galuszka A, Michalik A, et al. The use of stable sulfur, oxygen and hydrogen isotope ratios as geochemical tracers of sulfates in the Podwisniówka acid drainage area (south-central Poland)[J]. Aquatic Geochemistry, 2013, 19(4): 261-280. doi: 10.1007/s10498-013-9194-7

    [36]

    Gu H Y, Ma F S, Guo J, et al. Assessment of water sources and mixing of groundwater in a coastal mine: The Sanshandao gold mine, China[J]. Mine Water and the Environment, 2018, 37: 351-365. doi: 10.1007/s10230-017-0458-0

    [37] 葛涛, 储婷婷, 刘桂建, 等. 淮南煤田潘谢矿区深层地下水氢氧同位素特征分析[J]. 中国科学技术大学学报, 2014, 44(2): 112-118, 170. doi: 10.3969/j.issn.0253-2778.2014.02.006

    Ge T, Chu T T, Liu G J, et al. Hydrogen-oxygen isotope characterization of deep groundwater in Panxie mine, Huainan coalfield[J]. Journal of the University of Science and Technology of China, 2014, 44(2): 112-118, 170. doi: 10.3969/j.issn.0253-2778.2014.02.006

    [38] 黄荷, 陈植华, 王涛, 等. 岩溶矿区水文地球化学特征及其水源指示意义[J]. 水文地质工程地质, 2019, 46(1): 19-26. doi: 10.16030/j.cnki.issn.1000-3665.2019.01.03

    Huang H, Chen Z H, Wang T, et al. Hydrogeochemical characteristics of karst mining areas and their water source indication significance[J]. Hydrogeology and Engineering Geology, 2019, 46(1): 19-26. doi: 10.16030/j.cnki.issn.1000-3665.2019.01.03

    [39] 周小平, 彭吟雪, 马雷, 等. 氢氧同位素对淮南潘集矿区地下水的指示作用[J]. 合肥工业大学学报(自然科学版), 2019, 42(4): 536-540. doi: 10.3969/j.issn.1003-5060.2019.04.018

    Zhou X P, Peng Y X, Ma L, et al. Indication of hydrogen and oxygen isotopes on groundwater in Panji mining area, Huainan[J]. Journal of Hefei University of Technology (Natural Science Edition), 2019, 42(4): 536-540. doi: 10.3969/j.issn.1003-5060.2019.04.018

    [40]

    Doveri M, Natali S, Franceschi L, et al. Carbonate aquifers threatened by legacy mining: Hydrodynamics, hydrochemistry, and water isotopes integrated approach for spring water management[J]. Journal of Hydrology, 2021, 593: 125850. doi: 10.1016/j.jhydrol.2020.125850

    [41]

    Roesler A J, Gammons C H, Druschel G K, et al. Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction[J]. Aquatic Geochemistry, 2007, 13: 211-235. doi: 10.1007/s10498-007-9017-9

    [42]

    Wang Z J, Yin J J, Pu J B, et al. Integrated understanding of the critical zone processes in a subtropical karst watershed (Qingmuguan, southwestern China): Hydrochemical and isotopic constraints[J]. Science of the Total Environment, 2020, 749: 141257. doi: 10.1016/j.scitotenv.2020.141257

    [43] 高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

    Gao J F, Xu Y M, Fan C F, et al. Sulfur isotope composition of calcium sulfate samples by elemental analyzer-gas isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

    [44]

    Sun J, Kobayashi T, Strosnider W H J, et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters[J]. Journal of Hydrology, 2017, 551: 245-252. doi: 10.1016/j.jhydrol.2017.06.006

    [45]

    Banks D, Boyce A J, Burnside N M, et al. On the common occurrence of sulphate with elevated δ34S in European mine waters: Sulphides, evaporites or seawater?[J]. International Journal of Coal Geology, 2020, 232: 103619. doi: 10.1016/j.coal.2020.103619

    [46]

    Seibert S, Descourvieres C, Skrzypek G, et al. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer[J]. Journal of Hydrology, 2017, 548: 368-381. doi: 10.1016/j.jhydrol.2017.02.030

    [47]

    Haubrich F, Tichomirowa M. Sulfur and oxygen isotope geo-chemistry of acid mine drainage—The polymetallic sulfide deposit "Himmelfahrt Fundgrube" in Freiberg (Germany)[J]. Isotopes in Environmental and Health Studies, 2002, 38(2): 121-138.

    [48]

    Junghans M, Tichomirowa M. Using sulfur and oxygen isotope data for sulfide oxidation assessment in the Freiberg polymetallic sulfide mine[J]. Applied Geochemistry, 2009, 24(11): 2034-2050. doi: 10.1016/j.apgeochem.2009.08.001

    [49]

    Tichomirowa M, Heidel C, Junghans M, et al. Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997—2008) in the region of Freiberg, central-eastern Germany[J]. Chemical Geology, 2010, 276(1-2): 104-118. doi: 10.1016/j.chemgeo.2010.06.004

    [50]

    Migaszewski Z M, Galuszka A, Halas S, et al. Chemical and isotopic variations in the Wisniówka Mala mine pit water, Holy Cross Mountains (south-central Poland)[J]. Environmental Geology, 2009, 57(1): 29-40. doi: 10.1007/s00254-008-1279-z

    [51] 任坤, 潘晓东, 兰干江, 等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 2021, 42(9): 4267-4274. doi: 10.13227/j.hjkx.202101225

    Ren K, Pan X D, Lan G J, et al. Sulfur and oxygen isotope analysis of the seasonal variation and source of sulfate in a typical karst underground river basin[J]. Environmental Science, 2021, 42(9): 4267-4274. doi: 10.13227/j.hjkx.202101225

    [52]

    Zhang G P, Liu C Q, Yang Y G, et al. Characterization of heavy metals and sulphur isotope in water and sediments of a mine-tailing area rich in carbonate[J]. Water Air and Soil Pollution, 2004, 155(1-4): 51-62. doi: 10.1023/B:WATE.0000026517.71668.0b

    [53]

    Miao Z, Carroll K C, Brusseau M L. Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: The Monument Valley site in Arizona, USA[J]. Journal of Hydrology, 2013, 504(22): 207-215.

    [54]

    Killingsworth B A, Bao H. Significant human impact on the flux and delta S-34 of sulfate from the largest river in North America[J]. Environmental Science & Technology, 2015, 49(8): 4851-4860.

    [55]

    Li Q, Wu P, Zha X, et al. Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of midwestern Guizhou, China: Evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate[J]. Environmental Science and Pollution Research, 2018, 25: 18038-18048. doi: 10.1007/s11356-018-1969-3

    [56]

    Knoller K, Fauville A, Mayer B, et al. Sulfur cycling in an acid mining lake and its vicinity in Lusatia, Germany[J]. Chemical Geology, 2004, 204(3-4): 303-323. doi: 10.1016/j.chemgeo.2003.11.009

    [57]

    Zheng L G, Chen X, Dong X L, et al. Using δ34S-SO4 and δ18O-SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibei, China[J]. Ecotoxicology and Environmental Safety, 2019, 181: 231-240. doi: 10.1016/j.ecoenv.2019.06.001

    [58]

    Ren K, Zeng J, Liang J P, et al. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeo-chemistry, stable sulfur and oxygen isotopes[J]. Science of the Total Environment, 2021, 761: 143223. doi: 10.1016/j.scitotenv.2020.143223

    [59]

    Denimal S, Tribovillard N, Barbecot F, et al. Leaching of coal-mine tips (Nord-Pas-de-Calais coal basin, France) and sulphate transfer to the chalk aquifer: Example of acid mine drainage in a buffered environment[J]. Environmental Geology, 2002, 42(8): 966-981. doi: 10.1007/s00254-002-0602-3

    [60]

    Sun J, Kobayashi T, Strosnider W H J, et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters[J]. Journal of Hydrology, 2017, 551: 245-252. doi: 10.1016/j.jhydrol.2017.06.006

    [61]

    Chen X, Zheng L G, Dong X L, et al. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: Evidence from stable isotope characteristics[J]. Environmental Geochemistry and Health, 2020, 42(9): 2865-2879. doi: 10.1007/s10653-020-00525-2

    [62] 陈星. 淮北临涣矿区地表水硫酸盐分布特征及来源解析[D]. 合肥: 安徽大学, 2019.

    Chen X. Characterization of sulfate distribution and source analysis in surface water of Linhuan mine area in Huabei[D]. Hefei: Anhui University, 2019.

    [63]

    Migaszewski Z M, Gałuszka A, Dołęgowska S. Stable isotope geochemistry of acid mine drainage from the Wisniówka area (south-central Poland)[J]. Applied Geochemistry, 2018, 95: 45-56. doi: 10.1016/j.apgeochem.2018.05.015

    [64]

    Li X Q, Pan G F, Zhou A G, et al. Stable sulfur and oxygen isotopes of sulfate as tracers of antimony and arsenic pollution sources related to antimony mine activities in an impacted river[J]. Applied Geochemistry, 2022, 142: 105351. doi: 10.1016/j.apgeochem.2022.105351

    [65]

    Migaszewski Z M, Gałuszka A, Dołęgowska S, et al. Asse-ssing the impact of Serwis mine tailings site on farmers' wells using element and isotope signatures (Holy Cross Mountains, south-central Poland)[J]. Environmental Earth Sciences, 2015, 74: 629-647. doi: 10.1007/s12665-015-4067-6

    [66]

    Makhathini T P, Mulopo J, Bakare B F. Performance assessment of sulfidogenic fluidized-bed reactor for cotreating of acid mine and pharmaceutical-containing wastewater[J]. International Journal of Environmental Science and Technology, 2022.

    [67]

    Sheridan C, Akcil A, Kappelmeyer U, et al. Chapter 6—Current methods for the remediation of acid mine drainage including continuous removal of metals from wastewater and mine dump[M]//Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier, 2018: 103-114.

    [68]

    Chen G, Ye Y C, Yao N, et al. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage[J]. Journal of Cleaner Production, 2021, 329: 129666. doi: 10.1016/j.jclepro.2021.129666

    [69]

    Tum S, Toda K, Matsui T. Seasonal effects of natural atten-uation on drainage contamination from artisanal gold mining, Cambodia: Implication for passive treatment[J]. Science of the Total Environment, 2022, 806(1): 150398.

    [70]

    Sun J, Takahashi Y, Strosnider W H J, et al. Tracing and quantifying contributions of end members to karst water at a coalfield in southwest China[J]. Chemosphere, 2019, 234: 777-788. doi: 10.1016/j.chemosphere.2019.06.066

    [71]

    Tomiyama S, Igarashi T, Tabelin C B, et al. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study[J]. Journal of Contaminant Hydrology, 2019, 225: 103502. doi: 10.1016/j.jconhyd.2019.103502

    [72] 吴攀, 刘丛强, 张国平, 等. 矿山环境地表水系的硫同位素研究——以贵州赫章后河为例[J]. 矿物岩石地球化学通报, 2007, 26(3): 224-227. doi: 10.3969/j.issn.1007-2802.2007.03.005

    Wu P, Liu C Q, Zhang G P, et al. Sulfur isotope study of surface water system in mining environment: The case of Houhe River, Hezhang, Guizhou[J]. Mineral and Rock Geochemistry Bulletin, 2007, 26(3): 224-227. doi: 10.3969/j.issn.1007-2802.2007.03.005

    [73] 曾祥颖, 韩志伟, 吴攀, 等. 锑矿开采条件下矿井水酸化过程分析[J]. 地球与环境, 2020, 48(1): 30-37. doi: 10.14050/j.cnki.1672-9250.2020.48.007

    Zeng X Y, Han Z W, Wu P, et al. Analysis of mine water acidification process under antimony mining conditions[J]. Earth and Environment, 2020, 48(1): 30-37. doi: 10.14050/j.cnki.1672-9250.2020.48.007

    [74]

    Song K, Wang F, Peng Y, et al. Construction of a hydro-geochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area[J]. Environmental Pollution, 2022, 305: 119327. doi: 10.1016/j.envpol.2022.119327

    [75]

    Butler T W. Isotope geochemistry of drainage from an acid mine impaired watershed, Oakland, California[J]. Applied Geochemistry, 2007, 22(7): 1416-1426. doi: 10.1016/j.apgeochem.2007.01.009

    [76]

    Vengosh A, Lindberg T T, Merola B R, et al. Isotopic imprints of mountaintop mining contaminants[J]. Environmental Science & Technology, 2013, 47(17): 10041-10048.

    [77]

    Li X Q, Zhou A G, Gan Y Q, et al. Controls on the δ34S and δ18O of dissolved sulfate in the Quaternary aquifers of the North China Plain[J]. Journal of Contaminant Hydrology, 2011, 400(3-4): 312-322.

    [78]

    Church C D, Wilkin R T, Alpers C N, et al. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water[J]. Geochemical Transactions, 2007, 8: 10. doi: 10.1186/1467-4866-8-10

    [79]

    Gammons C H, Snyder D M, Poulson S R, et al. Geochemistry and stable isotopes of the flooded underground mine workings of Butte, Montana[J]. Economic Geology, 2009, 104(8): 1213-1234. doi: 10.2113/gsecongeo.104.8.1213

    [80]

    Sun J, Tang C, Wu P, et al. Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China[J]. Journal of Contaminant Hydrology, 2013, 504: 115-124.

    [81]

    Shipp W G, Zierenberg R A. Pathways of acid mine drainage to Clear Lake: Implications for mercury cycling[J]. Ecological Applications, 2008, 18(8): A29-A54.

    [82]

    Yucel D S, Balci N, Baba A. Generation of acid mine lakes associated with abandoned coal mines in northwest Turkey[J]. Archives of Environmental Contamination and Toxicology, 2016, 70(4): 757-782. doi: 10.1007/s00244-016-0270-z

    [83]

    Holden A A, Haque S E, Mayer K U, et al. Biogeo-chemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151(6): 55-67.

    [84]

    Qin H, Hu T, Zhai Y, et al. The improved methods of heavy metals removal by biosorbents: A review[J]. Environmental Pollution, 2020, 258: 113777. doi: 10.1016/j.envpol.2019.113777

    [85]

    Manisalidis I, Stavropoulou E, Stavropoulos A, et al. Environmental and health impacts of air pollution: A review[J]. Frontiers in Public Health, 2020, 8: 14. doi: 10.3389/fpubh.2020.00014

    [86]

    Jawed A, Saxena V, Pandey L M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review[J]. Journal of Water Process Engineering, 2020, 33: 101009. doi: 10.1016/j.jwpe.2019.101009

    [87]

    Elizabeth R C, Balaji A V, Kavitha K K. Bioremediation of heavy metals and toxic chemicals from Muttukadu Lake, Chennai by biosurfactant and biomass treatment strategies[J]. Bioremediation and Green Technologies, 2021: 67-85.

    [88] 何玉君, 孙梦荷, 沈亚婷, 等. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5): 639-657. doi: 10.15898/j.cnki.11-2131/td.202004140048

    He Y J, Sun M H, Shen Y T, et al. Research progress on the interaction mechanism and application of super-enriched plants with heavy metals[J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. doi: 10.15898/j.cnki.11-2131/td.202004140048

    [89]

    Liu J, Wei X, Zhou Y, et al. Thallium contamination, health risk assessment and source apportionment in common vegetables[J]. Science of the Total Environment, 2020, 703: 135547. doi: 10.1016/j.scitotenv.2019.135547

    [90]

    Dunlap C E, Alpers C N, Bouse R, et al. The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: Evidence from lead isotopes in the Sacramento River, California[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 5935-5948. doi: 10.1016/j.gca.2008.10.006

    [91]

    Bird G, Brewer P A, Macklin M G, et al. Quantifying sedi-ment-associated metal dispersal using Pb isotopes: Application of binary and multivariate mixing models at the catchment-scale[J]. Environmental Pollution, 2010, 158: 2158-2169. doi: 10.1016/j.envpol.2010.02.020

    [92]

    Lin C Q, Yu R L, Hu G R, et al. Contamination and isotopic composition of Pb and Sr in offshore surface sediments from Jiulong River, southeast China[J]. Environmental Pollution, 2016, 218: 644-650. doi: 10.1016/j.envpol.2016.07.051

    [93]

    Monna F, Camizuli E, Revelli P, et al. Wild brown trout affected by historical mining in the Cévennes National Park, France[J]. Environmental Science & Technology, 2011, 45(16): 6823-6830.

    [94]

    Tang L, Zhang Y, Ma S, et al. Potentially toxic element contaminations and lead isotopic fingerprinting in soils and sediments from a historical gold mining site[J]. International Journal of Environmental Research and Public Health, 2021, 18(20): 10925. doi: 10.3390/ijerph182010925

    [95] 张怡悦. 金/铁矿区土壤-植物体系铅锌同位素特征及微生物演化机制[D]. 北京: 北京科技大学, 2021.

    Zhang Y Y. Pb-Zn isotopic characteristics and microbial evolution mechanism of soil-plant system in gold/iron mining area[D]. Beijing: University of Science and Technology Beijing, 2021.

    [96]

    Wen H J, Zhang Y X, Christophe C, et al. Tracing sour-ces of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025

    [97]

    Wang J, Su J, Li Z, et al. Source apportionment of heavy metal and their health risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, eastern China[J]. Environmental Pollution, 2019, 254(B): 113089.

    [98]

    Das A, Patel S S, Kumar R, et al. Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios[J]. Chemosphere, 2018, 197: 152-164. doi: 10.1016/j.chemosphere.2018.01.016

    [99]

    Jeon S R. Hydrochemical, and Pb- and Sr-isotopic constraints on the precipitation and dilution of metals in acidified mine water: An example from the abandoned Dongjin Au-Ag-Cu mine, Korea[J]. Geosciences Journal, 2008, 12(4): 411-418. doi: 10.1007/s12303-008-0040-7

    [100] 杨文俊, 陈燕玫, 丁铿博, 等. 酸性矿山废水影响下流域地表水中镉稳定同位素的调查研究[C]//中国矿物岩石地球化学学会第15届学术年会论文摘要集(2). 2015: 207.

    Yang W J, Chen Y M, Ding K B, et al. Investigation of cadmium stable isotopes in surface waters of watersheds under the influence of acid mine wastewater[C]//Abstracts of the 15th Annual Meeting of the Chinese Society of Mineral and Rock Geochemistry (2). 2015: 207.

    [101]

    Yang W J, Ding K B, Zhang P, et al. Cadmium stable isotope variation in a mountain area impacted by acid mine drainage[J]. Science of the Total Environment, 2019, 646: 696-703. doi: 10.1016/j.scitotenv.2018.07.210

    [102]

    Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020

    [103]

    Gao B, Zhou H D, Liang X R, et al. Cd isotopes as a potential source tracer of metal pollution in river sediments[J]. Environmental Pollution, 2013, 181: 340-343. doi: 10.1016/j.envpol.2013.05.048

    [104]

    Zhang Y X, Wen H J, Zhu C W, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060

    [105]

    Shiel A E, Weis D, Orians K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408: 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016

    [106]

    Foucher D, Hintelmann H, Al T A, et al. Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): Tracing mercury contamination and transformation[J]. Chemical Geology, 2013, 336: 87-95. doi: 10.1016/j.chemgeo.2012.04.014

    [107]

    Foucher D, Ogrinc N, Hintelmann H. Tracing mercury contamination from the Idrija mining region (Slovenia) to the gulf of Trieste using Hg isotope ratio measurements[J]. Environmental Science & Technology, 2009, 43(1): 33-39.

    [108]

    Gehrke G E, Blum J D, Marvin-Dipasquale M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 691-705. doi: 10.1016/j.gca.2010.11.012

    [109]

    Gehrke G E, Blum J D, Slotton D G, et al. Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments[J]. Environmental Science & Technology, 2011, 45(4): 1264-1270.

    [110]

    Smith R S, Wiederhold J G, Jew A D, et al. Stable Hg isotope signatures in creek sediments impacted by a former Hg mine[J]. Environmental Science & Technology, 2015, 49(2): 767-776.

    [111]

    Baptista-Salazar C, Hintelmann H, Biester H. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area[J]. Environmental Science: Processes & Impacts, 2018, 20(40): 621-631.

    [112]

    Yin R, Feng X, Wang J, et al. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan mercury mine, SW China[J]. Chemical Geology, 2013, 336: 80-86. doi: 10.1016/j.chemgeo.2012.04.017

    [113]

    Yin R, Feng X, Wang J, et al. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China[J]. Chemical Geology, 2013, 336: 72-79. doi: 10.1016/j.chemgeo.2012.04.030

    [114]

    Yin R, Feng X, Meng B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China[J]. Environmental Science & Technology, 2013, 47: 2238-2245.

    [115]

    Li P, Du B Y, Lanurence M, et al. Mercury isotope signatures of methylmeucury in rice sample from the Wanshan mercury mining aera, China: Environmental implications[J]. Environmental Science & Technology, 2017, 51: 12321-12328.

    [116] 宋正城. 我国典型汞排放地区土壤汞污染及来源解析[D]. 贵阳: 贵州大学, 2019.

    Song Z C. Analysis of soil mercury pollution and sources in typical mercury-emitting areas in China[D]. Guiyang: Guizhou University, 2019.

    [117] 李珊, 李春辉, 梁汉东, 等. 乌达煤田尘土汞溯源分析[J]. 矿业科学学报, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002

    Li S, Li C H, Liang H D, et al. Traceability analysis of mercury in dust and soil of Wuda coalfield[J]. Journal of Mining Science, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002

    [118] 刘思魁. 顾桥采煤沉陷区表生环境中汞的分布特征及来源示踪研究[D]. 合肥: 安徽大学, 2021.

    Liu S K. Distribution characteristics and source tracing of mercury in the epigenetic environment of Guqiao coal mining subsidence area[D]. Hefei: Anhui University, 2021.

    [119]

    Borrok D M, Wanty R B, Ridley W I, et al. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed[J]. Applied Geochemistry, 2009, 24(7): 1270-1277. doi: 10.1016/j.apgeochem.2009.03.010

    [120]

    Weiss D J, Rausch N, Mason T F D, et al. Atmospheric deposition and isotope biogeochemistry of zinc in ambrotophic peat[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3498-3517. doi: 10.1016/j.gca.2007.04.026

    [121]

    Aranda S, Borrok D M, Wanty R B, et al. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage[J]. Science of the Total Environment, 2012, 420(10): 202-213.

    [122] 余伟河, 于瑞莲, 胡恭任. 铅锌镉同位素在土壤和沉积物重金属污染溯源研究中的应用进展[J]. 有色金属工程, 2012, 2(4): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201204020.htm

    Yu W H, Yu R L, Hu G R. Progress in the application of Pb-Zn-Cd isotopes in the traceability study of heavy metal pollution in soil and sediment[J]. Nonferrous Metal Engineering, 2012, 2(4): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201204020.htm

    [123] 张宏顺, 孟聪申, 孙承业. 铅稳定同位素示踪技术的研究进展[J]. 中国工业医学杂志, 2014, 27(4): 244-247. doi: 10.13631/j.cnki.zggyyx.2014.04.002

    Zhang H S, Meng C S, Sun C Y. Research progress of lead stable isotope tracing technology[J]. Chinese Journal of Industrial Medicine, 2014, 27(4): 244-247. doi: 10.13631/j.cnki.zggyyx.2014.04.002

    [124] 徐春霞, 孟郁苗, 黄诚, 等. 汞同位素地球化学研究及其在矿床学中的应用进展[J]. 岩矿测试, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125

    Xu C X, Meng Y M, Huang C, et al. Progress of mercury isotope geochemistry and its application in mineralogy[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125

    [125]

    Chapman E C, Capo R C, Stewart B W, et al. Geochemical and strontium isotope characterization of produced waters from Marcellus shale natural gas extraction[J]. Environmental Science & Technology, 2012, 46(6): 3545-3553.

    [126]

    Chapman E C, Capo R C, Stewart B W, et al. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau[J]. Applied Geochemistry, 2013, 31(2): 109-118.

    [127]

    Tanimizu M, Araki Y, Asaka S, et al. Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony[J]. Geochemical Journal, 2011, 45: 27-32. doi: 10.2343/geochemj.1.0088

    [128]

    Resongles E, Freydier R, Casiot C, et al. Antimony isotopic composition in river waters affected by ancient mining activity[J]. Talanta, 2015, 144: 851-861. doi: 10.1016/j.talanta.2015.07.013

    [129]

    Herbert R B Jr, Schippers A. Iron isotope fractionation by biogeochemical processes in mine tailings[J]. Environmental Science & Technology, 2008, 42(4): 1117-1122.

    [130]

    Talavera M O, Ruiz J, Diaz V E, et al. Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico): A multi-isotopic approach[J]. Applied Geochemistry, 2016, 66: 73-81. doi: 10.1016/j.apgeochem.2015.12.002

  • 期刊类型引用(3)

    1. 冯奔,刘征建,张建良,王耀祖,牛乐乐. 基于XRD-Rietveld法的烧结矿物相精修方法. 钢铁研究学报. 2023(05): 551-559 . 百度学术
    2. 刘亮,刘增辉,艾锦瑾,侯勤加,王凯伦,卿梦霞,田红. 污泥与煤混燃中含K、Na、Ca元素的矿物演变. 西北大学学报(自然科学版). 2021(01): 54-62 . 百度学术
    3. 陈爱清,谭伟,杨宜坪,陶奇. X射线衍射旋转撒样法分析氟金云母多型组成与含量. 岩矿测试. 2021(04): 504-511 . 本站查看

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  36
  • PDF下载量:  34
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-07-18
  • 录用日期:  2022-08-19
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-27

目录

/

返回文章
返回