Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study
-
摘要:
湖泊沉积物中直链脂肪族化合物(MCCs)对气候变化响应敏感,环境条件的变化可促使MCCs在游离态和结合态间发生转化,是古气候重建的重要生物标志物。以往研究中对样品前处理通常采用混合溶剂提取法得到MCCs游离态组分,而以化学键合、物理吸附等形式赋存的结合态组分无法通过溶剂提取,不能获取结合态组分特征对气候环境变化的指示信息。本文将热裂解这一有机质高效分解技术与气相色谱-质谱(GC-MS)联用,实现了对内蒙古伊和沙日乌苏湖泊沉积物有机质组成的精细刻画,并识别、分析了共计3类、71项结合态MCCs化合物。结果表明:热解温度是影响热裂解-气相色谱-质谱(Py-GC/MS)分析沉积物样品中结合态MCCs分布特征的主要因素,450℃以下热解能量较低导致结合态MCCs解析不充分,550℃和650℃下各类结合态MCCs(含正构烷烃、正构烯烃及α-正构脂肪酮)充分解析,可经GC-MS实现在线分离、识别;随着热解温度升高,裂解产物中MCCs平均链长趋于降低,过高的裂解能量影响了产物中MCCs化合物链长特征对气候变化指示的敏感性。经研究各类MCCs分布特征发现,550℃下正构烷烃平均链长特征与传统气候替代指标游离态正构烷烃单体碳同位素δ13C27~33具有较好的相关性(R=0.83)。结合态正构烷烃ACL25~31指标响应了区域有效降水变化特征,识别了区域内5.6ka、3.9ka前后的干旱期,反映了东亚夏季风强度变化,对应了北半球中纬度有效降水变化。
-
关键词:
- 热裂解-气相色谱-质谱法(Py-GC/MS) /
- 伊和沙日乌苏湖 /
- 结合态直链脂肪族化合物 /
- 古气候
要点(1) 550℃是伊和沙日乌苏湖沉积物Py-GC/MS分析MCCs结合态的适宜热解条件。
(2) 伊和沙日乌苏湖泊沉积物中结合态MCCs化合物的分布特征与游离态组分存在明显差异,反映MCCs化合物因环境变化发生了赋存形态变化。
(3) 结合态正构烷烃ACL25~31值与研究区内有效降水变化特征一致。
HIGHLIGHTS(1) 550 ℃ is the suitable pyrolytic temperature for extracting bound MCCs in the sediments of the Yiheshariwusu Lake.
(2) The distribution characteristics of bound MCCs in sediments are significantly different from free MCCs, indicating the occurrence form changes of MCCs compounds due to environmental changes.
(3) The ACL25-31values of bound n-alkanes are consistent with the various characteristics of effective precipitation in the region.
Abstract:BACKGROUNDMethylene chain backbone compounds (MCCs) in lake sediments are sensitive to climate change, and changes in environmental conditions could promote the transformation of MCCs lipids between free and bound states, hence providing a series of biomarkers for paleoclimate reconstruction. In previous studies, free MCCs lipids were typically extracted by mixed solvents, bound MCCs lipids with chemical bonding or physical adsorption could not be obtained by organic solvent extraction, and the indicator information of the characteristics of bound components on paleoclimate change was missing.
OBJECTIVESTo study the suitable analytical conditions for bound MCCs lipids, and establish proxy based on bound MCCs lipids to provide an effective tool for paleoclimate reconstruction of terrestrial ecosystems.
METHODSOptimized analytical method of pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) was established and used to evaluate the bound MCCs in typical Desert Lake sediment.
RESULTSTotal of 71 bound MCCs compounds were identified and analyzed based on fine characterization of organic matter composition in the sediments of the Yiheshariwusu Lake in Inner Mongolia. Pyrolysis temperature was the main factor affecting the distribution characteristics of bound MCCs in sediment. Low pyrolysis energy under 450℃ led to insufficient resolution of bound MCCs. At 550℃ and 650℃, total bound n-alkanes, n-alkenes, and n-alkan-2-ones were on-line separated, identified and analyzed. The average chain length characteristics of bound n-alkanes at 550℃ and the carbon isotope of free n-alkanes as a traditional climate substitute index δ13C27-33 had the best correlation (R=0.83, n=11, p < 0.01).
CONCLUSIONSProxy ACL25-31 of bound n-alkanes respond to the change characteristics of regional effective precipitation, identify the drought periods around 5.6ka and 3.9ka in the region, reflect the intensity change of East Asian summer monsoon, and correspond to the change of effective precipitation in the mid-latitude of the northern hemisphere.
-
土壤、湖沼沉积物、海洋沉积物等不同地质体中的生物标志化合物来自动植物等生物有机体,继承了生物母质信息,在有机质演化过程中具有一定的稳定性,被广泛应用于不同时间尺度下古气候重建和现代过程研究[1-5]。具有碳骨架结构的正构烷烃、烯烃、脂肪酮等直链脂肪族类脂化合物(Methylene Chain-backbone Compounds, MCCs)普遍存在于各种地质载体中,是开展植被更替反演、古气候重建等研究的重要指标[6-9]。沉积物中的MCCs化合物以多种形态存在,且一定条件下可在游离态和结合态之间转化。游离态MCCs即来源于生物体的原生烃类和其他类脂化合物的可溶性游离分子,已有研究多聚焦于该形态,其前处理、分析方法及气候指示意义等相对明确;另存在化学、物理结合态MCCs,通过酯键、醚键、肽键等化学键与沉积物结合,被沉积物中黏土等矿物晶格捕获,或受到天然大分子的空间位阻效应等多种方式得以保存[10-11],其化学反应活性相对较弱,针对该形态的应用研究相对较少。通常地质样品中MCCs化合物提取方法为索氏提取、超声萃取、微波萃取或加速溶剂萃取等,而结合态组分难以通过有机溶剂提取,不能获取在成岩作用、生物作用、沉积作用下由游离态转化为结合态所指示的环境气候变化信息,因此采取合适技术方法分解有机质,从而实现对结合态组分的解析至关重要。
分解有机质的主要手段包括酸解、碱解及高温裂解等。热裂解-气相色谱-质谱(Py-GC/MS)技术即利用高温促使化学键断裂,从而对有机质进行快速热解并进行热解气在线分析。该方法无需大量化学试剂及萃取等样品处理过程,具有用量少、自动化程度高、重现性好等特点,被广泛地应用于生物质能源和材料分析等领域[12-14],并于20世纪80年代由van der Kaaden和Genuit等学者[15-16],将其应用领域拓展至地质环境,应用于反演沼泽地的腐植化程度与表面湿度。van der Heijden等[17]和Schellekens等[18]开展了典型植物裂解产物特征研究,发现泥炭及湖泊沉积物热裂解产物中4-异丙烯基苯酚(4-isopropenylphenol)等化合物对泥炭藓、禾本科植物和地衣等特征植物的指示作用。Schellekens等[19-26]在改进分析方法的基础上探讨了泥炭沼泽、湖泊沉积物的有机质组成,及全新世气候变化对有机质裂解产物特征变化的影响,应用研究涵盖了欧洲、亚洲、非洲及南美洲的不同纬度和气候带。国内外已报道的相关研究多集中于有机质含量普遍较高的样品,但侧重有所不同,国际上对与植被、微生物密切相关的酚类、含甲氧基的木质素单体、芳烃类、含氮(氧)的杂环化合物的讨论较多,而对MCCs化合物的组成及其变化特征研究较少;中国相关研究团队则注重有机质整体的指纹特征,如高原现代土壤、三角洲沉积物和海洋沉积物的有机质结构及其生态效应研究[27-30]。已有研究展示了Py-GC/MS技术在分析MCCs化合物的应用潜力,但受到不同裂解仪器产生的分析误差、不同样品类型带来的基质效应、裂解产物种类繁多(地质样品通常为百余种)等原因,对于特定组分(如MCCs化合物等)的分析仍需开展方法验证和环境指示意义应用研究。
本文基于Py-GC/MS分析方法,在前人研究基础上,针对低含量有机质样品方法研究不足、裂解产物对应气候指示意义不明等问题,利用典型干旱-半干旱地区湖泊沉积物样品,讨论了低含量有机质样品在不同热裂解条件下裂解产物中MCCs化合物分布特征及差异,研究了结合态MCCs化合物适宜分析条件。通过与传统气候指示指标对比,讨论本文建立的基于结合态MCCs化合物的指标对气候变化的指示作用,为陆地生态系统古气候重建提供新手段。
1. 实验部分
1.1 热裂解分析样品准备
本实验所用样品采自伊和沙日乌苏湖,地处内蒙古呼伦贝尔草原腹地,具有干旱-半干旱的区域气候特征。选择不同深度的11个样品(编号YH-1至YH-11),类型为黏土质粉砂、粉砂质黏土或砂质黏土,年龄跨度在0.9~5.7ka之间。冻干样品去掉肉眼可见石块等杂质后,经二氯甲烷-甲醇混合溶剂(95∶5, V/V)利用快速溶剂萃取(ASE)在120℃下静态加热5min,循环2次,得到样品中游离态组分,经浓缩萃取分离得到游离态正构烷烃组分[31]。残余固体样品在室温下干燥、挥发溶剂后,利用微量天平准确称量1~15mg之间的样品于热裂解专用石英管内(具体称样量结合仪器的最优响应进行调整)。为了助于吸附焦油、无机盐等难以气化物质,防止样品飞散,样品两端放置适量石英棉,待后续热裂解分析。
1.2 热裂解实验仪器及工作参数
微量天平(XP-6型,瑞士Mettler-Toledo公司)。
居里点裂解仪(CDS 5200型,美国CDS公司)。
样品在高纯He气氛下进行无氧热裂解。加热升温速率20℃/ms,裂解时间10s,阀箱温度270℃,传输线温度270℃。
气相色谱-离子阱质谱仪(450GC/240MS,原美国Varian公司)。
气相部分:进样口温度270℃,载气为高纯He,柱流速1mL/min(恒流模式)。DB-1MS毛细管色谱柱(60m×0.25mm×0.25μm,美国Agilent J & W公司)。程序升温条件:炉箱初始温度40℃,以4℃/min升至320℃,维持18min,共91min。
质谱部分:采用电子轰击离子源内源模式(Internal EI),电子能量70eV;离子源温度220℃,歧管温度40℃,传输线温度280℃。采用全扫描模式,扫描范围40~450amu。
1.3 质量控制
实验过程中,通过调整进样量保证获得较高信噪比,内部质量控制通过插入空白样和重复样确保测试数据的可靠性,通过计算目标化合物的峰面积与总峰面积的比值得到MCCs化合物的检出限 < 2.12×10-4,RSD < 5%。
2. 结果与讨论
2.1 裂解产物中MCCs化合物的识别
大量湖泊、泥炭沉积及现代植物样品研究证实,由正构烷烃碳链长度特征发展而来的平均碳链长度(Average Chain Length, ACL)指数,可为区分不同端元有机质的贡献、反演古气候变化特征等提供有效信息。因此,对不同碳链长度各类MCCs化合物的准确识别是开展后续应用研究的重要基础。
MCCs化合物在裂解产物中的响应强度在20%~75%之间,主要分为正构烷烃、正构烯烃和α-正构脂肪酮3类。根据质谱裂解规律[32],正构烷烃发生σ断裂生成生成游离基和碎片离子[CnH2n+1]+,即m/z 43、57、71、85等间隔质量数14的特征碎片离子系列,且主要的基峰为m/z=57。正构烯烃含有一个双键,碳原子未参与杂化的p轨道互相平行重叠形成的π键易断裂、易极化生成生成游离基和碎片离子[CnH2n-1]+,即m/z=41、55、69、83等间隔质量数14的特征碎片离子系列。α-正构脂肪酮由于甲基的存在,使乙酰基的氧原子易发生α断裂生成m/z=43的特征碎片离子,长链α-正构脂肪酮易通过McLafferty重排生成质量数为58的特征碎片离子(图 1)。经色谱分离,同一类化合物中,质量数越大保留时间越长,碳链长度与保留时间呈现显著正相关。正构烷烃碳链长度与保留时间相关性R=0.99(n=25, p < 0.01),正构烯烃碳链长度与保留时间相关性R=0.99(n=23, p < 0.01),α-正构脂肪酮碳链长度与保留时间相关性R=0.99(n=23, p < 0.01)。经质谱分析,参考标准数据库(NIST2008)和相关文献,得到了C9~C33的正构烷烃、C9~C31的正构烯烃及C9~C31的α-正构脂肪酮,共计3类71项结合态MCCs化合物(表 1)[19, 26, 33-34]。
表 1 热解产物中MCCs化合物的识别Table 1. Identification and classification of MCCs compounds in pyrolytic products化合物序号 化合物名称 分子式 特征离子(m/z) 保留时间(min) 1~25 C9~C33正构烷烃 CnH2n+1 57 17.401~77.019 26~48 C9~C31正构烯烃 CnH2n 55 16.942~73.203 49~71 C9~C31 α-正构脂肪酮 CnH2nO 58 16.171~73.479 2.2 裂解产物中结合态MCCs分布特征
2.2.1 Py-GC/MS分析有机质裂解产物的影响因素
根据热裂解原理,当热解温度对应的能量高于化合物相应官能团化学键键能,即可发生裂解反应,且热解能量越高,有机质提取比例越高[35]。生物质材料、石油化工等领域的已有研究发现,在不同热解温度下样品的气化产物的化学组成(化合物类型、相对含量变化等)存在差异[36-38],因此热解温度是影响分析结果的主要因素。不同类型样品因基体效应导致释放结合态组分所对应能量不同,根据已有报道,生物、湖泊沉积物、泥炭沼泽、表层土壤样品的适宜热解温度存在差异,温度分布在450~700℃之间[39-43]。不同仪器的温度传导机制不同,或同一类型不同型号的仪器裂解部件设计存在差异,可造成50℃左右的温差[20, 28, 44-48],个别类型的居里点热裂解系统设定温度和实际热解温度差异可达125~150℃[49-50]。因此,为了实现利用Py-GC/MS方法对地质环境样品中MCCs化合物高效准确分析,有必要结合样品特点和现有分析仪器,对建立的Py-GC/MS分析方法的热解条件进行优化。
在裂解过程中,样品中有机质在高温下易发生脂肪侧链断裂反应、生成烯烃的脱氢反应、缩聚反应、芳构化反应等,且温度越高伴随产物中芳香性指数和二次反应产物增加[51]。有研究发现,样品含有无机矿物或有机结合的碳酸钙时,有机质热解活化能随钙含量的增加而降低[48, 52-55]。伊和沙日乌苏湖湖水矿化度高,碳酸钙在湖泊沉积物样品中的含量高,分析时应考虑适当降低热解温度,以减少二次裂解产物的大量产出从而避免对一次裂解特征的识别产生干扰。因此,在固定其他实验条件不变的情况下,本文将同一样品(YH-7)在不同温度(350℃、450℃、550℃、650℃)进行热裂解,结合响应强度、产物类型对热裂解效果进行综合评价(图 2)。
2.2.2 不同热解温度条件下有机质裂解特征
总体上,温度从350℃升高至650℃,裂解产生的有机质总量和裂解产物种类增多。其中热解温度由350℃升至450℃,大分子裂解效率升高,有机质总量显著提高。以样品YH-7为例,总离子色谱响应计数由350℃的9.30×106counts/mg,上升到450℃的2.64×107counts/mg。随着热解温度的继续上升,总离子响应略有下降,分析其原因可能为温度升高造成的本底增高,扣除本底后表现总离子强度为550℃的2.38×107counts/mg,650℃的1.94×107counts/mg。
在裂解产物的组成方面,350℃和450℃时,裂解产物仅有少量烷烃、烯烃及含氮化合物。已有游离态生物标志化合物研究表明,沉积物中正构烷烃分布以C15~C33为主[5, 7, 56],与450℃得到的产物碳数分布相近,因此可以认为450℃以下的温度裂解产物以游离态组分为主,结合态组分未得到有效解析。550℃以上时,产物种类涵盖烷烃、烯烃、α-脂肪酮、芳烃、含氮化合物,木质素、糖类等天然大分子在高温下裂解,生成含甲氧基的酚类单体及杂环化合物。碳数低于14的短链烷烃、烯烃和α-脂肪酮含量有所增加,可能来源于大分子化合物核外脂肪族基团断裂生成的自由基反应,或长链脂肪酸的二次裂解、脱羧反应等产物。650℃时产物中芳香化合物相对含量进一步增加,质量数在200amu以下的化合物相对含量进一步增加,信噪比有所提升。
2.2.3 不同热解条件下结合态MCCs化合物分布特征
在各类MCCs的响应强度方面,总计11个样品中9个样品的正构烷烃、正构烯烃和α-正构脂肪酮的单位峰面积随着热解温度350~650℃呈现出增高的趋势。如图 3所示,以样品YH-8为例,在350℃、450℃、550℃、650℃四种温度下,正构烷烃的单位峰面积分别为6.71×103、1.60×105、2.85×105和5.56×105counts·min/mg;正构烯烃的单位峰面积分别为0、7.68×104、1.86×105和5.55×105counts·min/mg;α-正构脂肪酮的单位峰面积分别为0、5.96×104、1.07×105和2.35×105counts·min/mg,各组分含量结果由每毫克样品的裂解产物中化合物对应的峰面积表示。另2个样品(YH-3和YH-4)的MCCs响应强度随温度至450℃后略有下降,正构烷烃、正构烯烃和α-正构脂肪酮响应最高值均出现在450℃,考虑到11个样品中仅有上述2个样品属于粉砂质黏土,可能原因是较高的碳酸钙或无机钙矿物元素含量降低了适宜热解温度,导致后期高温下芳烃类等其他化合物相对含量的增加,而减少了MCCs类化合物的生成。
在MCCs类型特征方面,热解温度为350℃时,裂解产物中未检出α-正构脂肪酮组分。在碳链长度方面,随着热解温度由450℃升高至650℃,各类化合物平均碳链长度均呈现降低趋势。450℃下裂解产物正构烷烃、正构烯烃和α-正构脂肪酮的分布特征与550℃和650℃存在明显差异,呈现出以长链为主的分布特征,550℃时呈现出以长链与中链为主的“双峰”分布,650℃时则以中、短链为主。11个样品的正构烷烃的ACL平均值分别是23.24、19.68和17.81,正构烯烃ACL平均值分别是22.60、17.40和15.81,α-正构脂肪酮的ACL平均值分别是20.76、16.41和14.42。以上特征佐证了450℃温度时结合态组分未得到充分解析这一观点。因此,虽然450℃、550℃和650℃热解温度下样品中MCCs化合物各组分均有检出,但由于不同温度产物的碳链长度分布差异较大,其分布特征是否可以指示气候(温度、有效降水等)变化特征,需要通过与已有气候指标进行对照分析,以进一步确定适宜的热解条件。
2.3 裂解产物中结合态MCCs的古气候指示意义
伊和沙日乌苏湖位于东亚夏季风北边缘地带,该类干旱-半干旱地区封闭型湖泊对全球变化响应敏感,中国北方干旱-半干旱地区湖泊对季风降水变化敏感,记录普遍存在6.7~5.5ka、4.3~3.6ka干旱气候事件,指示了东亚夏季风强度变化,也响应了北半球中纬度陆地干湿变化[57-61]。同区已有同位素研究发现,正构烷烃单体碳同位素比值δ13C27~33所指示的有效降水8.5ka以来呈逐渐增加趋势,且6.3~5.5ka,4.1~3.6ka为相对干旱期[31]。
2.3.1 湖泊沉积物结合态MCCs分布特征
利用优化的Py-GC/MS分析方法,以样品YH-3和YH-11为例将不同气候特征的样品进行对比(YH-3属相对湿润期,YH-11属相对干旱期),分别在450℃、550℃和650℃下对MCCs化合物进行分析,得到了正构烷烃C9~C33、正构烯烃C9~C31、α-正构脂肪酮C9~C29分布特征(图 4)。
图 4 伊和沙日乌苏沉积物样品YH-3(相对湿润期)、YH-11(相对干旱期)中结合态MCCs(a1-3、b1-3)和游离态(a-4、b-4)MCCs分布图a-1至a-3和b-1至b-3中所示为450℃(红色)、550℃(黑色)、650℃(白色)热解温度下正构烷烃的峰面积。Figure 4. Distribution of bound MCCs compounds (a1-3 and b1-3) and free n-alkanes (a-4 and b-4) in the Yiheshariwusu Lake sediments of YH-3 (relative humid period) and YH-11 (relative drought period). Peak area of bound MCCs compounds pyrolyzed under 450℃ (red), 50℃ (black) and 650℃ (white) were presented in a1-a3 and b1-b3在各类MCCs响应强度方面,在相对湿润期550℃温度下裂解生成的结合态MCCs化合物的含量与650℃时相比更高,而在相对干旱期则相反,可能与有机质含量差异和MCCs化合物不同结合态(有机质结合态、矿物结合态)下的含量差异有关[62-63]。在碳链长度分布特征方面,经与游离态生标分布特征比较发现,在450℃和550℃温度下裂解生成的结合态MCCs化合物在碳数15以上的分布特征与游离态正构烷烃分布特征具有一定相似性,其中正构烷烃和α-正构脂肪酮在碳数25以上仍保留了较显著的奇偶优势。与450℃相比,550℃和650℃时碳数15以下的含量显著增高,可能来自与有机质或矿物相结合的短链组分,部分还可能由天然大分子脂肪侧链或长链组分的断键反应和还原反应生成。在650℃温度下裂解生成的结合态MCCs化合物的碳数变短且分布趋向均一化,特征与游离态正构烷烃相差较大。
2.3.2 基于结合态MCCs链长指标的气候指示意义
根据同一研究区及全球范围相关研究,在气候变化驱动下,植被类型的变化会显著影响直链脂肪族化合物的碳链长度分布特征,对揭示陆地植被生态演替过程具有参考意义[64-65]。与450℃和650℃温度下裂解生成的结合态MCCs指标相比,550℃温度下的ACL值与正构烷烃单体碳同位素δ13C27~33的相关性更高(表 2)。本研究区游离态正构烷烃ACL23~33变化特征与δ13C27~33所指示有效降水具有相似趋势,本文中得到的结合态正构烷烃ACL25~31值亦具有最显著相关性(R=0.83)。可见,550℃可作为适宜热解温度对伊和沙日乌苏湖泊沉积物中结合态MCCs化合物进行识别分析。同时我们也发现,结合态α-正构脂肪酮的ACL17-25也呈现了显著相关性(R=-0.78),与中国神农架大九湖泥炭地、南岭大湖沼泽,及南非Mfabeni沼泽已有研究发现的游离态α-正构脂肪酮分布特征主要受有效降水影响这一结论相符[66-68]。
表 2 不同热解温度下MCCs指标与正构烷烃单体碳同位素δ13C27~33的相关性Table 2. Correlation coefficients between indexes of bound MCCs compounds and δ13C27-33 of n-alkanes under different pyrolysis temperatures热解温度(℃) ACL指标 样品数量(n) 相关系数(R) p 正构烷烃ACL25~31 11 -0.60 0.05 450 正构烯烃ACL24~30 11 0.51 0.11 α-正构脂肪酮ACL17~25 10 -0.52 0.12 正构烷烃ACL25~31 11 0.83 < 0.01 550 正构烯烃ACL24~30 11 0.69 < 0.05 α-正构脂肪酮ACL17~25 10 -0.78 < 0.01 正构烷烃ACL9~33 11 -0.55 0.08 650 正构烯烃ACL10~20 11 -0.42 0.20 α-正构脂肪酮ACL17~25 10 -0.66 < 0.05 注:ACL=Σ(i×Ci)/ΣCi。 结合态正构烷烃ACL25~31值在5.7ka以来呈现上升趋势,与已有研究发现的游离态正构烷烃单体碳同位素比值δ13C27~33所指示的有效降水8.5ka以来呈逐渐增加的趋势一致。结合态正构烷烃的长链组分对气候的干湿变化更敏感,ACL值越高可能指示环境越干旱,有效湿度较低;ACL越低则指示湿润的环境,有效湿度较高。同时,在5.6ka、3.9ka前后存在干旱期,表现为ACL25~31值较显著升高(图 5)。以上结果揭示了结合态MCCs化合物在示踪有机质组成及来源信息,并指示气候变化特征的应用潜力。
3. 结论
本文利用Py-GC/MS分析方法实现了对低含量有机质地质样品中的结合态正构烷烃、正构烯烃及α-正构脂肪酮的在线识别、分析,样品用量少,有机质提取比例高,操作流程简单且自动化程度高。该方法应用于典型干旱-半干旱区沙漠湖泊沉积物有机质组成的精细刻画,并识别、分析了共计3类、71项结合态MCCs化合物。结果表明,550℃条件下裂解产物中结合态MCCs化合物分布特征较好地反映了区域有效降水变化,由此得到的正构烷烃ACL25~31指标与传统气候替代指标游离态正构烷烃单体碳同位素δ13C27~33具有较好的相关性(R=0.83),可用于历史时期相对干湿气候识别,展示了Py-GC/MS法分析结合态MCCs化合物在全球变化领域的良好应用前景。
鉴于py-GC/MS在复杂基体有机质解析的优势,在后续研究中可进一步拓展样品类型(如现代植物、富营养沉积样品等),增加对同样具有长链碳骨架结构的生物标志化合物,如脂肪醇、脂肪酸、芳香类及杂环类化合物等的讨论研究,为评价陆地生态系统有机质对全球变化的响应机理等研究提供技术基础。
致谢: 向中国科学院地质与地球物理研究所储国强研究员在样品采集、数据解释等方面的帮助及指导表示衷心感谢;向董胜利在样品测试上给予的帮助,以及国家地质实验测试中心佟玲高级工程师在仪器维护方面的指导表达诚挚谢意。 -
图 4 伊和沙日乌苏沉积物样品YH-3(相对湿润期)、YH-11(相对干旱期)中结合态MCCs(a1-3、b1-3)和游离态(a-4、b-4)MCCs分布图
a-1至a-3和b-1至b-3中所示为450℃(红色)、550℃(黑色)、650℃(白色)热解温度下正构烷烃的峰面积。
Figure 4. Distribution of bound MCCs compounds (a1-3 and b1-3) and free n-alkanes (a-4 and b-4) in the Yiheshariwusu Lake sediments of YH-3 (relative humid period) and YH-11 (relative drought period). Peak area of bound MCCs compounds pyrolyzed under 450℃ (red), 50℃ (black) and 650℃ (white) were presented in a1-a3 and b1-b3
表 1 热解产物中MCCs化合物的识别
Table 1 Identification and classification of MCCs compounds in pyrolytic products
化合物序号 化合物名称 分子式 特征离子(m/z) 保留时间(min) 1~25 C9~C33正构烷烃 CnH2n+1 57 17.401~77.019 26~48 C9~C31正构烯烃 CnH2n 55 16.942~73.203 49~71 C9~C31 α-正构脂肪酮 CnH2nO 58 16.171~73.479 表 2 不同热解温度下MCCs指标与正构烷烃单体碳同位素δ13C27~33的相关性
Table 2 Correlation coefficients between indexes of bound MCCs compounds and δ13C27-33 of n-alkanes under different pyrolysis temperatures
热解温度(℃) ACL指标 样品数量(n) 相关系数(R) p 正构烷烃ACL25~31 11 -0.60 0.05 450 正构烯烃ACL24~30 11 0.51 0.11 α-正构脂肪酮ACL17~25 10 -0.52 0.12 正构烷烃ACL25~31 11 0.83 < 0.01 550 正构烯烃ACL24~30 11 0.69 < 0.05 α-正构脂肪酮ACL17~25 10 -0.78 < 0.01 正构烷烃ACL9~33 11 -0.55 0.08 650 正构烯烃ACL10~20 11 -0.42 0.20 α-正构脂肪酮ACL17~25 10 -0.66 < 0.05 注:ACL=Σ(i×Ci)/ΣCi。 -
[1] Naafs B D A, Inglis G N, Blewett J, et al. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review[J]. Global and Planetary Change, 2019, 179: 57-79. doi: 10.1016/j.gloplacha.2019.05.006
[2] Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment[J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4
[3] Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K. Ⅰ: Source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6): 901-912. doi: 10.1016/0146-6380(91)90031-E
[4] Sun Q, Chu G Q, Liu M, et al. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Research, 2011, 116(G1): 79-89.
[5] Chu G Q, Sun Q, Xie M M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China[J]. Quaternary Science Reviews, 2014, 102: 85-95. doi: 10.1016/j.quascirev.2014.08.008
[6] Jambrina-Enríquez M, Sachse D, Valero-Garcés B L. A deglaciation and Holocene biomarker-based recon-struction of climate and environmental variability in NW Iberian Peninsula: The Sanabria Lake sequence[J]. Journal of Paleolimnology, 2016, 56(1): 49-66. doi: 10.1007/s10933-016-9890-6
[7] Zhang Y, Meyers P A, Liu X, et al. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30. doi: 10.1016/j.quascirev.2016.09.016
[8] Yan Y, Zhao B, Xie L, et al. Trend reversal of soil n-alkane carbon preference index (CPI) along the precipitation gradient and its paleoclimatic implication[J]. Chemical Geology, 2021, 581: 1-10.
[9] Xie S, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2849-2862. doi: 10.1016/j.gca.2003.08.025
[10] Barakat A O, Rullk tter J. Extractable and bound fatty acids in core sediments from the N rdlinger Ries, southern Germany[J]. Fuel, 1995, 74(3): 416-425. doi: 10.1016/0016-2361(95)93476-T
[11] 王江涛, 杨庶, 谭丽菊, 等. 浙江南部近海沉积物柱状样中脂类生物标志物的组成及形态分布[J]. 海洋学报, 2011, 33(5): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201105011.htm Wang J T, Yang S, Tan L J, et al. Composition and form distribution of lipids biomarkers in a sediment core from southern coastal area of Zhejiang Province[J]. Marine Sciences, 2011, 33(5): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201105011.htm
[12] Kaal J, Lantes-Suárez O, Martínez Cortizas A, et al. How useful is pyrolysis-GC/MS for the assessment of molecular properties of organic matter in Archaeological Pottery Matrix? An exploratory case study from North-West Spain[J]. Archaeometry, 2014, 56: 187-207. doi: 10.1111/arcm.12057
[13] Li J, Chen Y, Yang H, et al. The correlation of feedstock and bio-oil compounds distribution[J]. Energy Fuels, 2017, 31(7): 7093-7100. doi: 10.1021/acs.energyfuels.7b00545
[14] 王娜, 张学芹, 雷勇, 等. 故宫太和殿护板灰有机组分的红外光谱及热裂解-气相色谱/质谱分析[J]. 文物保护与考古科学, 2018, 30(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-WWBF201802014.htm Wang N, Zhang X Q, Lei Y, et al. FTIR and Py-GC/MS analysis of organic materials used in the guard board mortar of Taihe Dian, the Forbidden City[J]. Sciences of Conservation and Archaeology, 2018, 30(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-WWBF201802014.htm
[15] van der Kaaden A, Boon J J, Haverkamp J. The analytical pyrolysis of carbohydrates. 2-Differentiation of homopolyhexoses according to their linkage type, by pyrolysis-mass spectrometry and pyrolysis-gas chromatography/mass spectrometry[J]. Biomedical Mass Spectrometry, 1984, 11(9): 486-492. doi: 10.1002/bms.1200110910
[16] Genuit W, Boon J J. Pyrolysis-gas chromatography-photoionization-mass spectrometry, a new approach in the analysis of macromolecular materials[J]. Journal of Analytical and Applied Pyrolysis, 1985, 8: 25-40. doi: 10.1016/0165-2370(85)80012-7
[17] van der Heijden E, Boon J, Rasmussen S, et al. Sphagnum acid and its decarboxylation product isopropenylphenol as biomarkers for fossilised[J]. Ancient Biomolecules, 1997, 1(2): 93-93.
[18] Schellekens J, Bradley J A, Kuyper T W, et al. The use of plant-specific pyrolysis products as biomarkers in peat deposits[J]. Quaternary Science Reviews, 2015, 123: 254-264. doi: 10.1016/j.quascirev.2015.06.028
[19] Schellekens J, Buurman P, Pontevedra-Pombal X. Selecting parameters for the environmental interpretation of peat molecular chemistry-A pyrolysis-GC/MS study[J]. Organic Geochemistry, 2009, 40(6): 678-691. doi: 10.1016/j.orggeochem.2009.03.006
[20] Ninnes S, Tolu J, Meyer-Jacob C, et al. Investigating molecular changes in organic matter composition in two Holocene lake-sediment records from central Sweden using pyrolysis-GC/MS[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1423-1438. doi: 10.1002/2016JG003715
[21] Kaal J, Cortizas A M, Rydberg J, et al. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssj n, Sweden[J]. Organic Geochemistry, 2015, 83-84: 253-262. doi: 10.1016/j.orggeochem.2015.04.005
[22] Sanjurjo-Sánchez J, Kaal J, Fenollós J L M. Organic matter from bevelled rim bowls of the Middle Euphrates: Results from molecular characterization using pyrolysis-GC-MS[J]. Microchemical Journal, 2018, 141: 1-6. doi: 10.1016/j.microc.2018.05.001
[23] Melenevskii V, Leonova G, Bobrov V, et al. Transformation of organic matter in the Holocene sediments of Lake Ochki (South Baikal region): Evidence from pyrolysis data[J]. Geochemistry International, 2015, 53(10): 903-921. doi: 10.1134/S0016702915080054
[24] Kumar M, Boski T, Lima-Filho F P, et al. Environmental changes recorded in the Holocene sedimentary infill of a tropical estuary[J]. Quaternary International, 2018, 476: 34-45. doi: 10.1016/j.quaint.2018.03.006
[25] Kaal J, Cortizas A M, Eckmeier E, et al. Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: A case study from Campo Lameiro (NW Spain)[J]. Journal of Archaeological Science, 2008, 35(8): 2133-2143. doi: 10.1016/j.jas.2008.01.013
[26] Carr A S, Boom A, Chase B M, et al. Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: An example from the southern Cape coastline of South Africa[J]. Journal of Paleolimnology, 2010, 44(4): 947-961. doi: 10.1007/s10933-010-9466-9
[27] Li Z, Zhang Z, Xue Z, et al. Molecular fingerprints of soil organic matter in a typical freshwater wetland in northeast China[J]. Chinese Geographical Science, 2019, 29(4): 700-708. doi: 10.1007/s11769-019-1062-y
[28] Lu X, Ma S, Chen Y, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China[J]. Biomolecules, 2018, 8(154): 1-12.
[29] Li Z, Zhang Z, Li M, et al. Molecular fingerprints of soil organic carbon in wetlands covered by native and non-native plants in the Yellow River Delta[J]. Wetlands, 2020(2): 1-10.
[30] Chen Q, Wu Y, Lei T, et al. Study on the fingerprints of soil organic components in Alpine grassland based on Py-GC-MS/MS technology[J]. Acta Ecologica Sinica, 2018, 38(8): 2864-2873.
[31] Xie M, Sun Q, Dong H, et al. n-alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China[J]. The Holocene, 2020, 30(10): 1451-1461. doi: 10.1177/0959683620932968
[32] 丛浦珠, 苏克曼. 分析化学手册: 质谱分析(第九分册)[M]. 北京: 化学工业出版社, 2000. Cong P Z, Su K M. Handbook of analytical chemistry: Mass spectrometry (Volume 9)[M]. Beijing: Chemical Industry Press, 2000.
[33] McClymont E L, Bingham E M, Nott C J, et al. Pyrolysis GC-MS as a rapid screening tool for determination of peat-forming plant composition in cores from ombrotrophic peat[J]. Organic Geochemistry, 2011, 42(11): 1420-1435. doi: 10.1016/j.orggeochem.2011.07.004
[34] Schellekens J, Buurman P. n-alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation[J]. Geoderma, 2011, 164(3-4): 112-121. doi: 10.1016/j.geoderma.2011.05.012
[35] Moldoveanu S C. Pyrolysis GC/MS, present and future (recent past and present needs)[J]. Journal of Microcolumn Separations, 2001, 13(3): 102-125. doi: 10.1002/mcs.1028
[36] Zhang H, Liao W, Zhou X, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022, 344: 1-10.
[37] Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil As a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21): 11770-11778.
[38] Cui D, Li J, Zhang X, et al. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 1-10.
[39] Fabbri D, Adamiano A, Falini G, et al. Analytical pyro-lysis of dipeptides containing proline and amino acids with polar side chains. Novel 2, 5-diketopiperazine markers in the pyrolysates of proteins[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 145-155. doi: 10.1016/j.jaap.2012.02.001
[40] Zhu R, Versteegh G J M, Hinrichs K U. Detection of microbial biomass in subseafloor sediment by pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 175-180. doi: 10.1016/j.jaap.2016.02.002
[41] Lara-Gonzalo A, Kruge M A, Lores I, et al. Pyrolysis GC-MS for the rapid environmental forensic screening of contaminated brownfield soil[J]. Organic Geochemistry, 2015, 87: 9-20. doi: 10.1016/j.orggeochem.2015.06.012
[42] Kaal J, Martinez C A, Mateo M A, et al. Deci-phering organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting[J]. Science of the Total Environment, 2020, 742: 1-19.
[43] Zúñiga D, Kaal J, Villacieros-Robineau N, et al. Tracing sinking organic matter sources in the NW Iberian upwelling system (NE Atlantic Ocean): Comparison between elemental, isotopic and molecular indicators[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 114-122. doi: 10.1016/j.jaap.2019.01.016
[44] Kruge M A, Permanyer A. Application of pyrolysis-GC/MS for rapid assessment of organic contamination in sediments from Barcelona Harbor[J]. Organic Geochemistry, 2004, 35(11): 1395-1408.
[45] Lewis J M T, Najorka J, Watson J S, et al. The search for Hesperian organic matter on Mars: Pyrolysis studies of sediments rich in sulfur and iron[J]. Astrobiology, 2018, 18(4): 454-464. doi: 10.1089/ast.2017.1717
[46] Zhang Y, Yang K, Du J, et al. Chemical characterization of fractions of dissolved humic substances from a marginal sea-A case from the Southern Yellow Sea[J]. Journal of Oceanology and Limnology, 2018, 36(2): 238-248. doi: 10.1007/s00343-017-6202-6
[47] Kumar M, Boski T, González-Vila F J, et al. Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa Lagoon (South Portugal)[J]. Environmental Science and Pollution Research, 2020, 27(23): 28962-28985. doi: 10.1007/s11356-020-09235-9
[48] Tolu J, Gerber L, Boily J F, et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multi-variate curve resolution: A promising analytical tool in (paleo)limnology[J]. Analytica Chimica Acta, 2015, 880: 93-102. doi: 10.1016/j.aca.2015.03.043
[49] Sigleo A C, Hoering T C, Helz G R. Composition of estuarine colloidal material: Organic components[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1619-1626. doi: 10.1016/0016-7037(82)90318-0
[50] Kaal J. Analytical pyrolysis in marine environments revi-sited[J]. Analytical Pyrolysis Letters, 2019, 6: 1-16.
[51] Wang Q, Wang X M, Shuo P. Study on the structure, pyrolysis kinetics, gas release, reaction mechanism, and pathways of Fushun oil shale and kerogen in China[J]. Fuel Processing Technology, 2022, 225(107058): 1-11.
[52] Boateng A A, Hicks K B, Vogel K P. Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity[J]. Journal of Analytical & Applied Pyrolysis, 2006, 75(2): 55-64.
[53] Liu H, Yuan P, Liu D, et al. Pyrolysis behaviors of organ-ic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals[J]. Applied Clay Science, 2018, 153: 205-216. doi: 10.1016/j.clay.2017.12.028
[54] Faure P, Jeanneau L, Lannuzel F. Analysis of organic matter by flash pyrolysis-gas chromatography-mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature[J]. Organic Geochemistry, 2006, 37(12): 1900-1912. doi: 10.1016/j.orggeochem.2006.09.008
[55] Zhang J, Wu C, Hou W, et al. Biological calcium car-bonate with a unique organic-inorganic composite structure to enhance biochar stability[J]. Environmental Science: Processes & Impacts, 2021, 23(11): 1747-1758.
[56] Meyers P A. Organic geochemical proxies of paleoceano-graphic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
[57] 沈吉, 刘兴起, Matsumoto R, 等. 晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J]. 中国科学: 地球科学, 2004, 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm Shen J, Liu X Q, Matsumoto R, et al. Multi index and high-resolution paleoclimate evolution of sediments in Qinghai Lake since late glacial period[J]. Science in China Series D: Earth Sciences, 2004, 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm
[58] Zhang J R, Jia Y L, Lai Z P, et al. Holocene evo-lution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating[J]. Holocene, 2011, 21(8): 1261-1268. doi: 10.1177/0959683611405232
[59] Sun Q, Zhou J, Shen J, et al. Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China[J]. Science in China Series D: Earth Sciences, 2006, 49(9): 968-981. doi: 10.1007/s11430-006-0968-2
[60] 温锐林, 肖举乐, 常志刚, 等. 全新世呼伦湖区植被和气候变化的孢粉记录[J]. 第四纪研究, 2010, 30(6): 1105-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006005.htm Wen R L, Xiao J L, Chang Z G, et al. Holocene vegetation and climate changes reflected by the pollen record of Hulun Lake, north-eastern Inner Mongolia[J]. Quaternary Sciences, 2010, 30(6): 1105-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006005.htm
[61] 陈发虎, 吴薇, 朱艳, 等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报, 2004, 49(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200401000.htm Chen F H, Wu W, Zhu Y, et al. Lake records of middle Holocene drought events in Alxa Plateau[J]. Chinese Science Bulletin, 2004, 49(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200401000.htm
[62] Nierop K, Jansen B, Hageman J A, et al. The complementarity of extractable and ester-bound lipids in a soil profile under pine[J]. Plant & Soil, 2006, 286(1-2): 269-285.
[63] Angst G, Cajthaml T, Angst Š, et al. Performance of base hydrolysis methods in extracting bound lipids from plant material, soils, and sediments[J]. Organic Geochemistry, 2017, 113: 97-104. doi: 10.1016/j.orggeochem.2017.08.004
[64] Jia Q H, Sun Q, Xie M M, et al. Normal alkane distributions in soil samples along a Lhasa-Bharatpur Transect[J]. Acta Geologica Sinica (English Edition), 2016, 90(2): 738-748. doi: 10.1111/1755-6724.12701
[65] Pu Y, Zhang H C, Lei G L, et al. Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3[J]. Science China (Earth Sciences), 2010, 53(6): 863-870. doi: 10.1007/s11430-010-0075-2
[66] Baker A, Routh J, Roychoudhury A N. n-alkan-2-one biomarkers as a proxy for palaeoclimate reconstruction in the Mfabeni Fen, South Africa[J]. Organic Geochemistry, 2018, 120: 75-85. doi: 10.1016/j.orggeochem.2018.03.001
[67] Zhang Y, Huang X, Wang R, et al. The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH[J]. Chemical Geology, 2020, 544(119622): 1-17.
[68] Chen L, Zhou W, Zhang Y, et al. Postglacial floral and climate changes in southeastern China recorded by distributions of n-alkan-2-ones in the Dahu sediment-peat sequence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538(109448): 1-8.
-
期刊类型引用(3)
1. 刘玖芬,赵晓峰,侯红星,秦天,陈占生,徐立明,杨柯,孔繁鹏,刘晓煌,卢兵,李子奇,刘佳,包茹意,郝爱兵. 地表基质调查分层及分层测试指标体系设计与构建. 岩矿测试. 2024(01): 16-29 . 本站查看
2. 战楠,孙青,李琪,谢曼曼,尚文郁,郝瑞霞. 地质环境中生物标志物GDGTs分析技术研究进展. 岩矿测试. 2024(01): 30-46 . 本站查看
3. 尚文郁,孙青,谢曼曼,战楠. 中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义. 岩矿测试. 2023(02): 346-360 . 本站查看
其他类型引用(0)