Determination of Hydrolysable Nitrogen in Soil Samples by Alkaline Hydrolysis Diffusion Separation Acid-base Titration Based on a Polypropylene Diffusion Dish
-
摘要:
传统的碱解扩散分离-酸碱滴定法测定土壤样品中的水解性氮,通常采用玻璃扩散皿进行碱解扩散分离。但是使用该法对样品进行前处理和碱解扩散分离过程中,操作者常会面临如下三种困扰:一是玻璃扩散皿内室溶液极易被氢氧化钠溶液和碱性胶液污染;二是玻璃扩散皿和盖子之间容易出现氨气泄漏,而且发现时往往无法解决;三是玻璃扩散皿比较笨重易碎,实验操作不方便;最终导致测定结果不稳定性和操作者对该法体验不佳。本文采用聚丙烯扩散皿,通过改进扩散皿清洗方法和提升扩散皿密封性、统一还原剂加入量和氢氧化钠溶液浓度(1.8mol/L)、适当增加氢氧化钠溶液的加入体积和降低盐酸标准溶液浓度,提高了水解性氮测定的稳定性和准确性。该方法中发生的污染明显降低,避免了发生氨气泄漏,操作便捷。应用于分析土壤有效态标准物质的测定值与标准值一致,如水解性氮测定值< 50mg/kg的标准物质GBW07416a,其绝对偏差为0.2~1.8mg/kg;水解性氮测定值在50~200mg/kg的标准物质GBW07415a、NSA-1、NSA-4、NSA-5、NSA-6,其绝对偏差为0~4.0mg/kg。还原剂对硝态氮转化为铵态氮的加标回收率在89.6%~96.4%之间。该方法可满足测定土壤样品中水解性氮含量的要求。
要点(1) 比较了玻璃和聚丙烯扩散皿的各自特点以及对土壤水解性氮测定结果的影响。
(2) 使用聚丙烯扩散皿并改进器皿清洗方法、提升密封性能,提高了水解性氮测定的稳定性和实验操作的便捷性。
(3) 测定土壤样品中水解性氮,都应加还原剂,氢氧化钠溶液浓度保持在1.8mol/L。
HIGHLIGHTS(1) The characteristics of glass and polypropylene diffusion dishes and their effects on the determination of soil hydrolysable nitrogen were compared.
(2) The use of a polypropylene diffusion dish and the improvement of the vessel cleaning method and sealing performance improve the stability of hydrolysable nitrogen determination and the convenience of experimental operation.
(3) For the determination of hydrolysable nitrogen in soil samples, reducing agent should be added, and the concentration of sodium hydroxide solution should be kept at 1.8mol/L.
Abstract:BACKGROUNDThe traditional alkaline hydrolysis diffusion separation acid-base titration method is used to determine the hydrolysable nitrogen in soil samples. Usually, a glass diffusion dish is used for alkaline hydrolysis diffusion separation. However, during sample pretreatment and alkaline hydrolysis diffusion separation, the operator often faces the following three problems. First, the solution in the inner chamber of the glass diffusion dish is very easily polluted by sodium hydroxide solution and alkaline glue solution. Second, ammonia leakage occurs easily between the glass diffusion dish and the cover, and it is often not possible to remedy when it is found. Third, the glass diffusion dish is bulky and fragile, and the experimental operation is inconvenient, all of which lead to the instability of measurement results due to inexperience of the operator.
OBJECTIVESTo establish a new method for the determination of hydrolysable nitrogen in soil samples by alkaline hydrolysis diffusion separation acid-base titration based on polypropylene diffusion dish.
METHODSA polypropylene diffusion dish was used instead of a glass diffusion dish in the alkaline hydrolysis of hydrolysable nitrogen. The cleaning method and the sealing of the diffusion dish were improved. The addition amount of reducing agent and the concentration of sodium hydroxide solution (1.8mol/L) were unified. The addition volume of sodium hydroxide solution was appropriately increased, and the concentration of hydrochloric acid standard solution was reduced.
RESULTSThe absolute deviation of reference materials GBW07416a with the measured value of hydrolysable nitrogen < 50mg/kg was 0.2-1.8mg/kg. The absolute deviation of reference materials GBW07415a, NSA-1, NSA-4, NSA-5 and NSA-6 with the measured value of hydrolysable nitrogen of 50-200mg/kg was 0-4.0mg/kg. The recovery rate of nitrate nitrogen converted to ammonium nitrogen by reducing agent was 89.6%-96.4%. The measured value of soil available reference materials was consistent with the standard value.
CONCLUSIONSThe stability and accuracy of hydrolysable nitrogen determination are improved. The pollution in this method is significantly reduced, ammonia leakage is avoided, and the operation is convenient. The method meets the requirements for determining the content of hydrolysable nitrogen in soil samples.
-
稀土元素的化学性质稳定,常被作为地球化学示踪剂。Nb、Ta、Zr、Hf等元素的信息在岩石成因、构造演化、地球化学等地质环境研究中具有重要的意义。快速、准确、简便地测定地质样品中的稀土元素及Nb、Ta、Zr、Hf对于开发利用稀有、稀土资源具有现实意义。
随着仪器设备的发展和测试技术的提高,电感耦合等离子体质谱法(ICP-MS)在灵敏度、精密度、多元素同时分析能力、线性动态范围等方面极具优势,特别适用于基体复杂、检测限低的多元素样品的检测分析[1-8]。ICP-MS测定样品稀土元素的前处理方法主要有碱熔法[9-13]、敞口酸溶法[14-16]、高压密闭酸溶法[17]和微波消解法[18-20]。碱熔法的工序繁琐,流程长,溶液盐度高,易产生基体干扰和堵塞仪器进样系统。微波消解法的准确度高、高效快速、无污染、无损失,但因一次消解样品数太少,只适合少量样品的分析。敞口酸溶法易操作,但易造成待测元素的损失,Nb、Ta、Zr、Hf由于赋存在少量难溶的副矿物相中而无法完全溶解,致使这些元素的测定结果严重偏低[21-23]。高压密闭酸溶法比常压敞开酸溶法有了显著的改进,但对于少数特殊样品,如铝含量高的样品等,存在溶矿不完全(Zr、Hf等)或在稀释时析出稀土元素等,致使这些元素的测定结果偏低。
贾双琳等[24]通过实验得出,加入硫酸的混合酸敞开酸溶体系,对于测定稀土元素有比较理想的测定结果,说明硫酸能够有效地溶解稀土元素。曾惠芳等[25]用偏硼酸锂熔融法经高温熔融、酸提取,高倍稀释后测试的方法虽解决了铌、钽、锆、铪等难熔元素的分解问题,但又引入了较多的盐类,带来了基体干扰,也不利于仪器检测系统的维护。本文选择加入硫酸的混合酸敞开酸溶体系,在硫酸-氢氟酸、硝酸-氢氟酸-硫酸、硝酸-氢氟酸-盐酸-硫酸-高氯酸体系中,为避免试剂用量过大并保证溶解效果,选取硝酸-氢氟酸-硫酸作为酸溶体系来消解样品,用国家一级标准物质随同样品同时溶解的产物制作标准曲线,通过消除基体干扰保证测定结果准确。同时对偏硼酸锂碱熔法进行改进,采用偏硼酸锂碱熔酸提取后补加氢氧化钠调节溶液至碱性的条件下与被测元素共沉淀,经过滤与熔剂分离,酸复溶滤渣后测定稀土及铌、钽、锆、铪等19种元素。将敞开混合酸溶体系应用于测定陕南柞水—商南地区地质调查样品中的稀土元素,将改进的偏硼酸锂熔融法应用于测定该地区地质调查样品中的稀土和铌、钽、锆、铪等难熔元素,结果令人满意。
1. 实验部分
1.1 仪器及工作条件
X-SeriesⅡ电感耦合等离子体质谱仪(美国ThermoFisher公司),主要工作参数为:入射功率1400W,雾化器流量0.91L/min,冷却气流量13.0L/min,辅助气流量1.0L/min,四极杆偏压0.1V,六极杆偏压-3.0V,采样深度140mm,分辨率125,测量方式:跳峰。
1.2 标准物质和主要试剂
水系沉积物、土壤、岩石国家一级标准物质GBW07328、GBW07107、GBW07450、GBW07311(中国地质科学院地球物理地球化学勘查研究所研制)。
GSB 04-1789-2004、GSB 04-1768-2004标准储备液(国家有色金属及电子材料分析测试中心研制):浓度100mg/L;用3%硝酸逐级稀释配制标准曲线系列。103Rh、185Re混合内标溶液(国家有色金属及电子材料分析测试中心研制):浓度10ng/mL,用3%硝酸逐级稀释配制。
氢氟酸、硝酸、硫酸、盐酸均为优级纯(成都市科隆化学品有限公司);30%过氧化氢、过氧化钠、氢氧化钠均为分析纯(陕西省凯利化玻仪器有限公司);高纯水:电阻率18.25MΩ·cm(北京双峰众邦科技发展有限公司)。
1.3 实验方法
混合酸敞开酸溶法:称取0.1000g样品于50mL聚四氟乙烯坩埚中,用少量去离子水润湿,依次加入5mL氢氟酸放置于180℃的电热板上蒸干、再加5mL硝酸于电热板蒸至近干、1mL硫酸放置于200℃的电热板蒸发至硫酸冒烟(2~3h),取下冷却;加入5mL氢氟酸,放置过夜,重复以上操作一次至硫酸烟冒尽;趁热加入5mL新配制的王水,在电热板上加热至溶液体积为1~2mL,用约10mL去离子水冲洗杯壁,在电热板上微热5~10min至溶液清亮,取下冷却;用3%硝酸准确稀释至100mL,摇匀后上机测定。
偏硼酸锂碱熔法:准确称取0.1000g样品于刚玉坩埚中,按1:3的质量比例加入0.3g偏硼酸锂混匀,覆盖0.5g偏硼酸锂,将坩埚放入已升温至1050℃的高温炉中,保温熔融15min,取出冷却后放入200mL烧杯中,加入80.0mL热水使熔块溶解提取,放置过夜。以慢速滤纸(42号)过滤提取液,用2%氢氧化钠溶液洗沉淀10次,用8mol/L热硝酸溶解沉淀,定容至25mL。稀释后用ICP-MS测定。
2. 结果与讨论
2.1 基体干扰和内标元素的选择
Siewers[26]对ICP-MS测定的溶液中总溶解固体量(TDS)所产生的基体干扰进行了详细的研究。当TDS为500μg/mL时,元素的分析信号在短时间内便会产生明显漂移,一般要求TDS最好小于0.1%。但地质样品因为背景极其复杂,样品元素之间的比例差异也会引起基体效应。这种基体效应通过仪器最佳化和样品稀释[27]就能有效地减轻。
内标元素的选择及使用可监测和校正信号的短期和长期漂移[28]。一般地,选取内标元素的原则是待测组分不含内标元素或对内标元素的干扰尽可能少。胡圣虹等[29]考察了115In、103Rh、187Re作为内标元素在稀土分析中的行为及其对基体的补偿作用,并选取115In和103Rh作为双内标。但是由于In在样品中的含量有时较高,且115In受115Cd干扰较大,而103Rh和187Re在地球化学样品中的含量极低,因此本文选择103Rh-187Re双元素作为内标,用国家一级标准物质随样品一同溶解制作的标准曲线来测试样品,补偿了基体效应,消除了背景偏差,使测试结果得到明显改善。
2.2 样品前处理方法比较
2.2.1 混合酸敞开酸溶法
本文使用氢氟酸-硝酸-硫酸敞开酸溶法对标准样品进行消解。实验考察了加酸步骤和溶解次数对测试结果的影响,测定结果见表 1。可以看出,对稀土元素来说,无论是分步骤加酸还是直接加入混合酸,都对测定结果的影响不大。而加入混合酸溶解两次要稍好于溶解一次的测定结果,但与认定值相比,敞开混合酸溶法的结果偏低。尤其是重稀土元素,直接加入混合酸法的测定值与认定值的相对偏差为-46.4%~0%,结果不可靠。
表 1 混合酸敞开酸溶法的测定结果Table 1. Analytical results of elements treated with the mixed acid open dissolution元素 GBW07328 GBW07107 GBW07450 GBW07311 认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸法
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
合酸
相对
误差
(%)认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸法
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
合酸
相对
误差
(%)认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
相对
误差
(%)认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
合酸
相对
误差
(%)Y 15.3 12.1 11.9 12.5 -22.2 26 20.4 18.9 22.8 -27.3 27 21.1 21.7 24.3 -19.6 43 38.2 37.1 38.9 -13.7 La 32.5 28.4 27.0 28.4 -16.9 62 53.6 53.7 55.2 -13.4 26 21.4 22.7 25.5 -12.7 30 24.4 23.2 27.1 -22.7 Ce 60.5 60.2 60.5 60.3 0.0 109 123 108 109 -0.9 52 48.1 52.4 53.4 0.8 58 52.5 54.1 57.1 -6.7 Pr 6.94 6.69 6.68 6.72 -3.7 13.6 12.6 12.9 13.2 -5.1 6.4 5.55 6.23 6.34 -2.7 7.4 6.18 7.06 7.19 -4.6 Nd 25.7 26.1 26.6 25.7 3.5 48 52.8 53.5 54.9 11.5 25 24.7 27.5 26.5 10.0 27 26.6 25.4 26.4 -5.9 Sm 4.49 4.64 4.75 4.39 5.8 8.4 8.37 8.32 8.41 -1.0 5.1 5.11 5.37 5.86 5.3 6.2 6.27 6.17 6.30 -0.5 Eu 0.96 0.847 0.853 0.867 -11.1 1.7 1.61 1.67 1.71 -1.8 1.13 0.966 1.02 1.06 -9.7 0.6 0.478 0.510 0.588 -15.0 Gd 3.74 3.53 3.50 3.63 -6.4 6.7 6.90 6.87 6.93 2.5 4.7 4.55 4.81 4.97 2.3 5.9 6.07 6.07 6.04 2.9 Tb 0.54 0.432 0.441 0.461 -18.3 1.02 0.899 0.917 0.933 -10.1 0.8 0.634 0.698 0.702 -12.8 1.13 0.996 1.06 1.03 -6.2 Dy 2.94 2.81 2.71 2.85 -7.8 5.1 5.39 5.45 5.60 6.9 4.8 4.33 4.62 4.60 -3.7 7.2 7.26 7.30 7.30 1.4 Ho 0.58 0.437 0.455 0.464 -21.6 0.98 0.928 0.945 0.961 -3.6 0.98 0.785 0.819 0.838 -16.4 1.4 1.37 1.45 1.36 3.6 Er 1.64 1.46 1.43 1.49 -12.8 2.7 2.83 2.78 2.87 3.0 2.8 2.48 2.63 2.66 -6.1 4.6 4.41 4.37 4.42 -5.0 Tm 0.25 0.133 0.134 0.138 -46.4 0.43 0.302 0.328 0.324 -23.7 0.47 0.284 0.308 0.314 -34.5 0.74 0.623 0.631 0.722 -14.7 Yb 1.63 1.41 1.40 1.46 -14.1 2.6 2.59 2.61 2.69 0.4 3 2.42 2.55 2.59 -15.0 5.1 4.90 5.07 5.07 -0.6 Lu 0.25 0.124 0.137 0.179 -45.2 0.41 0.33 0.31 0.32 -24.4 0.47 0.286 0.304 0.306 -35.3 0.78 0.643 0.660 0.754 -15.4 Nb 10.5 5.79 6.02 7.20 -42.7 14.3 10.1 9.19 11.3 -35.7 11.4 9.28 8.96 9.25 -21.4 25 19.7 22.8 22.2 -8.8 Ta 1.2 0.667 1.06 0.924 -11.7 1 0.436 0.488 0.722 -51.2 0.84 0.582 0.617 0.514 -26.5 5.7 5.31 5.33 5.44 -6.5 Zr 184 108 115 128 -37.5 96 47.3 53.2 57.7 -44.6 190 162 157 164 -17.4 153 132 138 140 -9.8 Hf 5.5 1.99 2.02 2.65 -63.3 2.9 1.45 1.36 1.62 -53.1 5.5 3.22 3.58 4.22 -34.9 5.4 4.76 4.43 4.52 -18.0 采用国家一级标准物质与样品一起溶解制作标准曲线,一方面可以克服基体干扰,另一方面可以消除由于消解而引入的不确定误差,使测试结果偏低的现象得以解决。表 2列出了采用直接加入混合酸的步骤,用国家一级标准物质制作标准曲线测定稀土元素的结果,测定值与认定值基本一致,无偏低现象,说明偏差已得到校正。考虑到实际样品的分析测试,加混合酸溶解两次的方法耗时较长,因而选择加混合酸溶解一次的方法,通过曲线校正,测定结果与认定值准确度(ΔlgC)在三倍检出限以上均小于0.11,满足规范DZ/T 0011—2015的要求。
表 2 采用国家一级标准物质制作标准曲线的测定结果Table 2. Analytical results of elements using the national standard reference materials as standard curve元素 GBW07328 GBW07107 GBW07450 GBW07311 ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)89Y 15.3 14.9 0.012 26 27.1 0.018 27 26.4 0.010 43 43.2 0.002 139La 32.5 32.7 0.003 62 63.1 0.008 26 25.9 0.002 30 29.6 0.006 140Ce 60.5 60.4 0.001 109 109 0.001 52 53.1 0.009 58 57.9 0.001 141Pr 6.94 6.84 0.006 13.6 13.6 0.001 6.4 6.39 0.000 7.4 7.51 0.007 146Nd 25.7 25.7 0.001 48 49.0 0.009 25 26.0 0.017 27 27.0 0.000 147Sm 4.49 4.50 0.000 8.4 8.41 0.001 5.1 5.14 0.004 6.2 6.31 0.007 153Eu 0.96 0.957 0.001 1.7 1.71 0.003 1.13 1.09 0.014 0.6 0.613 0.009 157Gd 3.74 3.68 0.007 6.7 6.80 0.006 4.7 4.76 0.006 5.9 6.04 0.010 159Tb 0.54 0.56 0.017 1.02 0.989 0.013 0.8 0.782 0.010 1.13 1.03 0.012 163Dy 2.94 2.95 0.002 5.1 5.10 0.000 4.8 4.74 0.006 7.2 7.31 0.006 165Ho 0.58 0.591 0.008 0.98 0.975 0.002 0.98 0.988 0.004 1.4 1.39 0.005 166Er 1.64 1.64 0.000 2.7 2.87 0.027 2.8 2.76 0.006 4.6 4.59 0.001 169Tm 0.25 0.248 0.003 0.43 0.423 0.007 0.47 0.474 0.004 0.74 0.725 0.009 172Yb 1.63 1.65 0.006 2.6 2.68 0.013 3 2.99 0.001 5.1 5.06 0.004 175Lu 0.25 0.249 0.002 0.41 0.409 0.001 0.47 0.486 0.015 0.78 0.75 0.015 铌、钽、锆、铪由于酸溶无法完全溶解,加之铌、钽的易水解性,使以上元素测试结果严重偏低,故混合酸敞开酸溶法不适合用于测定这四种元素。
2.2.2 偏硼酸锂碱熔法
常用的过氧化钠碱熔方法,需要经阳离子交换树脂柱进行分离,流程更长,测定元素不多。也有用偏硼酸锂熔融[13],经高温熔融、酸提取、高倍稀释后用ICP-MS直接测定。但引入的盐类太多,不适合大批量样品的测定。本文结合以上两种方法进行了改进。采用偏硼酸锂熔融提取后在氢氧化钠碱性溶液中将被测元素沉淀,经过滤、分离、酸复溶后进行测定,达到难溶元素的完全溶解。因实验中未加入共沉淀剂,而是使被测元素在碱性介质中随可沉淀基体元素自行沉淀,因此避免了测定溶液含盐量增加过多而引入的污染因素。
采用偏硼酸锂作熔剂,测定结果见表 3。从结果来看,Nb、Ta、Zr、Hf不能定量沉淀,原因可能是偏硼酸锂提取液的碱度不够,铌、钽等是以铌酸钠、钽酸钠形式沉淀,需要在更高浓度的钠盐溶液中才可完全沉淀。因此,本实验在偏硼酸锂熔融、酸提取后补加氢氧化钠调节溶液为强碱性来进行沉淀。加入氢氧化钠后,表 4测定数据表明,该步骤保证了稀土及Nb、Ta、Zr、Hf等元素的完全沉淀,难溶元素的分析结果可靠。
表 3 偏硼酸锂作为熔剂的测定结果Table 3. Analytical results of elements using lithium metaborate as flux元素 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 89Y 15.3 16.2 0.025 26 27.1 0.018 27 27.8 0.013 43 42.8 0.002 139La 32.5 33.5 0.013 62 64.2 0.015 26 27.3 0.022 30 31.3 0.018 140Ce 60.5 61.8 0.009 109 110 0.005 52 51.3 0.006 58 56.3 0.013 141Pr 6.94 6.72 0.014 13.6 11.3 0.080 6.4 6.27 0.009 7.4 7.61 0.012 146Nd 25.7 24.4 0.023 48 46.5 0.014 25 27.3 0.039 27 28.4 0.023 147Sm 4.49 4.61 0.012 8.4 8.56 0.008 5.1 5.02 0.007 6.2 6.11 0.006 153Eu 0.96 0.949 0.005 1.7 1.78 0.021 1.13 1.12 0.004 0.6 0.623 0.016 157Gd 3.74 3.86 0.014 6.7 6.78 0.005 4.7 4.39 0.029 5.9 6.18 0.020 159Tb 0.54 0.561 0.017 1.02 1.14 0.049 0.8 0.822 0.012 1.13 1.32 0.068 163Dy 2.94 3.07 0.018 5.1 5.36 0.022 4.8 4.98 0.016 7.2 7.44 0.014 165Ho 0.58 0.596 0.012 0.98 1.01 0.014 0.98 0.999 0.008 1.4 1.33 0.023 166Er 1.64 1.66 0.004 2.7 2.59 0.017 2.8 2.92 0.018 4.6 4.77 0.015 169Tm 0.25 0.233 0.031 0.43 0.411 0.020 0.47 0.455 0.014 0.74 0.772 0.018 172Yb 1.63 1.64 0.003 2.6 2.78 0.028 3 2.88 0.018 5.1 5.14 0.004 175Lu 0.25 0.238 0.021 0.41 0.424 0.015 0.47 0.488 0.016 0.78 0.733 0.027 93Nb 10.5 4.72 0.347 14.3 8.53 0.224 11.4 6.16 0.267 25 11.4 0.343 181Ta 1.2 0.812 0.170 0.9 0.657 0.137 0.84 0.431 0.290 5.7 2.74 0.318 90Zr 184 98.2 0.273 96 45.1 0.328 190 97.5 0.290 153 68.2 0.351 178Hf 5.5 2.99 0.265 2.9 1.08 0.430 5.5 2.14 0.409 5.4 3.27 0.218 表 4 偏硼酸锂为熔剂时加氢氧化钠碱化后的测定结果Table 4. Analytical results of elements using lithium metaborate as flux and adding sodium hydroxide to alkalization元素 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 89Y 15.3 14.8 0.014 26 26.3 0.005 27 27.4 0.006 43 41.8 0.012 139La 32.5 33.7 0.016 62 61.3 0.005 26 24.8 0.020 30 28.5 0.023 140Ce 60.5 58.6 0.014 109 107 0.007 52 50.3 0.014 58 57.8 0.002 141Pr 6.94 6.74 0.013 13.6 14.8 0.036 6.4 6.51 0.008 7.4 7.65 0.015 146Nd 25.7 26.2 0.009 48 50.2 0.020 25 24.9 0.000 27 26.5 0.007 147Sm 4.49 4.34 0.015 8.4 8.33 0.004 5.1 5.21 0.010 6.2 6.41 0.014 153Eu 0.96 0.962 0.001 1.7 1.67 0.007 1.13 1.23 0.036 0.6 0.631 0.022 157Gd 3.74 3.88 0.016 6.7 6.78 0.005 4.7 4.54 0.015 5.9 6.05 0.011 159Tb 0.54 0.519 0.017 1.02 0.992 0.012 0.8 0.778 0.012 1.13 1.14 0.005 163Dy 2.94 2.72 0.033 5.1 5.32 0.018 4.8 4.76 0.004 7.2 7.12 0.005 165Ho 0.58 0.566 0.011 0.98 0.973 0.003 0.98 0.973 0.003 1.4 1.44 0.012 166Er 1.64 1.71 0.018 2.7 2.55 0.024 2.8 2.93 0.020 4.6 4.75 0.014 169Tm 0.25 0.233 0.029 0.43 0.452 0.022 0.47 0.455 0.014 0.74 0.731 0.005 172Yb 1.63 1.67 0.011 2.6 2.76 0.027 3 2.87 0.019 5.1 5.38 0.023 175Lu 0.25 0.273 0.038 0.41 0.408 0.002 0.47 0.462 0.007 0.78 0.765 0.008 93Nb 10.5 9.38 0.049 14.3 13.8 0.016 11.4 10.9 0.020 25 24.3 0.013 181Ta 1.2 1.30 0.035 0.9 0.879 0.010 0.84 0.794 0.024 5.7 5.54 0.013 90Zr 184 187 0.008 96 95.8 0.001 190 194 0.010 153 152 0.003 178Hf 5.5 5.25 0.021 2.9 2.86 0.007 5.5 5.33 0.014 5.4 5.37 0.002 偏硼酸锂法的优点是容易得到纯度较高的偏硼酸锂,并且其用量少,而且空白较低,沉淀元素种类多,使分析成本降低。此法对于混合酸敞开酸溶法或密闭酸溶法难以溶解的样品有很好的测定结果,也可作为酸溶法的补充和验证方法。
2.3 方法技术指标
2.3.1 方法检出限
本方法的检出限是根据所选取溶解流程中的样品空白连续12次测定值的10倍标准偏差所相当的分析浓度(μg/g)。混合酸敞开酸溶法所测的稀土元素和改进的偏硼酸锂碱熔法测定稀土元素及铌钽锆铪的方法检出限如表 5所示。从表中可以看出,混合酸敞开酸溶法具有更低的检出下限,在测定稀土元素方面具有更大的优势。铌钽锆铪等难熔元素,用改进的偏硼酸锂碱熔法检出限也都在1μg/g以下,满足测试需求。
表 5 方法检出限Table 5. Detection limit of the method元素 检出限(μg/g) 混合酸敞开
酸溶法改进的偏硼
酸锂碱熔法89Y 0.101 0.038 139La 0.095 0.087 140Ce 0.163 0.519 141Pr 0.018 0.032 146Nd 0.084 0.066 147Sm 0.014 0.037 153Eu 0.003 0.023 157Gd 0.003 0.106 159Tb 0.01 0.085 163Dy 0.009 0.044 165Ho 0.058 0.09 166Er 0.007 0.033 169Tm 0.002 0.087 172Yb 0.005 0.036 175Lu 0.001 0.072 93Nb - 0.221 181Ta - 0.073 90Zr - 0.926 178Hf - 0.063 2.3.2 方法准确度和精密度
为了验证两种方法的准确度和精密度,采用敞开混合酸溶法对国家一级标准物质(西藏沉积物GBW07328、岩石GBW07107、土壤GBW07450、水系沉积物GBW07311)进行12次平行测定,采用偏硼酸锂碱熔法对同样的标准物质进行12次平行测定,结果如表 6所示。两种方法分析标准样品的测定值与认定值基本一致,二者的对数误差绝对值(ΔlgC)均小于0.11,相对标准偏差(RSD)小于10%,符合DZ/T 0011—2015规范要求。
表 6 混合酸敞开酸溶和偏硼酸锂碱熔法的准确度和精密度Table 6. Accuracy and precision tests of the mixed acid open dissolution method and lithium metaborate alkali fusion method元素 混合酸敞开酸溶法 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)89Y 15.3 14.7 0.017 1.14 26 24.6 0.024 3.11 27 25.7 0.021 2.26 43 45.7 0.026 1.97 139La 32.5 30.1 0.033 7.91 62 60.9 0.008 4..26 26 26.9 0.015 1.80 30 28.6 0.021 2.21 140Ce 60.5 63.2 0.019 6.32 109 113 0.016 2.16 52 54.7 0.022 2.16 58 56.9 0.008 1.73 141Pr 6.94 6.78 0.010 6.64 13.6 13.2 0.013 4.57 6.4 6.29 0.008 1.93 7.4 7.19 0.013 1.46 146Nd 25.7 24.1 0.028 4.37 48 47.1 0.008 1.58 25 23.6 0.025 5.63 27 25.6 0.023 1.92 147Sm 4.49 4.62 0.012 8.85 8.4 8.16 0.013 3.72 5.1 5.24 0.012 3.71 6.2 6.06 0.010 1.47 153Eu 0.96 0.993 0.015 2.57 1.7 1.57 0.035 7.96 1.13 1.23 0.037 4.30 0.6 0.717 0.077 2.95 157Gd 3.74 3.56 0.021 7.92 6.7 6.83 0.008 4.34 4.7 4.59 0.010 2.25 5.9 5.76 0.010 2.24 159Tb 0.54 0.522 0.015 3.84 1.02 0.984 0.016 4.62 0.8 0.773 0.015 3.16 1.13 1.21 0.030 1.14 163Dy 2.94 2.73 0.032 6.26 5.1 5.24 0.012 2.93 4.8 4.67 0.012 2.81 7.2 7.04 0.010 1.72 165Ho 0.58 0.551 0.022 8.24 0.98 0.952 0.013 4.29 0.98 1.06 0.034 4.94 1.4 1.32 0.026 1.57 166Er 1.64 1.61 0.008 7.22 2.7 2.56 0.023 4.40 2.8 2.89 0.014 4.64 4.6 4.71 0.010 3.08 169Tm 0.25 0.234 0.029 2.43 0.43 0.417 0.013 5.51 0.47 0.493 0.021 5.76 0.74 0.729 0.007 2.57 172Yb 1.63 1.60 0.008 2.15 2.6 2.49 0.019 4.17 3 2.82 0.026 4.19 5.1 4.84 0.023 1.09 175Lu 0.25 0.227 0.042 2.59 0.41 0.424 0.015 4.92 0.47 0.492 0.020 2.63 0.78 0.746 0.019 3.56 元素 偏硼酸锂碱熔法 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)89Y 15.3 14.7 0.017 1.46 26 25.4 0.010 2.71 27 25.7 0.021 2.51 43 41.6 0.014 4.40 139La 32.5 31.1 0.019 2.52 62 60.6 0.010 3.94 26 25.4 0.010 1.74 30 31.7 0.024 2.62 140Ce 60.5 59.1 0.011 1.27 109 105 0.016 2.77 52 49.5 0.021 3.07 58 59.3 0.010 1.95 141Pr 6.94 6.62 0.021 1.76 13.6 14.4 0.025 3.82 6.4 6.28 0.008 2.19 7.4 7.51 0.006 1.41 146Nd 25.7 25.9 0.003 4.52 48 46.1 0.018 2.81 25 27.3 0.038 2.50 27 26.3 0.011 1.79 147Sm 4.49 4.37 0.012 1.97 8.4 8.07 0.017 4.73 5.1 5.33 0.019 6.48 6.2 6.08 0.008 3.77 153Eu 0.96 0.906 0.025 6.49 1.7 1.75 0.013 1.79 1.13 1.21 0.030 3.63 0.6 0.571 0.022 2.23 157Gd 3.74 3.77 0.003 3.73 6.7 6.46 0.016 2.08 4.7 4.58 0.011 2.97 5.9 6.23 0.024 5.01 159Tb 0.54 0.556 0.013 1.53 1.02 0.944 0.034 1.17 0.8 0.831 0.017 1.81 1.13 1.24 0.040 4.33 163Dy 2.94 3.12 0.026 4.63 5.1 5.26 0.013 5.17 4.8 4.56 0.022 3.41 7.2 7.02 0.011 2.19 165Ho 0.58 0.543 0.029 8.52 0.98 0.947 0.015 7.90 0.98 1.02 0.019 2.92 1.4 1.51 0.033 1.75 166Er 1.64 1.62 0.005 3.79 2.7 2.74 0.007 6.46 2.8 2.84 0.006 6.09 4.6 4.68 0.007 3.10 169Tm 0.25 0.262 0.020 2.58 0.43 0.449 0.019 2.60 0.47 0.445 0.024 2.33 0.74 0.771 0.018 1.29 172Yb 1.63 1.6 0.008 5.71 2.6 2.82 0.035 4.68 3 3.16 0.023 4.83 5.1 5.18 0.007 3.03 175Lu 0.25 0.235 0.027 3.08 0.41 0.441 0.032 5.22 0.47 0.459 0.010 2.98 0.78 0.792 0.007 2.24 93Nb 10.5 11.2 0.028 2.25 14.3 13.1 0.038 4.70 11.4 10.7 0.028 9.45 25 26.1 0.019 1.33 181Ta 1.2 1.22 0.007 5.82 0.9 0.921 0.010 8.72 0.84 0.822 0.009 9.73 5.7 5.82 0.009 1.80 90Zr 184 179 0.012 2.12 96 92.7 0.015 6.71 190 197 0.016 3.45 153 147 0.017 4.37 178Hf 5.5 5.36 0.011 9.30 2.9 2.63 0.043 5.60 5.5 5.28 0.018 5.93 5.4 4.89 0.043 5.81 2.3.3 地质调查样品分析与比对
为了检验方法的可靠性,用混合酸敞开酸溶法测定陕南柞水—商南地区地质调查样品水系沉积物(样品编号P1~P6)中的稀土元素,用碱熔法测定其中的铌、钽、锆、铪元素,将样品测定的结果与陕西省地质与矿产研究所采用密闭酸溶法的测定结果进行比较。从比对数据可以看出,相对偏差基本都在17%之间,满足日常测试要求。但同时也发现P5号样品的Zr元素,两实验室间的结果相差较大,相对偏差为32.3%,原因可能是样品的特殊成分导致了密闭溶样法无法完全溶解此元素,更深入的原因则有待进一步的研究。
3. 结论
本文提供了测定稀土元素及铌、钽、锆、铪的两种溶样方案。采用氢氟酸-硝酸-硫酸混合酸敞开酸溶法,减少了化学试剂的使用量,降低了成本,同时以国家一级标准物质制作标准曲线测定稀土元素,消除了基体干扰,确保了测定结果准确,方法准确度(ΔlgC)为0.001~0.027。采用改进的偏硼酸锂碱熔法同时测定15种稀土元素及铌、钽、锆、铪,加入碱性溶液氢氧化钠后,所测元素沉淀完全,改善了传统酸溶法由于溶矿不完全而导致的铌、钽、锆、铪测定结果严重偏低的现象。
实验表明,混合酸敞开酸溶法适用于测定地质样品中的稀土元素,偏硼酸锂碱熔法不仅适用于测定地质样品中的稀土元素及铌钽锆铪,也适用于测定如古老高压变质岩石及铝含量高的样品中的铌钽锆铪。
-
表 1 不同类型土壤有效态标准物质中硝态氮的加标回收率(n=6)
Table 1 Recovery rate of nitrate nitrogen in available reference materials of different types of soil (n=6)
样品名称 水解性氮标准值(mg/kg) 未加标样品水解性氮测定值(mg/kg) 加标量(以硝酸钾中氮元素含量计,μg) 加标样品水解性氮测定值(mg/kg) 加标回收率(%) GBW07415a(水稻土) 165±10 168 166 321 92.2 NSA-1(黑土) 166±7 166 166 326 96.4 NSA-4(紫色土) 64±4 63.9 69.2 130 95.5 NSA-6(红壤) 96±7 95.5 111 195 89.6 表 2 不同浓度盐酸标准溶液的滴定结果及对应的方法特性指标
Table 2 Titration results of different concentrations of hydroric acid standard solutions and corresponding method characteristic indexes
盐酸标准溶液浓度(mol/L) 可滴定水解性氮最大含量wN(mg/kg) 方法检出限MDL(mg/kg) 测定下限(mg/kg) 0.002 476 0.74 2.94 0.005 1190 1.84 7.35 0.01 2380 3.68 14.7 表 3 土壤有效态标准物质水解性氮测定结果的绝对偏差和允许偏差
Table 3 Absolute deviation and allowable deviation of determination results of hydrolysable nitrogen in soil available standard materials
标准物质编号 土壤类型 水解性氮标准值(mg/kg) 水解性氮测定值(mg/kg) 水解性氮测定平均值(mg/kg) 绝对偏差(mg/kg) LY/T 1228—2015允许偏差(mg/kg) GBW07415a 水稻土 165±10 169 167 2.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 166 1.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 171 4.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 164 3.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 167 0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 165 2.0 绝对偏差10~2.5 GBW07416a 红壤 44±4 42.9 43.4 0.5 绝对偏差 < 2.5 GBW07416a 红壤 44±4 42.7 0.7 绝对偏差 < 2.5 GBW07416a 红壤 44±4 45.2 1.8 绝对偏差 < 2.5 GBW07416a 红壤 44±4 43.8 0.4 绝对偏差 < 2.5 GBW07416a 红壤 44±4 43.2 0.2 绝对偏差 < 2.5 GBW07416a 红壤 44±4 42.5 0.9 绝对偏差 < 2.5 NSA-1 黑土 166±7 163 163 0 绝对偏差10~2.5 NSA-1 黑土 166±7 167 4.0 绝对偏差10~2.5 NSA-1 黑土 166±7 165 2.0 绝对偏差10~2.5 NSA-1 黑土 166±7 162 1.0 绝对偏差10~2.5 NSA-1 黑土 166±7 159 4.0 绝对偏差10~2.5 NSA-1 黑土 166±7 163 0 绝对偏差10~2.5 NSA-4 紫色土 64±4 62.5 62.2 0.3 绝对偏差10~2.5 NSA-4 紫色土 64±4 64.2 2.0 绝对偏差10~2.5 NSA-4 紫色土 64±4 61.7 0.5 绝对偏差10~2.5 NSA-4 紫色土 64±4 61.4 0.8 绝对偏差10~2.5 NSA-4 紫色土 64±4 62.2 0 绝对偏差10~2.5 NSA-4 紫色土 64±4 60.9 1.3 绝对偏差10~2.5 NSA-5 水稻土 180±10 174 176 2.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 178 2.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 176 0 绝对偏差10~2.5 NSA-5 水稻土 180±10 175 1.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 175 1.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 179 3.0 绝对偏差10~2.5 NSA-6 红壤 96±7 97.3 98.2 0.9 绝对偏差10~2.5 NSA-6 红壤 96±7 99.2 1.0 绝对偏差10~2.5 NSA-6 红壤 96±7 98.8 0.6 绝对偏差10~2.5 NSA-6 红壤 96±7 100 1.8 绝对偏差10~2.5 NSA-6 红壤 96±7 94.4 3.8 绝对偏差10~2.5 NSA-6 红壤 96±7 99.5 1.3 绝对偏差10~2.5 表 4 土壤中水解性氮测定的不同测定方法比对与综合评价
Table 4 Comparison and comprehensive evaluation of different methods used in determination of hydrolysable nitrogen in soil
测定方法名称 相对标准偏差RSD(%) 相对误差(%) 方法优势 存在问题 参考文献 基于塑料带孔扩散皿的碱解扩散分离-酸碱滴定法 1.63~3.19 0~2.28 无碱性胶液,精密度和准确度好 碱解过程中,如果发生氨气泄漏无法被发现 [24] 基于玻璃扩散皿的碱解扩散分离-酸碱滴定法 3.09~5.47 1.23~2.42 准确度好 扩散皿内室容易被污染,密封性不强,测定结果不够稳定 [20] 基于乳胶塞注射式玻璃扩散皿的碱解扩散分离-酸碱滴定法 1.97~2.84 0.61~2.46 精密度和准确度好,密封性好 扩散皿内室容易被污染,需额外操作注射器 [26] 基于FOSS Kjeltec 8400凯氏定氮仪碱解蒸馏-酸碱滴定法 1.10~2.13 3.40~7.33 操作简单,精密度较高,抗污染能力强 高温蒸馏,测定结果可能偏高 [17] 基于聚丙烯扩散皿的碱解扩散分离-酸碱滴定法(本文方法) 1.56~2.30 1.21~1.40 精密度和准确度好,密封性好 流程偏长 本文 -
[1] 吴昊, 朱红霞, 袁懋, 等. 气相分子吸收光谱法测定土壤中铵态氮和硝态氮[J]. 岩矿测试, 2021, 40(1): 165-171. doi: 10.15898/j.cnki.11-2131/td.202003100029 Wu H, Zhu H X, Yuan M, et al. Determination of ammonium nitrogen and nitrate in soil by gas phase molecular absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 165-171. doi: 10.15898/j.cnki.11-2131/td.202003100029
[2] 李义纯, 王艳红, 陈勇, 等. 基于土壤质量的改良剂修复镉污染稻田综合效果评价[J]. 农业环境科学学报, 2021, 40(6): 1219-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202106012.htm Li Y C, Wang Y H, Chen Y, et al. A comprehensive evaluation of remediation effects on cadmium contamination in paddy fields based on soil quality[J]. Journal of Agro-Environment Science, 2021, 40(6): 1219-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202106012.htm
[3] 王红, 徐静, 谢晓金, 等. 南京市绿地土壤养分特征及空间分布[J]. 江苏农业科学, 2021, 49(6): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202106039.htm Wang H, Xu J, Xie X J, et al. Characteristics and spatial distribution of soil nutrients in green space in Nanjing City[J]. Jiangsu Agricultural Sciences, 2021, 49(6): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202106039.htm
[4] 程晓月, 许宏刚, 朱亚灵, 等. 兰州市中心城区道路绿地土壤pH和养分特征[J]. 草业科学, 2021, 38(3): 468-479. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX202103007.htm Cheng X Y, Xu H G, Zhu Y L, et al. Study on soil pH and nutrients in a roadside green belt in a central urban area of Lanzhou[J]. Pratacultural Science, 2021, 38(3): 468-479. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX202103007.htm
[5] 代杰瑞, 庞绪贵, 刘华峰, 等. 山东省东部地区农业生态地球化学调查及生态问题浅析[J]. 岩矿测试, 2012, 31(1): 189-197. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120128 Dai J R, Pang X G, Liu H F, et al. Agro-ecological geochemical survey and evaluation of eastern Shandong Province[J]. Rock and Mineral Analysis, 2012, 31(1): 189-197. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120128
[6] 贺灵, 孙彬彬, 吴超, 等. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价[J]. 岩矿测试, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003 He L, Sun B B, Wu C, et al. Assessment of soil environment quality and ecological risk for kiwifruit orchards in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003
[7] 王杰, 张春燕, 卢加文, 等. 广安区柑橘土壤养分状况及综合肥力评价[J]. 土壤通报, 2021, 52(6): 1360-1367. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202106011.htm Wang J, Zhang C Y, Lu J W, et al. Nutrient status and comprehensive fertility evaluation of the citrus soil in Guang'an District[J]. Chinese Journal of Soil Science, 2021, 52(6): 1360-1367. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202106011.htm
[8] 曹胜, 周卫军, 刘沛, 等. 冰糖橙果园土壤养分与果实品质关系的多元分析及优化方案[J]. 土壤, 2021, 53(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202101013.htm Cao S, Zhou W J, Liu P, et al. Multivariate analysis and optimization of relationship between soil nutrients and fruit quality in C. sinensis(L. ) osbeck orchard[J]. Soils, 2021, 53(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202101013.htm
[9] 邓小华, 何铭钰, 陈金, 等. 山地酸性土壤耕层重构的理化性状及酶活性动态变化[J]. 中国烟草科学, 2021, 42(4): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202104003.htm Deng X H, He M Y, Chen J, et al. Dynamic of soil physi-chemical properties and enzymatic activities after restructured arable layer of mountainous acidic soil[J]. Chinese Tobacco Science, 2021, 42(4): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202104003.htm
[10] 高宏艳, 索全义, 郑海春, 等. 基于GIS和丰缺指标法的区域施肥管理体系的构建[J]. 植物营养与肥料学报, 2021, 27(9): 1648-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202109015.htm Gao H Y, Suo Q Y, Zheng H C, et al. Construction of regional fertilization system based on GIS and nutrient abundance index[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1648-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202109015.htm
[11] 冯辉, 张学君, 张群, 等. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源分析[J]. 岩矿测试, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071 Feng H, Zhang X J, Zhang Q, et al. Distribution characteristics and sources identification of selenium-rich soils in the ecological conservation area of the Daqinghe River watershed, Beijing[J]. Rock and Mineral Analysis, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071
[12] 顾涛, 朱晓华, 赵信文, 等. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136 Gu T, Zhu X H, Zhao X W, et al. Relationship between lotus root quality and geochemical conditions in the Xinken lotus root producing area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136
[13] 周启龙. 藏西沙化草地根系分布与土壤理化性质的关系[J]. 水土保持通报, 2021, 41(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101001.htm Zhou Q L. Relation between root distribution character-istics and soil physical and chemical properties in desertification grassland in western Tibet[J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101001.htm
[14] 粮农组织.《世界粮食和农业领域土地及水资源状况: 系统濒临极限》2021年概要报告[R/OL]. https://doi.org/10.4060/cb7654en. Food and Agriculture Organization.The state of the world's land and water resources for food and agriculture-systems at breaking point.Synthesis Report 2021.Rome[R/OL]. https://doi.org/10.4060/cb7654en.
[15] 吴金卓, 孔琳琳, 李颖, 等. 近红外光谱法测定土壤全氮和碱解氮含量[J]. 湖南农业大学学报(自然科学版), 2016, 42(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HNND201601019.htm Wu J Z, Kong L L, Li Y, et al. Prediction models of total and available soil nitrogen based on near-infrared spectroscopy[J]. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HNND201601019.htm
[16] 彭海根, 金楹, 詹莜国, 等. 近红外光谱技术结合竞争自适应重加权采样变量选择算法快速测定土壤水解性氮含量[J]. 分析测试学报, 2020, 39(10): 1305-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202010021.htm Peng H G, Jin Y, Zhan Y G, et al. Quantitative determination of hydrolytic nitrogen content in soil by near infrared spectroscopy combined with competitive adaptive reweighted sampling variable selection algorithm[J]. Journal of Instrumental Analysis, 2020, 39(10): 1305-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202010021.htm
[17] 石欣. 凯氏定氮仪测定土壤中水解性氮含量[J]. 宁夏农林科技, 2018, 59(11): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201811020.htm Shi X. Determination of hydrolytic nitrogen content in soil by Kjeltec nitrogen analyzer[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(11): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201811020.htm
[18] 王晓岚, 卡丽毕努尔, 杨文念. 土壤碱解氮测定方法比较[J]. 北京师范大学学报(自然科学版), 2010, 46(1): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201001021.htm Wang X L, Ka L B N E, Yang W N. Comparison of methods for determining alkali-hydrolyzed nitrogen in soil[J]. Journal of Beijing Normal University (Natural Science), 2010, 46(1): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201001021.htm
[19] 莎娜, 张三粉, 骆洪, 等. 两种土壤碱解氮测定方法的比较[J]. 内蒙古农业科技, 2014(6): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGN201406013.htm Sha N, Zhang S F, Luo H, et al. Comparison two kinds of determination method of soil alkaline hydrolysis nitrogen[J]. Inner Mongolia Agricultural Science and Technology, 2014(6): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGN201406013.htm
[20] 魏娜. 两种土壤碱解氮测定方法比较[J]. 西藏农业科技, 2014, 36(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XZNY201401008.htm Wei N. Comparison between two methods of available nitrogen in soil[J]. Tibet Journal of Agricultural Sciences, 2014, 36(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XZNY201401008.htm
[21] 孔凡伟. 简述土壤水解氮的测定方法[J]. 黑龙江农业科学, 2010(4): 159-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201004059.htm Kong F W. The determination method briefly introduced of soil hydrolyzed nitrogen[J]. Heilongjiang Agricultural Sciences, 2010(4): 159-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201004059.htm
[22] 贺毅. 扩散法测定土壤中的水解性氮[J]. 华北自然资源, 2020(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT202002036.htm He Y. Determination of hydrolytic nitrogen in soil by diffusion method[J]. Huabei Natural Resources, 2020(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT202002036.htm
[23] 施畅, 万秋月, 秦冲, 等. 塑料密封盒-滴定法测定土壤中碱解氮[J]. 中国无机分析化学, 2017, 7(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201703011.htm Shi C, Wan Q Y, Qin C, et al. Determination of alkali-hydrolyzable nitrogen in soil by titration with a sealed plastic box[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201703011.htm
[24] 杨清华. 森林土壤中水解性氮测定方法改进研究[J]. 现代农业科技, 2018(18): 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201818078.htm Yang Q H. Improvement of determination method of hydrolytic nitrogen in forest soil[J]. Modern Agricultural Science and Technology, 2018(18): 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201818078.htm
[25] 周剑. 塑料扩散皿在土壤水解性氮测定中的应用[J]. 福建地质, 2021, 40(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202101009.htm Zhou J. Application of plastic diffusion dish in determination of hydrolytic in soil[J]. Geology of Fujian, 2021, 40(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202101009.htm
[26] 侯建伟, 邢存芳, 杨莉琳. 土壤碱解氮测定方法优化改革[J]. 西南师范大学学报(自然科学版), 2021, 46(7): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202107006.htm Hou J W, Xing C F, Yang L L. Optimization reform of soil available nitrogen determination method[J]. Journal of Southwest China Normal University (Natural Science Edition), 2021, 46(7): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202107006.htm
[27] 童娟, 谢春梅. 碱解扩散法测定土壤水解性氮影响因素分析[J]. 宁夏农林科技, 2011, 52(9): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201109030.htm Tong J, Xie C M. Analysis on influencing factors of soil hydrolytic nitrogen determination by alkaline hydrolysis diffusion method[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2011, 52(9): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201109030.htm
[28] 林晓峰. 土壤水解性氮含量的测定方法及注意事项[J]. 江西农业, 2017(11): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNG201711019.htm Lin X F. Determination method and precautions of soil hydrolytic nitrogen content[J]. Jiangxi Agriculture, 2017(11): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNG201711019.htm
[29] 张英利, 马爱生, 杨岩荣, 等. 不同还原剂对土壤碱解氮测定结果的影响[J]. 干旱地区农业研究, 2002, 20(2): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200202009.htm Zhang Y L, Ma A S, Yang Y R, et al. Effect of different reductive on analysis results of soil available nitrogen[J]. Agricultural Research in the Arid Areas, 2002, 20(2): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200202009.htm
[30] 刘妹, 顾铁新, 程志中, 等. 10个土壤有效态成分分析标准物质研制[J]. 岩矿测试, 2011, 30(5): 536-544. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110503 Liu M, Gu T X, Cheng Z Z, et al. Ten reference materials for available nutrients of agricultural soils[J]. Rock and Mineral Analysis, 2011, 30(5): 536-544. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110503
[31] 李星, 郭小彪, 张墨. 土壤中水解性氮的测定条件选择[J]. 北京农业, 2015(24): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-BJNY201524040.htm Li X, Guo X B, Zhang M. Selection of determination conditions of hydrolytic nitrogen in soil[J]. Beijing Agriculture, 2015(24): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-BJNY201524040.htm
-
期刊类型引用(35)
1. 李光一,马景治,李策,汪岸,贾正勋,董学林. 电弧分馏富集-发射光谱法测定含铌钽矿石中铌钽. 冶金分析. 2025(02): 49-55 . 百度学术
2. 韩亚军,王啸,甘黎明,冯博鑫,李荣华,王佳明,宋永涛. 氟化氢铵焙烧分离-碱熔-电感耦合等离子体质谱(ICP-MS)法测定高硅矿物中稀土元素及铌、钽. 中国无机分析化学. 2025(04): 500-505 . 百度学术
3. 郭娜,王啸,孙莎,张威,杨晓辉,贺怡欣. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法测定锰矿石中14种元素. 中国无机分析化学. 2025(04): 545-553 . 百度学术
4. 王家松 ,王力强 ,王娜 ,方蓬达 ,郑智慷 ,曾江萍 . 偏硼酸锂熔融-酒石酸络合-超声提取-电感耦合等离子体原子发射光谱法测定岩矿型锆矿石中10种元素的含量. 理化检验-化学分册. 2024(02): 125-133 . 百度学术
5. 张安丰,杨博为,王永鑫,庞文品,毛珂,金修齐. 动能歧视(KED)-电感耦合等离子体质谱(ICP-MS)法测定贵州沉积型稀土矿中16种稀土元素. 中国无机分析化学. 2024(05): 575-585 . 百度学术
6. 周万峰,王永鑫,张安丰. ICP-MS测定川滇黔相邻区高岭石黏土岩矿物中伴生关键三稀元素的前处理方法研究. 贵州地质. 2024(01): 101-108+17 . 百度学术
7. 郭琳,于汀汀,孙红宾,朱云. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素. 岩矿测试. 2024(02): 356-365 . 本站查看
8. 童晓旻,董再蒸,高鹏. X荧光测定铌钽原矿中铌和钽及不确定度评定. 江西化工. 2024(04): 6-10 . 百度学术
9. 刘江斌,牛红莉,党亮. 二米光栅——原子发射光谱法应用于地质样品多元素半定量全分析. 甘肃地质. 2024(03): 84-88 . 百度学术
10. 孙孟华,朱永晓,赵烨,陈庆芝,宋凡,孙凯茜. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽和稀土元素. 冶金分析. 2024(09): 35-44 . 百度学术
11. 杨博为 ,周万峰 ,王永鑫 ,张安丰 . 碱熔-二次沉淀分离-电感耦合等离子体质谱法测定贵州古陆相沉积型稀土矿中16种稀土元素及铌、钽、锆、铪的含量. 理化检验-化学分册. 2024(10): 1012-1020 . 百度学术
12. 唐碧玉,张征莲,谷娟平,古行乾. 电感耦合等离子体质谱(ICP-MS)法测定锰矿冶炼烟尘中多种重金属元素. 中国无机分析化学. 2023(07): 677-683 . 百度学术
13. 张浩宇,付彪,王娇,马晓玲,罗光前,姚洪. 电感耦合等离子体串联质谱法测定煤灰中痕量稀土元素. 光谱学与光谱分析. 2023(07): 2074-2081 . 百度学术
14. 曾美云,何启生,邵鑫,杨小丽. 全自动石墨消解-电感耦合等离子体质谱法测定土壤和水系沉积物中稀土元素. 岩矿测试. 2023(03): 502-512 . 本站查看
15. 汤少展,张响荣,李策,董学林,任小荣,陈玉娇. 氟化氢铵快速分解-电感耦合等离子体质谱(ICP-MS)法测定多金属矿中痕量稀土元素. 中国无机分析化学. 2023(08): 839-844 . 百度学术
16. 冯先进,马丽. 电感耦合等离子体质谱(ICP-MS)法在我国矿物中“四稀”元素检测的应用. 中国无机分析化学. 2023(08): 802-812 . 百度学术
17. 孙孟华 ,李晓敬 ,王文娟 ,王昕 ,于聪灵 . 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽锂铍钒磷铀锰. 冶金分析. 2022(01): 78-84 . 百度学术
18. 李黎,郭冬发,黄秋红,李伯平,王娅楠,谢胜凯,刘瑞萍. 混合硼酸锂盐熔融-混酸消解-ICP-MS测定伟晶岩样品中的稀土、铀、钍等元素. 铀矿地质. 2022(02): 361-369 . 百度学术
19. 杨惠玲,杜天军,王书勤,何沙白,杨秋慧. 电感耦合等离子体质谱法测定金属矿中稀土和稀散元素. 冶金分析. 2022(05): 8-14 . 百度学术
20. 张鹏鹏,徐进力,胡梦颖,张灵火,白金峰,张勤. 激光诱导击穿光谱分析土壤样品中的锆、铪和铌元素含量实验研究. 光谱学与光谱分析. 2022(07): 2163-2168 . 百度学术
21. 李辉. 电感耦合等离子体质谱法测定化探样品中钨铌钽含量的分析方法优化研究. 安徽地质. 2022(02): 174-177 . 百度学术
22. 胡璇,程紫辉,张树朝,石磊. 基体分离-电感耦合等离子体发射光谱法测定赤泥中的稀土氧化物. 光谱学与光谱分析. 2022(10): 3130-3134 . 百度学术
23. 胡兰基,霍成玉,马龙,马文. 酸溶消解-质谱法测定地球化学样品及稀有、稀土矿中铌和钽. 化学工程师. 2022(11): 23-27 . 百度学术
24. 曾美云,何启生,邵鑫,杨小丽. 全自动石墨消解-电感耦合等离子体质谱法测定岩石样品中稀土元素. 华南地质. 2022(04): 708-714 . 百度学术
25. 王家松,王力强,王娜,方蓬达,曾江萍,张莉娟. 偏硼酸锂熔融分解锆英砂的实验条件优化研究. 华北地质. 2022(04): 48-52 . 百度学术
26. 王佳翰,李正鹤,杨峰,杨秀玖,黄金松. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素. 岩矿测试. 2021(02): 306-315 . 本站查看
27. 张祎玮,蒋俊平,李浩,沈讷敏. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化. 岩石矿物学杂志. 2021(03): 605-613 . 百度学术
28. 龚仓,丁洋,陆海川,卜道露,王立华,熊韬,张志翔. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素. 岩矿测试. 2021(03): 340-348 . 本站查看
29. 周成英,刘美子,张华,李宝城,满旭光,刘英,臧慕文. 铜精矿化学成分分析实验室间比对结果评价和离群值原因分析. 岩矿测试. 2021(04): 619-626 . 本站查看
30. 周艺蓉. 浅谈电感耦合等离子体质谱法样品前处理技术. 科技与创新. 2021(18): 47-48 . 百度学术
31. 王力强,王家松,魏双,郑智慷,吴良英,张楠,曾江萍. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素. 岩矿测试. 2021(05): 688-697 . 本站查看
32. 金一,安帅,宋丽华. 偏硼酸锂熔融-电感耦合等离子体光谱法和质谱法测定东北黑土中32种特征成分的含量. 理化检验-化学分册. 2021(12): 1074-1081 . 百度学术
33. 王力强,王家松,吴良英,曾江萍,方蓬达,郑智慷. 偏硼酸锂熔融-电感耦合等离子体原子发射光谱法测定锆矿石中10种元素. 冶金分析. 2020(09): 63-69 . 百度学术
34. 程龙军,陈昌铭,温炎燊,彭义华,郑冠立. 高纯硫酸铜中17种稀土杂质元素ICP-MS法检测. 化学试剂. 2020(10): 1196-1200 . 百度学术
35. 胡璇. 电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物. 岩矿测试. 2020(06): 954-960 . 本站查看
其他类型引用(3)