• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

湖南铜山岭花岗闪长岩中榍石微区原位Nd同位素和微量元素组成及其岩石成因的指示意义

Petrogenesis of the Mesozoic Tongshanling Granodiorite in Southern Hunan Province, South China: Clues from in-situ Nd Isotopes and Elements of the Titanite

  • 摘要: 与热液矿床形成有关的花岗质岩石普遍遭受热液蚀变,且全岩成分仅代表均一化某一时间点的信息,采用全岩成分分析难以有效地揭示花岗质岩石的形成与演化。花岗质岩石中副矿物稳定不容易蚀变,近年原位测试技术的快速发展和日趋成熟,可以准确获取副矿物原位元素和同位素组成,通过副矿物元素和同位素组成可以有效地揭示岩浆来源和演化信息,显著提高了岩浆作用过程的空间分辨率,成为探讨岩石成因的新手段。本文以湘南与铜铅锌多金属成矿密切相关的铜山岭岩体为研究对象,利用电子探针(EPMA)、激光剥蚀等离子体质谱(LA-ICP-MS)和激光剥蚀多接收等离子体质谱(LA-MC-ICP-MS)等原位测试技术,对花岗闪长岩和暗色包体两类岩石样品中的副矿物榍石开展了原位元素和Nd同位素分析。结果表明:所有榍石中Al+Fe与Ti具有明显的负相关关系且稀土元素含量较高,稀土元素与Al和Fe一起主要通过(Al,Fe3+)+REE=Ti4++O2-方式替换榍石的Ti位和Ca位而进入晶格。球粒陨石标准化稀土配分模式上,大部分榍石显示Eu正异常。榍石中微量元素对Zr/Hf、Nb/Ta、Y/Ho比值变化范围分别为21.0~31.5、10.4~13.9、27.4~35.0,未发生明显分异。暗色包体中榍石的εNd(t)值为-3.5~-8.9,平均值为-7.2±2.4,花岗闪长岩中榍石的εNd(t)值为-5.4~-9.9,平均值为-6.9±2.4,所有榍石中Nd同位素组成均一且具有一致的负的初始Nd同位素组成,与华南大陆中下地壳Nd同位素演化趋势一致。元素地球化学特征表明,榍石中微量元素只与其晶体结构有关,不受热液蚀变作用的影响,能有效地示踪岩浆起源和性质。通过元素和同位素地球化学特征研究,本文认为铜山岭花岗质岩浆具有高温、高氧逸度特征,很可能由镁铁质角闪岩相中下地壳脱水熔融产生的水不饱和岩浆形成。

     

    Abstract:
    BACKGROUND The compositions of the bulk-rocks are commonly modified by hydrothermal alteration or merely represent the magmatic information of snapshot during evolution. Hence, use of the chemical compositions of bulk-rocks makes it difficult to trace the source and evolution of granitic magmas. The petrogenesis of the granitic rock is therefore difficult to decipher. In the face of these difficulties, an alternative new approach is to trace the magmatic source and evolution by in-situ analyzing elements and isotope compositions of accessory minerals in granitic rocks. This new approach can significantly improve the spatial resolution of the magmatic processes. Titanite (CaTiSiO5) is a common accessory mineral of granitic rocks and contains a large amount of elements, including Al, Fe, Nb, Ta, Zr, Cr, V, Sn in the Ti site, and rare earth elements (REEs) Y, Na, Mn, Pb, U, Th, Sr and Ba in the Ca site. REEs and high field strength elements (HFSEs, i.e., Nb, Ta, Zr, Th and U) in titanite are sensitive to the changes of temperature, pressure, oxygen fugacity (fO2), water fugacity and melt composition. Additionally, titanite has high Nd concentration and low Sm/Nd ratio and is suitable for in-situ Nd isotope analyses. Therefore, titanite is an ideal accessory mineral to be used to investigate the magmatic source and evolution of granitic rocks.
    OBJECTIVES To trace the magmatic source and evolution, and to decipher the petrogenesis of the granitic rock.
    METHODS Titanite from mafic microgranular enclave (MME) and hosted granodiorite of the Tongshanling granitic pluton were checked by transmission light and back-scattered electron (BSE). BSE images were performed at the Institute of Geochemistry, Chinese Academy of Sciences (IGCAS) in Guiyang, on carbon-coated, polished epoxy blocks using JSM-7800F field emission scanning electron microscopy (SEM) operated at 20kV accelerating voltage and a beam current of 10nA. Their in-situ major element compositions were analysed by electron probe microanalyzer (EPMA) at IGCAS. An accelerating voltage of 25kV and a probe current of 10nA were applied. Well-characterized Kaersutite (Na, K, Mg, Al, Si, Ca, Mn, and Fe), apatite (F), and rutile (Ti) were used as standards. The trace elements of titanite were analysed in-situ by an Agilent 7900 ICPMS equipped with GeoLasPro 193nm ArF laser ablation system (LA-ICP-MS) at IGCAS. Analytical conditions were as follows: a fluence of 5J/cm2, at a repetition rate of 5Hz and laser spot of 44μm. Ca (determined by EPMA) was chosen as the internal standard and the reference glasses NIST610 and NIST612 were used to calibrate relative element sensitivities. In-situ Nd isotope of titanite were analyzed by a Nu Plasma Ⅲ multi-collector (MC) equipped with RESOlution-155 ArF 193nm laser ablation system (LA-MC-ICP-MS) at IGCAS. Titanite was ablated in a mixture of helium (350mL/min) and nitrogen (2mL/min) atmosphere using the following parameters: 30s baseline time, 40s ablation time, 72μm spot size, 6Hz repetition rate and 6J/cm2 energy density. The interference of 144Sm on 144Nd was derived from the 147Sm intensity with a natural 144Sm/147Sm ratio of 0.205484. The mass bias factor of Sm was calculated from the measured isotopic ratio of 144Sm/149Sm and its true value 1.08680. The mass bias of 143Nd/144Nd was normalized to 146Nd/144Nd=0.7129 with an exponential law. The reference materials MAD, Otter Lake, LAP and SAP were chosen as the external standards.
    RESULTS Titanite grains in the MME, and host granodiorite of the Tongshanling granitic pluton have similar major element compositions. All titanite are characterized by high SiO2 (31.0% to 31.7%), CaO (29.0%-30.0%), TiO2 (30.6%-38.2%), and low Al2O3 (1.81%-5.61%), FeO (0.184%-0.606%), F (0.48%-1.84%) contents. The MnO concentrations vary between 0.024% and 0.066%. The MgO concentrations range from 0.001% to 0.031%. Compositional zoning among single titanite grains were not observed. The crystallo-chemical formulae were calculated on the basis of 5 oxygen atoms. The calculated results indicate that the Al+Fe (apfu) is negatively correlated with Ti (apfu) in all titanite grains. The analysed titanite grains have high rare earth element (REE) contents (67-1498μg/g). The REE were incorporated into titanite lattice by substituting for Ti and Ca site with Al and Fe and the substituted mechanism is (Al, Fe3+)+REE=Ti4++O2-. On the REE patterns, the titanite from granodiorite has REE contents higher than that from MME and shows weak positive or negative Eu anomaly (Eu/Eu* from 0.62 to 1.39). On the contrary, titanite from MME is characterized by Eu positive anomaly (Eu/Eu* from 1.13 to 3.94). These titanite contain high content of HFSEs such as Zr (11.1-536μg/g), Hf (0.639-21μg/g), Nb (306-1489μg/g) and Ta (24.7-109.5μg/g). The variation of Zr/Hf, Nb/Ta and Y/Ho ratios of titanite grains range from 21.0 to 31.5, 10.4 to 13.9 and 27.4 to 35.0, respectively. These trace element ratios are consistent with those of normal crust and are not fractionated. Therefore, the trace elements of titanite were completely controlled by ion radius and charge and not affected by late hydrothermal alteration. Titanite Zr thermometer shows that the temperature of titanite formation is between 762℃ and 963℃. Titanite from MME has homogenous Nd isotope compositions. Their present 144Nd/143Nd ranges from 0.512321 to 0.512675, corresponding to εNd(t) value from -3.5 to -8.9 with an average of -7.2±2.4 (N=6). Titanite from granodiorite overall have 144Nd/143Nd ratio ranging from 0.512269 to 0.513399. Their time-corrected initial εNd(t) value vary between -5.4 and -9.9 with an average of -6.9±2.4 (N=5). All titanite grains have negative initial Nd isotopic compositions, which is consistent with the evolution trend of Nd isotopes of the middle-lower continental crust of South China.
    CONCLUSIONS Titanite grains in the MME and host granodiorite of the Tongshanling granitic pluton show little or no intra-grain concentric zoning in BSE images and display similar element and isotopic geochemical characteristics. Crystal chemical exerts a first-order control on elemental compositions of titanite. Titanite survived during hydrothermal alteration and faithfully recorded the information of granitic melts. The granitic melts of the Tongshanling are characterized by high temperature and oxygen fugacity. Granodiorites from the Tongshanling pluton were probably formed by the amphibole-dehydration melting of a mafic source in the middle-lower crust beneath South China.

     

/

返回文章
返回