• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

西藏山南市乃东区土壤硒分布特征及影响因素

次仁旺堆, 多吉卫色, 索朗次仁, 尼玛次仁, 边巴次仁, 平措朗杰

次仁旺堆, 多吉卫色, 索朗次仁, 尼玛次仁, 边巴次仁, 平措朗杰. 西藏山南市乃东区土壤硒分布特征及影响因素[J]. 岩矿测试, 2022, 41(3): 427-436. DOI: 10.15898/j.cnki.11-2131/td.202201100006
引用本文: 次仁旺堆, 多吉卫色, 索朗次仁, 尼玛次仁, 边巴次仁, 平措朗杰. 西藏山南市乃东区土壤硒分布特征及影响因素[J]. 岩矿测试, 2022, 41(3): 427-436. DOI: 10.15898/j.cnki.11-2131/td.202201100006
Cirenwangdui, Duojiweise, Suolangciren, Nimaciren, Bianbaciren, Pingcuolangjie. Distribution Characteristics and Influencing Factors of Soil Selenium in Naidong District, Shannan City, Tibet[J]. Rock and Mineral Analysis, 2022, 41(3): 427-436. DOI: 10.15898/j.cnki.11-2131/td.202201100006
Citation: Cirenwangdui, Duojiweise, Suolangciren, Nimaciren, Bianbaciren, Pingcuolangjie. Distribution Characteristics and Influencing Factors of Soil Selenium in Naidong District, Shannan City, Tibet[J]. Rock and Mineral Analysis, 2022, 41(3): 427-436. DOI: 10.15898/j.cnki.11-2131/td.202201100006

西藏山南市乃东区土壤硒分布特征及影响因素

基金项目: 

中国地质调查局地质调查项目“西藏乃东—扎囊—贡嘎—江孜—白朗—墨脱—察隅县优选耕地区1∶5万土地质量地球化学调查” DD20160313-22

详细信息
    作者简介:

    次仁旺堆,工程师,从事生态地球化学研究。E-mail:329312887@qq.com

    通讯作者:

    多吉卫色,工程师,从事生态地球化学及作物富硒方面研究。E-mail:549229277@qq.com

  • 中图分类号: S151.93;O657.31

Distribution Characteristics and Influencing Factors of Soil Selenium in Naidong District, Shannan City, Tibet

  • 摘要:

    硒是动物和人体所必需的微量元素之一,其丰缺与人和动植物的健康有着密切关系。近年来研究成果表明西藏缺硒土壤主要分布在雅鲁藏布江(简称“雅江”)以北地区,而雅江以南存在土壤全硒含量较高且面积较大区域。西藏山南市乃东区位于青藏高原中南部雅江流域,为雅鲁藏布江流域重要的农业区,也是西藏粮仓之一。本文以西藏山南市乃东区为研究对象,采用原子荧光光谱法(AFS)等方法测定了研究区1022件表层土壤、30组青稞籽实样及根系土壤样品中的硒等元素含量;同时对西藏山南市乃东区雅江两侧农用地及周边牧草地、林地表层土壤硒的分布特征和影响因素进行了研究。结果表明:雅江北侧土壤硒含量算术平均值为0.14mg/kg,接近西藏土壤硒含量平均值0.15mg/kg;雅江南侧土壤硒含量算术平均值为0.30mg/kg,高于西藏土壤硒含量平均值的一倍,略高于中国土壤硒含量平均值0.29mg/kg。乃东调查区不同土地利用类型土壤硒含量的平均值由大到小为:耕地(0.24mg/kg)>牧草地(0.22mg/kg)>林地(0.19mg/kg)。研究结果显示乃东调查区雅江两侧土壤硒含量差异较大;土壤硒元素含量除了受地质背景影响外,还与土壤酸碱度(pH)、有机质等因素有关。随着土壤中有机质含量上升,土壤硒含量明显升高;而随着土壤酸碱度的升高,土壤硒含量变低。此外雅江南侧存在富硒土壤,建议当地充分利用富硒土壤,研究不同品种的农作物对硒的吸收特征,通过农田养分管理,提高土壤中硒的有效性,促进当地发展富硒产业。

    要点

    (1) 乃东调查区雅江南侧土壤全硒含量平均值远高于北侧,主要受地质背景影响。

    (2) 雅江两侧土壤全硒含量影响因素主要为有机质含量及土壤酸碱度(pH)。

    (3) 乃东调查区不同土地利用类型中硒含量为:耕地>牧草地>林地。

    HIGHLIGHTS

    (1) The average soil total selenium content on the southern side of the Yajiang River in the Naidong survey area was much higher than that on the northern side, which was mainly affected by the geological background.

    (2) The main influencing factors of soil total selenium content on both sides of the Yajiang River were organic matter and soil pH.

    (3) The content of selenium in different land utilization types in the Naidong survey area was cultivated land>pasture land>forest land.

  • 多环芳烃(PAHs)是一种自然界中广泛分布的半挥发性有机污染物,该类化合物由两个及以上的苯环结构组成,其主要来源是化石燃料的不完全燃烧[1]。该类污染物对动物体具有较大的致癌、致畸、致突变的危害,其中致癌性最大的是4~6环的稠环PAHs[2]。该类化合物在环境中分布广泛,但由于环境基体复杂且其含量较低,很难直接、快速地对样品中PAHs进行分析[3-4],常常需要结合样品前处理技术进行富集。常规的样品前处理方法,如索氏提取、加速溶剂提取、液液萃取等方式耗时长,且使用大量有机溶剂,容易对环境造成二次污染,因此有必要建立一种样品前处理过程高效绿色、分析检测快速灵敏的新方法。

    固相微萃取(SPME)是一种集分离、富集、进样于一体的样品前处理技术[5-6],在操作过程中避免了大量有机试剂的使用,在保证绿色环保的基础上具有提高目标物富集效率[7-10]的优点。已有很多研究者将SPME技术应用于PAHs的检测中并取得了较好的萃取效果[4, 11]。对于SPME技术而言,涂层的性能是制约萃取效率和目标分析物种类的关键因素[12-14],是目前SPME技术研究的热点问题。金属有机骨架化合物(MOFs)是一类独特的多孔材料[15-16],其永久性纳米孔隙率、高比表面积、均匀且可调节的孔径、易于功能化和表面改性[17]的特点,使MOFs材料在分离、气体储存、分子传感、富集和催化等方面具有广阔的应用前景[18-22]。然而,包括MOF-5和HKUST-1在内的MOFs材料在水溶液中稳定性较差,一定程度上了限制了它的实际应用。研究得到MIL-53(M=Al,Cr,Fe)是一种常见的金属骨架有机化合物,其中心金属离子可以是三价铁、铝或铬离子,配体为对苯二甲酸,是一类合成简便、性能优良、化学稳定性较好的MOFs材料,且在吸附水时其孔隙率没有明显变化[23]。Chen等[24]采用中性硅酮胶黏接法制备了MIL-53(Al,Cr,Fe)SPME涂层纤维,进行了浸入式萃取研究,并结合GC-MS/MS检测,结果显示三种MIL-53(M)涂层对PAHs都具有较好的萃取效率。该研究结果表明,该类水稳定性MOFs材料的SPME涂层对水样中芳香族化合物的富集和检测具有很好的应用前景,特别是对于浸入式萃取模式下萃取环境水样中难挥发的PAHs类物质具有较大的优势。传统的MOFs涂层制作方式,如水热原位沉积法、溶胶-凝胶法(sol-gel)、黏合固定法等往往存在步骤复杂、涂层机械强度较差等不足[21, 25-26]

    本研究在MOFs材料优良的吸附性能以及较好的水稳定性的基础上,采用金属基质材料原位自转化的方式[27],在铁丝基质上直接生长MOFs涂层,该过程使得金属丝不仅作为支撑吸附剂的基质材料,而且还作为铁源参与MOFs材料的形成,不需要再添加金属盐,一定程度上节约了成本,避免重金属离子对环境的二次污染。将该涂层应用于环境水体中PAHs的萃取,并结合GC-MS进行检测,建立了环境水样中7种PAHs的SPME检测方法,以期为高效SPME涂层的简单、快速制备提供新思路。

    铁丝(直径为0.2mm,纯度99.9%,赛维精密金属材料有限公司)。

    苯并(a)蒽(BaA,99.8%);䓛(CHR,99.8%);苯并(b)荧蒽(BbF,99.7%);苯并(k)荧蒽(BKF,100%);苯并(a)芘(BaP,99.8%);茚苯(1, 2, 3-cd)芘(IPY,98.8%);二苯并(a, n)蒽(DBA,98.3%);苯并(ghi)芘(二萘嵌苯)(BPE,98.4%,美国AccuStandard公司);100μm PDMS聚二甲基硅氧烷涂层(美国Supelco公司)。

    对苯二甲酸(H2BDC,98%)、六水氯化铁(FeCl3·6H2O,麦克林生化科技有限公司);三乙胺(TEA,国药集团);超纯水;N, N-二甲基甲酰胺(DMF,国药集团);乙醇(国药集团)。丙酮(美国Tedia公司);甲醇(美国Tedia公司)。

    上述试剂除丙酮和甲醇为色谱纯,其余试剂为分析纯。

    气相色谱-质谱仪(GCMS-QP2010plus,日本岛津公司)。该仪器测试PAHs条件:载气为高纯氦(99.999%);色谱柱为Rtx-1MS(30m×0.25mm×0.25μm);流量1.2mL/min,不分流进样;进样口260℃;离子源温度250℃;接口温度260℃;升温程序:初始温度50℃,保持2min,以20℃/min升至230℃,再以2.5℃/min升至250℃,保持2min。检测方式特征离子扫描(SIM)。

    X射线粉晶衍射仪(D8-FOCUS,德国布鲁克科技有限公司);傅里叶变换红外光谱仪(Nicolet 6700,美国ThermoFisher公司);高分辨率场发射扫描电子显微镜(SU8010,日本日立公司);全自动进样装置(MPS,德国Gerstel科技有限公司)。

    将直径为0.2mm的铁丝截为3cm的一段,置于10mol/L盐酸中反应15min,待反应至合适尺寸后取出铁丝,随后将其依次置于丙酮、甲醇、超纯水的条件下超声处理30min,取出铁丝于65℃烘箱中干燥12h备用。取0.65g对苯二甲酸溶于50mL N, N-二甲基甲酰胺中,加入5mL三乙胺,室温下搅拌15min;将反应液置于100mL高压反应釜中,将处理好的铁丝放入反应液中,并将密封好的高压反应釜置于180℃的条件下反应12h。将制作好的涂层置于100℃的真空烘箱中12h。将自制涂层在GC进样口280℃老化2h用以去除多余的溶剂。

    将810mg六水氯化铁和498mg对苯二甲酸溶于15mL N, N-二甲基甲酰胺中,常温搅拌10min,置于50mL反应釜中150℃保持6h,带溶液冷却至室温后,超纯水清洗,转移至600mL超纯水中分散24h后,过滤,60℃烘干24h[23, 28-29]

    将制好的样品溶液转移到MPS自动进样平台特定区域,由自动进样器控制自制涂层装置在设定的萃取温度、萃取时间的条件下完成对PAHs的萃取,接着萃取了目标物的涂层被转移到GC-MS的进样口进行解吸分析。

    样品一采自东湖(武汉);样品二采自长江(武汉)。采集时间均为同一天的上午8:00~10:00。将采集的环境水样放置在25℃的室温下静置1h后经0.45μm微孔滤膜过滤,将处理好的水样取10mL于20mL顶空瓶中并放置在4℃的条件下备用。

    自制IW@MIL涂层通过扫描电子显微镜进行表征(图 1)。图 1a为经盐酸蚀刻的铁丝,可以看出经盐酸处理后铁丝表面呈“鳞片状”,该表面形状与光滑的铁丝表面相比,可以增大铁丝表面与反应液的接触面积;图 1b为经过水热反应后铁丝表面的变化,一层均匀的“树皮褶皱”材料覆盖在铁丝表面,铁丝反应前后直径无明显变化,由161μm变为163μm,局部放大(图 1c)可以看出该层状物质是由小的片状颗粒堆积而成;图 1d为该涂层的截面图,从该图中可以得出涂层平均厚度为10μm;为保护涂层外侧的吸附材料,避免在浸入式萃取过程中脱落和污染,涂层外涂覆了一层薄薄的中性硅酮胶加以固定,如图 1e1f所示,通过与图 1b的对比,可以看出中性硅酮胶将吸附材料紧紧地包覆在胶层内部,其厚度约为15μm。

    图  1  自制IW@MIL-53(Fe)涂层扫描电子显微镜图像
    a—铁丝;b—涂层表面;c—涂层表面细节放大图;d—涂层横截面;e—胶层包裹的涂层表面;f—胶层包裹的涂层横截面。
    Figure  1.  SEM diagrams of self-made IW@MIL-53(Fe) coating

    从X射线衍射图谱(图 2a)可以看出,水热合成的MIL-53(Fe)与原位转化的材料在衍射峰的位置上对应良好,可以证明为同一种物质,表明铁丝上已原位转化出一层MIL-53(Fe)的薄膜。通过红外光谱图(图 2b)可以看出,红外光谱的所有振动带与水热合成的MIL-53(Fe)的数据吻合良好。红外光谱在近1645cm-1处表现出羧基的强烈伸缩振动,证明了对苯二甲酸中的—COOH基团与Fe金属离子成功结合。

    图  2  水热合成MIL-53(Fe)与原位转化涂层的对比:(a)X射线衍射谱图对比; (b)红外光谱谱图对比
    Figure  2.  Comparison between hydrothermal synthesis MIL-53(Fe) and self-made IW@MIL-53(Fe) coating: (a) X-ray diffraction diagrams; (b) infrared spectra

    SPME在萃取的过程温度可以促进待测物在基质中的扩散以及扩大待测物的分配系数,加快与涂层之间的分配平衡,从而缩短达到平衡所需的时间。但随着温度的升高,涂层本身萃取相的分配系数也会下降,导致涂层灵敏度的降低[30-32]。为获取最佳的萃取温度以发挥SPME涂层最佳的萃取性能,实验中在萃取时间为50min,解吸温度为280℃,解吸时间为4min的条件下对萃取温度进行优化。图 3a结果表明,随着温度的升高,涂层的萃取性能也随之增强,直到80℃达到最佳性能,随之性能略有下降。因此该自制涂层的最佳萃取温度为80℃。

    图  3  自制IW@MIL-53(Fe)涂层萃取条件的优化
    a—萃取温度;b—萃取时间;c—解吸时间;d—解吸温度。
    Figure  3.  Optimization of extraction performance self-made IW@MIL-53(Fe) coating

    由于SPME技术是建立在平衡吸附基础上的样品前处理技术,需要使待测组分与萃取相达到平衡状态时,才能够保证测试数据的准确性和萃取过程的重现性。为保证在最短的时间内完成有效的萃取过程,实验设置了自制涂层在萃取温度为80℃,解吸温度为280℃,解吸时间为4min的条件下分别萃取5、10、20、25、30、40、50、60min。图 3b结果表明,随着时间的增加,自制涂层在萃取50min后逐渐达到萃取平衡。因此选取的最佳萃取时间为50min。

    为确定一个最佳的解吸时间,实验在萃取温度为80℃,萃取时间为50min,解吸温度为280℃的条件下设置了1、2、3、4、5min五个解吸时间。图 3c结果表明,解吸4min后,涂层上的目标分析物已经解吸完全。因此该自制涂层的最佳解吸时间为4min。

    SPME进样的解吸温度需要稍高于直接进样的温度,温度越高,涂层上的物质解吸得越完全,但这也存在着目标分析物分解以及高温降低涂层使用寿命的问题,因此解吸时不宜使用过高的温度。为确定一个合适的解吸温度,实验在萃取温度为80℃,萃取时间为50min,解吸时间为4min的条件下设置了240℃、250℃、260℃、270℃、280℃、290℃六个解吸温度进行测试。图 3d结果表明,解吸温度在280℃的条件下,测试性能最佳。因此该自制涂层的最佳解吸温度为280℃。

    无机盐的加入一方面可以改变样品溶液中的相界面性质,进而影响组分之间的分配系数;另一方面,加入无机盐之后样品溶液的离子强度增强,产生盐析效应,降低了目标分析物在溶液中的溶解度,有利于涂层的萃取。为了确定加入无机盐的用量,实验设计了萃取温度为80℃,萃取时间为50min,解吸温度为280℃,解吸时间为4min,以饱和食盐水为盐溶液的最大浓度,将其稀释为0%、15%、30%、50%、65%、80%、100%的氯化钠溶液。图 4结果表明,在氯化钠浓度为50%的条件下萃取效率达到最佳。因此该自制涂层的最佳盐浓度为50%的饱和氯化钠溶液。

    图  4  萃取溶液离子强度的优化
    Figure  4.  Optimization of ion strength of extraction solution

    为了考察自制涂层的萃取性能,实验选取性能稳定的商用PDMS涂层为参照,以7种多环芳烃为目标分析物,在最优萃取条件下与商用100μm PDMS涂层萃取多环芳烃的性能进行了比较,对比结果如图 5a所示。实验结果表明,自制涂层的萃取性能略优于商用涂层1~2倍,表现出良好的萃取性能。同时比较了外涂的硅酮胶的吸附能力,得到IW@MIL-53(Fe)涂层的吸附性能主要是来自MIL-53(Fe)材料。

    图  5  自制IW@MIL-53(Fe)涂层与商用100μm PDMS的(a)萃取性能和(b)使用寿命对比
    优化的实验条件:萃取温度80℃,萃取时间50min,解吸温度280℃,解吸时间4min,盐浓度50%。
    Figure  5.  Comparison of (a) the extraction performance and (b) service life of self-made IW@MIL-53(Fe) coating with commercial 100μm PDMS

    为了测试涂层的使用次数,实验比较了涂层使用1次、60次、90次、120次萃取目标分析物的萃取性能,对比结果如图 5b所示。从图中可以看出,该涂层在使用120次之后萃取性能并没有明显下降,因此,该自制涂层具有较长的使用寿命,使用次数大于120次,显著优越于商用涂层的有效使用次数(< 80次)[33]。自制涂层良好的稳定性,是由于MIL-53(Fe)本身具有良好的水稳定性,此外外涂的硅酮胶也起到了很好的保护作用,避免了外层涂层材料的脱落,提高了涂层的重复使用次数。

    在最佳的实验条件下,考察了IW@MIL-53(Fe)涂层结合GC-MS测定7种多环芳烃的分析性能(表 1),得到该方法的检出限(LOD)为0.03~2.25ng/L,定量限(LOQ)为0.10~7.50ng/L,线性范围为250~10000ng/L,相关系数为0.9903~0.9991;同一根涂层测定结果的相对标准偏差(RSD,n=5)为3.1%~10.4%;不同根涂层测定结果的相对标准偏差(RSD,n=3)为3.0%~9.5%。

    表  1  IW@MIL-53(Fe)涂层SPME-GC-MS分析7种PAHs的分析性能
    Table  1.  Analysis performance of 7 kinds of PAHs by IW@MIL-53(Fe) coating with SPME-GC-MS
    分析物 线性范围(ng/L) R2 LOD (ng/L, S/N=3) LOQ (ng/L, S/N=10) RSD(%)
    涂层内(n=5) 涂层间(n=3)
    BaA 250~10000 0.9991 0.03 0.10 3.1 6.7
    CHR 250~10000 0.9922 0.13 0.43 6.2 3.0
    BbF 250~10000 0.9922 0.11 0.37 8.9 5.7
    BKF 250~10000 0.9903 0.26 0.87 5.2 5.5
    BaP 250~10000 0.9933 0.36 1.20 7.7 6.0
    IPY 250~10000 0.9962 1.50 5.00 10.4 9.5
    BPE 250~10000 0.9982 2.25 7.50 10.4 2.5
    下载: 导出CSV 
    | 显示表格

    按照1.3节的实验方法,采用自制IW@MIL-53(Fe)涂层结合GC-MS分析方法对东湖和长江的实际水样进行分析,目标分析物浓度低于检出限,结果未检出。对样品进行加标回收实验,得到该方法的回收率为80.1%~108.5%(表 2)。

    表  2  实际水样中PAHs分析结果
    Table  2.  Analytical results of PAHs in actual water samples
    分析物 东湖水样 长江水样
    浓度(ng/L) 加标浓度(ng/L) RSD (%, n=3) 回收率(%) 浓度(ng/L) 加标浓度(ng/L) RSD (%, n=3) 回收率(%)
    BaA ND 500 11.6 89.3 ND 500 3.5 80.1
    CHR ND 500 8.0 102.3 ND 500 7.0 92.5
    BbF ND 500 8.8 96.5 ND 500 10.6 84.6
    BKF ND 500 5.5 91.1 ND 500 6.4 89.5
    BaP ND 500 11.1 90.6 ND 500 9.6 83.0
    IPY ND 500 8.6 91.8 ND 500 5.1 108.5
    BPE ND 500 4.9 99.7 ND 500 14.4 91.8
    注:ND表示未检出。
    下载: 导出CSV 
    | 显示表格

    为了提高固相微萃取涂层的萃取效率和机械强度,本文通过原位自转化的方式在铁丝上生长出一层MIL-53(Fe)的MOFs膜,该方法在转化过程中,铁丝既作为涂层纤维的基质又可以为MIL-53(Fe)的生成提供铁离子,不需要向反应体系中额外添加金属盐。研究结果表明:采用金属基质原位自转化的方式制备固相微萃取涂层,具有涂层制备快速简便、环境友好、性质稳定等优点。

    将该新材料用作固相微萃取涂层,以7种PAHs作为目标分析物,以浸入式萃取的模式并结合GC-MS作为检测手段验证了其萃取性能,应用于长江及东湖水样中PAHs的测定,得到加标回收率为80.1%~108.5%。建立的SPME-GC-MS方法实现了有机污染物的快速、灵敏检测,显示出良好的应用前景。

  • 图  1   西藏乃东区区域地质简图

    1—第四系冲积物; 2—第四系冲洪积物; 3—大竹卡组; 4—典中组; 5—塔克那组; 6—楚木龙组; 7—多底沟组; 8—却桑温泉组; 9—桑日群; 10—宋热岩组; 11—姐德秀岩组; 12—江雄岩组; 13—黑云母二长花岗岩; 14—花岗闪长岩; 15—罗布莎蛇绿岩群; 16—泽当岩群; 17—嘎学岩群; 18—超基性岩块; 19—断层; 20—乃东调查区范围。

    Figure  1.   Geological sketch map of the Naidong area, Tibet

    图  2   雅江两岸土壤不同等级有机质样品数量所占比例

    Figure  2.   Proportion of samples with different grades of organic matter in the two sides of Yajiang River

    图  3   调查区土壤硒含量有机质相关性分析

    Figure  3.   Correlation analysis between selenium content and organic matter of soil in the investigation area

    图  4   雅江两岸土壤硒含量与pH相关性分析

    Figure  4.   Correlation analysis between selenium content and pH of soil in the two sides of Yajiang River

    表  1   调查区土壤样品硒元素含量参数统计

    Table  1   Se content parameter statistics of soil samples in the investigation area

    调查区部位 样本数量(件) 硒含量(mg/kg) 富集系数 变异系数
    最小值 最大值 平均值 中位数 标准离差
    乃东调查区 1022 0.08 0.71 0.23 0.21 0.11 3.74 0.47
    雅江北侧 451 0.08 0.44 0.14 0.13 0.05 2.28 0.33
    雅江南侧 571 0.1 0.71 0.30 0.31 0.09 4.90 0.29
    下载: 导出CSV

    表  2   调查区土壤样品富硒样品数量情况统计

    Table  2   Statistics of soil samples riched in selenium in the investigation area

    硒含量指标
    (mg/kg)
    乃东调查区 雅江北侧 雅江南侧
    样数
    (件)
    比例
    (%)
    样数
    (件)
    比例
    (%)
    样数
    (件)
    比例
    (%)
    过剩(>3.0) 0 0 0 0 0 0
    高(0.40~3.0) 63 6.16 1 0.22 62 10.83
    适量(0.175~0.40) 555 54.31 81 17.96 474 83.01
    边缘(0.125~0.175) 198 19.37 168 37.25 29 5.06
    缺乏(≤ 0.125) 206 20.16 201 44.57 6 1.10
    下载: 导出CSV

    表  3   调查区不同用地类型土壤硒含量特征参数统计

    Table  3   Statistics of characteristic parameters of soil selenium content in different land utilization types

    土地利用类型 调查区范围 样品数量
    (件)
    硒含量(mg/kg) 富集系数 变异系数
    最小值 最大值 平均值 中位数 标准离差
    乃东调查区 709 0.08 0.64 0.24 0.24 0.1 3.92 0.43
    耕地 雅江北侧 291 0.08 0.44 0.14 0.13 0.04 2.31 0.3
    雅江南侧 418 0.13 0.64 0.31 0.32 0.07 5.04 0.24
    乃东调查区 186 0.08 0.71 0.22 0.18 0.12 3.48 0.54
    牧草地 雅江北侧 85 0.08 0.30 0.14 0.12 0.06 2.27 0.4
    雅江南侧 101 0.1 0.71 0.28 0.26 0.12 4.5 0.42
    乃东调查区 127 0.08 0.64 0.19 0.17 0.11 3.14 0.55
    林地 雅江北侧 75 0.08 0.28 0.14 0.12 0.05 2.19 0.34
    雅江南侧 52 0.10 0.64 0.28 0.27 0.11 4.51 0.41
    下载: 导出CSV
  • [1] 吕瑶瑶, 余涛, 杨忠芳, 等. 大骨节病区硒元素分布的调控机理研究——以四川省阿坝地区为例[J]. 环境化学, 2012, 31(7): 935-944. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201207000.htm

    Lyu Y Y, Yu T, Yang Z F, et al. The regulation mechanism of selenium distribution in Kaschin-Beck disease area: A case study in Aba area, Sichuan Province[J]. Environmental Chemistry, 2012, 31(7): 935-944. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201207000.htm

    [2] 熊咏民, 杨晓莉, 张丹丹, 等. 硒的生物学效应与环境相关性疾病的研究进展[J]. 土壤, 2018, 50(6): 1105-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806008.htm

    Xiong Y M, Yang X L, Zhang D D, et al. Research progress in biological function of selenium and environmentally associated diseases[J]. Soils, 2018, 50(6): 1105-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806008.htm

    [3] 迟凤琴, 徐强, 匡恩俊, 等. 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 2016, 53(5): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605017.htm

    Chi F Q, Xu Q, Kuang E J, et al. Distribution of selenium and its influencing factors in soils of Heilongjiang Province[J]. Acta Pedologica Sinica, 2016, 53(5): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605017.htm

    [4] 曲航, 尼玛扎西, 韦泽秀, 等. 西藏青稞产区土壤和籽粒硒含量调查研究[J]. 麦类作物学报, 2020, 40(7): 890-896. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202007016.htm

    Qu H, Ni M T S, Wei Z X, et al. Investigation on selenium content in soil and Hulless Barley grains in Tibet[J]. Journal of Triticeae Crops, 2020, 40(7): 890-896. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202007016.htm

    [5] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 371.

    Environmental Monitoring in China. Background values of soil elements in China[M]. Beijing: China Environmental Press, 1990: 371.

    [6] 王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 421-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm

    Wang X Q, Liu Q Q, Liu H L, et al. Key elements and human health: Is China's arable land selenium-deficient?[J]. Earth Science Frontiers, 2021, 28(3): 421-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm

    [7] 张晓平, 张玉霞. 西藏土壤中硒的含量及分布[J]. 土壤学报, 2000, 37(4): 558-562. doi: 10.3321/j.issn:0564-3929.2000.04.018

    Zhang X P, Zhang Y X. Content and distribution of selenium in soils of Tibet[J]. Acta Pedologica Sinica, 2000, 37(4): 558-562. doi: 10.3321/j.issn:0564-3929.2000.04.018

    [8] 杨林生, 吕瑶, 李海蓉, 等. 西藏大骨节病区的地理环境[J]. 地理科学, 2006, 26(4): 466-471. doi: 10.3969/j.issn.1000-0690.2006.04.014

    Yang L S, Lyu Y, Li H R, et al. Features of geographical environment of Kaschin-Beck Disease (KBD) affected region in Tibet[J]. Scientia Geographica Sinica, 2006, 26(4): 466-471. doi: 10.3969/j.issn.1000-0690.2006.04.014

    [9] 钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soils by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    [10] 李蕾, 苏园, 程楚国, 等. 微敞开体系快速石墨消解-原子荧光法测定食品及土壤中的硒[J]. 环境化学, 2020, 39(4): 1098-1104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004026.htm

    Li L, Su Y, Chen C G, et al. Fast determination of selenium in food and soils by micro-open graphite digestion-atomic fluorescence spectrometry[J]. Environmental Chemistry, 2020, 39(4): 1098-1104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004026.htm

    [11] 王琪, 刘禹含, 杨景娜, 等. 新疆伊犁土壤硒资源分布及与土壤性质的关系分析[J]. 农业资源与环境学报, 2014, 31(6): 555-559. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201406013.htm

    Wang Q, Liu Y H, Yang J N, et al. Analysis on the distribution of selenium resources and its relationships with soil properties of Ili District, Xinjiang Uygur Autonomous Region, China[J]. Journal of Agricultural Resources and Environment, 2014, 31(6): 555-559. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201406013.htm

    [12]

    Li S J, Li W, Hu X, et al. Soil selenium concentration and Kashin-Beck disease prevalence in Tibet, China[J]. Frontiers of Environmental Science and Engineering in China, 2009, 3(1): 62-68. doi: 10.1007/s11783-009-0009-4

    [13] 刘冰权, 沙珉, 谢长瑜, 等. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 2021, 40(5): 740-750. doi: 10.15898/j.cnki.11-2131/td.202107230082

    Liu B Q, Sha M, Xie C Y, et al. Geochemical of soil selenium and influencing factors of selenium bioavailability in rice root soils in Qingxi area, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. doi: 10.15898/j.cnki.11-2131/td.202107230082

    [14] 杨妍萍, 刘晓端, 刘久臣, 等. 川西高原地区岩石中硒的地球化学和影响因素[J]. 岩矿测试, 2020, 39(1): 115-126. doi: 10.15898/j.cnki.11-2131/td.201808290098

    Yang Y P, Liu X D, Liu J C, et al. Geochemical characteristics of selenium in rocks from the western Sichuan Plateau[J]. Rock and Mineral Analysis, 2020, 39(1): 115-126. doi: 10.15898/j.cnki.11-2131/td.201808290098

    [15] 周国华. 富硒土壤资源研究进展与评价[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    [16] 魏振山, 涂其军, 唐蜀虹, 等. 天山北坡乌鲁木齐至沙湾地区富硒土壤地球化学特征及成因探讨[J]. 物探与化探, 2016, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm

    Wei Z S, Tu Q J, Tang S H, et al. A discussion on the geochemical features and origin of selenium-rich soil on the northern slope of the Tianshan Mountains from Urumqi to Shawan County[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm

    [17] 袁宏, 赵利, 王茂丽, 等. 西藏拉萨至曲水拉萨河沿岸农用地土壤硒锗空间分布与评价[J]. 土壤, 2020, 52(2): 427-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202002028.htm

    Yuan H, Zhao L, Wang M L, et al. Spatial distribution and evaluation of selenium and germanium in farmland soils from Lhasa to Qushui along the Lhasa River in Tibet[J]. Soils, 2020, 52(2): 427-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202002028.htm

    [18] 曾庆良, 余涛, 王锐. 土壤硒含量影响因素及富硒土地资源区划研究——以湖北恩施沙地为例[J]. 现代地质, 2018, 32(1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201801011.htm

    Zeng Q L, Yu T, Wang R. The influencing factors of selenium in soils and classifying the selenium-rich soil resources in the typical area of Enshi, Hubei[J]. Geoscience, 2018, 32(1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201801011.htm

    [19] 陈娟, 宋帅, 史雅娟, 等. 富硒农业生产基地土壤硒资源空间分布特征及评价[J]. 环境化学, 2015, 34(12): 2185-2190. doi: 10.7524/j.issn.0254-6108.2015.12.2015040302

    Chen J, Song S, Shi Y J, et al. Spatial distribution and assessment of selenium in soils of a Se-enrich agricultural production base[J]. Environmental Chemistry, 2015, 34(12): 2185-2190. doi: 10.7524/j.issn.0254-6108.2015.12.2015040302

    [20] 李明伟, 黄飞岳, 胡蔚红. 恩施茶园土壤硒含量及与茶叶吸收量的相关关系[J]. 湖北农业科学, 2010, 49(4): 832-834. doi: 10.3969/j.issn.0439-8114.2010.04.020

    Li M W, Huang F Y, Hu W H. Correlations on Se content of tea plantation's soil and Se absorption of tea leaves in Enshi Autonomous Prefecture[J]. Hubei Agricultural Sciences, 2010, 49(4): 832-834. doi: 10.3969/j.issn.0439-8114.2010.04.020

    [21] 韩笑, 周越, 吴文良, 等. 富硒土壤硒含量及其与土壤理化性状的关系: 以江西丰城为例[J]. 农业环境科学学报, 2018, 37(6): 1177-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201806017.htm

    Han X, Zhou Y, Wu W L, et al. Selenium contents of farmland soils and their relationship with main soil properties in Fengcheng, Jiangxi[J]. Journal of Agro-Environment Science, 2018, 37(6): 1177-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201806017.htm

    [22] 周墨, 陈国光, 张明, 等. 赣南地区土壤硒元素地球化学特征及其影响因素研究: 以青塘—梅窖地区为例[J]. 现代地质, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm

    Zhou M, Chen G G, Zhang M, et al. Geochemical characteristics and influencing factors of selenium in soils of South Jiangxi Province: A typical area of Qingtang—Meijiao[J]. Geoscience, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm

    [23] 饶孝沛, 王明琼, 冉露, 等. 利川市耕地硒资源分布研究[J]. 安徽农业科学, 2016, 44(13): 201-206. doi: 10.3969/j.issn.0517-6611.2016.13.065

    Rao X P, Wang M Q, Ran L, et al. Distribution of selenium resources in cultivated land of Lichuan City[J]. Journal of Anhui Agriculture Science, 2016, 44(13): 201-206. doi: 10.3969/j.issn.0517-6611.2016.13.065

    [24] 周殷竹, 刘义, 王彪, 等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报, 2020, 39(12): 1952-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012011.htm

    Zhou Y Z, Liu Y, Wang B, et al. Influence factors of soil selenium in cultivated area of Nangqian County, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(12): 1952-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012011.htm

    [25] 冯辉, 张学君, 张群, 等. 北京大清河流域生态涵养区富硒土壤资源分布和来源解析[J]. 岩矿测试, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071

    Feng H, Zhang X J, Zhang Q, el al. Distribution characteristics and sources identification of selenium-rich soils in the ecological conservation area of the Daqinghe River Watershed, Beijing[J]. Rock and Mineral Analysis, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071

    [26] 杨志忠, 周文龙, 罗勇军, 等. 贵州镇远县耕地土壤中硒的分布特征及控制因素[J]. 现代地质, 2021, 35(2): 434-442. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102013.htm

    Yang Z Z, Zhou W L, Luo Y J, et al. Distribution of soil selenium of the cultivated land and its controlling factors in Zhenyuan of Guizhou Province[J]. Geoscience, 2021, 35(2): 434-442. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102013.htm

    [27] 李晓慧, 高宁, 赵万伏, 等. 宁夏青铜峡农耕土壤硒含量分布特征及其影响因素分析[J]. 农业资源与环境学报, 2018, 35(5): 422-429. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201805006.htm

    Li X H, Gao N, Zhao W F, et al. Distribution characteristics of selenium in cultivated soil and its influencing factors in Qingtongxia City of Ningxia[J]. Journal of Agricultural Resources and Environment, 2018, 35(5): 422-429. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201805006.htm

    [28] 谢邦廷, 贺灵, 江官军, 等. 中国南方典型富硒区土壤硒有效性调控与评价[J]. 岩矿测试, 2017, 36(3): 273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    Xie B T, He L, Jiang G J, et al. Regulation and evaluation of selenium availability in Se-rich soils in southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    [29] 顾涛, 赵信文, 雷晓庆, 等. 珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究[J]. 岩矿测试, 2019, 38(5): 545-555. doi: 10.15898/j.cnki.11-2131/td.201811030118

    Gu T, Zhao X W, Lei X Q, et al. Distribution and migration characteristics of selenium in the soil-plant system of paddy fields in the Pearl River Delta, Yamen Town[J]. Rock and Mineral Analysis, 2019, 38(5): 545-555. doi: 10.15898/j.cnki.11-2131/td.201811030118

    [30] 郭亚楠, 李海蓉, 杨林生, 等. 雅鲁藏布江两岸环境硒分布特征及与大骨节病发病的关系[J]. 中华地方病学杂志, 2017, 36(7): 494-497. doi: 10.3760/cma.j.issn.2095-4255.2017.07.007

    Guo Y N, Li H R, Yang L S, et al. The relationship be-tween environment selenium characteristics and distribution of Kaschin-Bebk disease in the Yarlung Zangbo River Banks[J]. Chinese Journal of Endemiology, 2017, 36(7): 494-497. doi: 10.3760/cma.j.issn.2095-4255.2017.07.007

  • 期刊类型引用(2)

    1. 李丙阳,陈佳,邱洪灯. 骨架材料在固相微萃取方面的应用研究进展. 分析测试学报. 2025(02): 195-210 . 百度学术
    2. 乔淞汾,秦冲,刘爱琴,安彩秀,刘安,杨利娟,孙凯茜,冉卓. 超声萃取-高效液相色谱-串联质谱法测定土壤中三种硝基酚类化合物. 岩矿测试. 2024(03): 501-508 . 本站查看

    其他类型引用(0)

图(4)  /  表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  66
  • PDF下载量:  33
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-01-09
  • 修回日期:  2022-02-19
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-05-27

目录

/

返回文章
返回