• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究

崔婷, 叶欣, 朱霞萍, 李军亚, 徐欢

崔婷, 叶欣, 朱霞萍, 李军亚, 徐欢. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167-176. DOI: 10.15898/j.cnki.11-2131/td.202111250187
引用本文: 崔婷, 叶欣, 朱霞萍, 李军亚, 徐欢. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167-176. DOI: 10.15898/j.cnki.11-2131/td.202111250187
CUI Ting, YE Xin, ZHU Xiaping, LI Junya, XU Huan. Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167-176. DOI: 10.15898/j.cnki.11-2131/td.202111250187
Citation: CUI Ting, YE Xin, ZHU Xiaping, LI Junya, XU Huan. Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167-176. DOI: 10.15898/j.cnki.11-2131/td.202111250187

土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究

基金项目: 

国家自然科学基金项目 42267007

四川省地质矿产勘查开发局四〇五地质队创新基金项目 KJCX-2020-007

详细信息
    作者简介:

    崔婷,硕士研究生,主要从事土壤重金属污染研究。E-mail: 852020419@qq.com

    通讯作者:

    朱霞萍,教授,主要从事土壤、水体环境污染防控及修复技术研究。E-mail: zhuxiaping@cdut.edu.cn

    李军亚,工程师,从事地质环境保护与修复工作。E-mail:1092956259@qq.com

  • 中图分类号: S151.93;O657.31

Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil

  • 摘要:

    研究影响土壤吸附Sb(Ⅲ)的主控因子对土壤锑污染的评价、预警及修复具有重要意义。本文采用化学法、电感耦合等离子体发射光谱法和原子荧光光谱法测定了10个不同地区土壤的理化性质和机械组成、主要化学组成,采用原子吸收光谱法测定了土壤铁锰氧化物的不同形态以及土壤对Sb(Ⅲ)的饱和吸附容量, 并开展了土壤对Sb(Ⅲ)的饱和吸附容量和土壤理化性质、机械组成、铁锰氧化物及其形态的相关性分析、主成分分析和因子分析。在研究土壤吸附Sb(Ⅲ)的影响因素基础上,进一步研究其主控因子。结果表明,10个不同性质的土壤对Sb(Ⅲ)饱和吸附容量介于0.63~3.98mg/g之间,与土壤类型有关,其大小顺序为:红壤>棕壤>黄壤>褐土>沙土。土壤对Sb(Ⅲ)饱和吸附容量与阳离子交换容量(CEC)、氧化铁总量、无定形铁含量呈极显著正相关,与游离铁含量、无定形锰含量以及游离锰含量呈显著正相关。主成分分析和因子分析结果表明土壤中6个因子是影响土壤吸附Sb(Ⅲ)的主控因子,影响力大小为:氧化铁总量>CEC>无定形铁含量>游离铁含量>无定形锰含量>游离锰含量。铁锰氧化物及其形态显著影响土壤吸附Sb(Ⅲ)。

    要点

    (1) 土壤对Sb(Ⅲ)的饱和吸附容量大小为:红壤>棕壤>黄壤>褐土>沙土。

    (2) 土壤吸附Sb(Ⅲ)的主控因子为:氧化铁总量、无定形铁/锰、游离铁/锰及阳离子交换容量。

    (3) 氧化铁总量的大小对土壤吸附Sb(Ⅲ)的饱和吸附容量影响最大。

    HIGHLIGHTS

    (1) The saturated adsorption capacity of soil to Sb(Ⅲ) was red soil>brown soil>yellow soil>cinnamon soil>sandy soil.

    (2) The main controlling factors of Sb(Ⅲ) adsorption in soil were total iron oxide, amorphous iron, free iron, amorphous manganese, free manganese and cation exchange capacity.

    (3) The total amount of iron oxide had the greatest effect on the saturated adsorption capacity of soils to Sb(Ⅲ).

  • 斑岩铜矿作为最重要的铜矿类型之一,为世界提供了50%以上的金属铜资源[1]。自斑岩铜矿概念提出后,众多地质矿产学者对斑岩铜矿进行了大量的研究工作。前人在斑岩铜矿形成大地构造背景[2-4]、成矿斑岩特征[3-5]、斑岩铜矿与埃达克岩关系[3-4, 6-7]、斑岩铜矿中金属来源[3, 8]、成矿流体特征[8-9]等方面取得重大成果。研究表明,斑岩型铜(金或钼)成矿体系倾向于出现在线性的、典型的平行造山带中,它们与钙碱性岩基和火山链一起,常产于板块汇聚边缘活动俯冲带之上的岩浆弧中。斑岩铜(金或钼)成矿体系在空间上常与中性-酸性成分的同岩浆来源的钙碱性火山岩相关联。

    乌努格吐山斑岩型铜钼矿床位于额尔古纳—呼伦断裂北西侧(图 1),是中国东北地区最为重要的斑岩型铜钼矿床之一,也是中国探明的第四大铜钼伴生矿床。前人对该矿床的地质特征[10]、成岩成矿年代学[11-19]、岩石地球化学[14, 16-18]、围岩蚀变[20]、矿石矿物特征[20]、稳定同位素[14, 16-18]、流体包裹体[14, 21]等方面开展了大量的工作。其中,对围岩和成矿母岩进行了许多同位素年代学研究,包括绢云母K-Ar和Ar-Ar、全岩Rb-Sr、锆石U-Pb等测年方法。然而,由于前人研究时的采样对象、测试方法、实验室的标准和精度均有区别,所取得的年龄存在较大差异,进而导致对岩石成因和形成背景也存在不同的认识。本文在系统地质调查的基础上,选取了蚀变较弱的赋矿围岩不等粒二长花岗岩和成矿母岩流纹质碎斑熔岩的样品,通过LA(MC)-ICP-MS方法对锆石U-Pb同位素、微量元素和Lu-Hf同位素进行研究,精确限定了赋矿围岩和成矿母岩的形成时代,查明了岩浆岩的成因和源区特征。

    图  1  研究区(a)大地构造位置和(b)地质略图及乌努格吐山斑岩型铜钼矿床地质图(据文献[13-14, 22]修改)
    Figure  1.  Geotectonic location of (a) the research area, and (b) its geological sketch map, and geological map of the Wunugetushan porphyry Cu-Mo deposit (Modified after Reference [13-14, 22])

    乌努格吐山斑岩型铜钼矿床大地构造位置上位于北东向额尔古纳—呼伦断裂的北西侧之额尔古纳地块西部。区域地层由老到新主要为古生代泥盆系,中生代侏罗系、白垩系,以及新生界[14](图 1)。区域构造受额尔古纳—呼伦深断裂的影响,主要构造线为北东向[11, 13]。本区岩浆活动频繁,时代分为海西晚期、燕山早期和燕山晚期,而以燕山早期为最广泛[22]

    矿区地层出露较为简单,主要为泥盆系上统乌奴耳组和第四系全新统,其岩性与区域上基本一致。矿区内岩浆岩较为发育,主要形成于燕山早期和燕山晚期。区域性北东向额尔古纳—呼伦深断裂位于矿区东南约25km处,受其影响,次一级断裂构造十分发育。赋矿围岩和成矿母岩的成岩时代及岩石成因研究可以对成矿作用有所启示。

    在系统野外地质调查的基础上,结合前人在该地区的岩浆岩研究成果,选择赋矿围岩不等粒二长花岗岩(WS05)和成矿母岩流纹质碎斑熔岩(WS02)进行锆石U-Pb同位素和Hf同位素进行研究,所选取的样品较为新鲜且蚀变较弱,采样位置具体见图 1

    不等粒二长花岗岩(WS05)手标本呈显浅灰色,具不等粒花岗结构,块状构造;岩石蚀变较弱,以绿泥石化为主,并发生较弱的矿化(图 2中a、b)。主要组成矿物为斜长石、钾长石、石英,黑云母仅保留假像。斜长石约占35%~45%,呈半自形-近半自形板状,粒径为0.2~2.0mm;聚片双晶多较细密平直,为更长石,可见交代港湾结构等;常发育绢云母化、高岭土化等。钾长石约占35%,呈近半自形板状-他形粒状,为正长石;粒径为2~5mm,常呈杂乱状或填隙状分布,具高岭土化;粒内常见斜长石和黑云母嵌布,交代斜长石。石英约占25%,呈他形粒状,粒内具波状、斑块状消光;呈填隙状分布于长石粒间,直径小于5.0mm,常见集合体呈堆状聚集分布。黑云母约占3~5%,直径小于3.0mm,常呈叶片状零散分布,有的嵌布于钾长石粒内;发生绢云母和白云母化后常呈假像。岩石内偶见裂隙、细脉、锥状集合体发育,主要被石英、白云石、钾长石、白云母、黄铁矿、黄铜矿等矿物充填。

    图  2  矿区围岩及成矿母岩野外与显微照片
    Figure  2.  Field photos and hand specimen photograph of the surrounding rock and ore-forming parent rock

    流纹质碎斑熔岩(WS02)手标本显浅灰色,主要为斑结构-基质霏细结构,具块状构造(图 2中c、d)。其中斑晶约占40%,基质约占60%。斑晶由长石、石英、暗色矿物构成,其中长石和暗色矿物常发生蚀变而呈假象;粒径一般0.1~4.5mm,略显方向性排列。长石多呈半自形-近半自形板状,较少量显棱角状、尖棱角状等,具绢云母化、少量石英化等主呈假像,局部见少量斜长石、钾长石残留,含量35%~40%。石英多呈自形-半自形粒状,较少量显棱角状、尖棱角状,有的具熔蚀特征,含量约15%。暗色矿物具绢云母化、白云母化等,主呈黑云母假像,少量似角闪石假像,含量3%~5%。基质主由长英质构成。长英质具霏细结构,颗粒细小,粒径一般<0.01mm,少量0.01~0.03mm,略具定向特征,具较明显绢云母化,含量约45%。岩内较多见由石英、白云石、黄铁矿、黄铜矿、少量闪锌矿、白云母等充填的细脉及裂隙,另见较少量黄铁矿、黄铜矿呈星散状交代岩石。

    锆石的分选、制靶及透反射和阴极发光(CL)由河北省区域地质调查院实验室完成,样品经常规粉碎、磁选和重选,选出高纯度锆石,在双目镜下经人工挑选出纯度在99%以上的锆石。将挑选好的锆石粘贴在环氧树脂表面,打磨抛光后露出锆石的表面,制成靶样。

    锆石U-Pb年龄测试在北京锆年领航科技有限公司完成。分析仪器为Finnigan Neptune型MC-ICP MS及配套的New Wave UP213激光剥蚀系统,采用激光剥蚀多接收电感耦合等离子体质谱法(MC-ICP-MS)对锆石进行U-Pb同位素分析。激光剥蚀束斑直径为25μm,剥蚀深度为20~40μm,能量密度为13~14J/cm2,频率为10Hz,激光剥蚀物以氦为载气进入Neptune,利用动态变焦扩大色散可以同时接收质量数相差较大的U-Pb同位素。采用Plešovice(年龄为337±0.37Ma)[23]作为外标样进行基体校正,普通铅校正采用ComPbCorr#3.17校正程序[24]。信号较小的207Pb、206Pb、204Pb(+204Hg)、202Hg用离子计数器(multi-ion-counters)接收,208Pb、232Th、238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接受。对采集的数据采用中国地质大学(武汉)刘勇胜博士研发的ICP-MS DataCal程序和Kenneth R.Ludwig的Isoplot程序进行处理,并绘制谐和图等图件,置信度为95%。详细的仪器操作条件和数据处理方法见文献[25]。

    锆石Hf同位素测试在北京锆年领航科技有限公司完成。锆石Hf同位素分析测试工作通过激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)进行。激光剥蚀系统为美国NewWave公司生产的UP193FX型193nm ArF准分子系统,激光器来自于德国ATL公司,ICP-MS仪器型号为Agilent 7500a。激光器波长为193nm,脉冲宽度 < 4ns,束斑直径为35μm。采用锆石标样91500[176Hf/177Hf=0.282308±12(2σ)]作为外标样进行基体校正[26]。Hf的地幔模式年龄计算中,亏损地幔176Hf/177Hf值现在值采用0.28325,176Lu/177Hf值采用0.0384[27],地壳模式年龄计算时采用平均地壳的176Lu/177Hf=0.015[28]。数据计算和处理采用ICP-MS DataCal程序完成[25]

    用于测试的锆石自形程度较好,多为长柱状,整体较完整,发育震荡环带,具岩浆成因特征[29]。选择不发育裂隙和包裹体的锆石进行年龄测试,在发育震荡环带的位置测试(图 3中a、c)。

    图  3  矿区围岩及成矿母岩锆石CL图像及年龄图
    Figure  3.  Zircon CL images and age maps of surrounding rocks and ore-forming parent rocks in the mining area

    弱矿化蚀变不等粒二长花岗岩(WS05)锆石Pb含量为8.17×10-6~105.40×10-6,Th含量为60.44×10-6~988.45×10-6,U含量为177.56×10-6~2090.24×10-6;矿化蚀变流纹质碎斑熔岩(WS02)锆石Pb含量为6.63×10-6~38.32×10-6,Th含量为90.78×10-6~701.01×10-6,U含量为106.28×10-6~575.53×10-6(表 1)。Th/U比值均大于0.1,为岩浆成因锆石[30-31]。样品U-Pb年龄<1.0Ga,因而采用锆石206Pb/238U年龄[32]。WS05样品锆石206Pb/238U年龄值为197.19±1.32~203.63±1.38Ma,加权平均值为200.96±0.88Ma,MSWD=3.0(图 3b);WS02样品锆石206Pb/238U年龄值为175.31±1.46~183.89±1.29Ma,加权平均值为179.58±0.91Ma,MSWD=2.7(图 3d)。表明两类岩体均形成于早侏罗世。

    表  1  乌努格吐山岩体LA-MC-ICP-MS锆石U-Pb同位素分析结果
    Table  1.  LA-MC-ICP-MS zircon U-Pb isotopic analysis of the Wunugetushan rocks
    样品名 元素含量(×10-6) Th/U 元素比值 年龄(Ma)
    Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    WS02-1 6.63 99.33 106.28 0.93 0.054800689 0.002451556 0.21777954 0.009825907 0.028920427 0.0002901 466.71 99.99 200.06 8.19 183.79 1.82
    WS02-2 21.18 360.70 357.46 1.01 0.052139056 0.001611966 0.19929428 0.005904684 0.027904962 0.0002414 300.06 70.36 184.53 5.00 177.42 1.51
    WS02-3 9.71 127.12 187.62 0.68 0.053187486 0.001725981 0.20737534 0.006527215 0.028589719 0.0002581 344.50 74.07 191.35 5.49 181.72 1.62
    WS02-4 23.29 335.12 435.58 0.77 0.0523526 0.001072423 0.2014723 0.00400281 0.028002268 0.0001724 301.91 46.29 186.37 3.38 178.03 1.08
    WS02-5 8.61 90.78 183.57 0.49 0.055145614 0.001930204 0.21747196 0.007653397 0.028658462 0.0002537 416.72 77.77 199.80 6.38 182.15 1.59
    WS02-6 20.64 291.00 376.00 0.77 0.054660963 0.001447771 0.2124608 0.005765492 0.028240433 0.0002631 398.20 59.25 195.62 4.83 179.53 1.65
    WS02-8 8.18 135.96 138.07 0.98 0.054630817 0.002674734 0.20791517 0.009586314 0.028118499 0.0003531 398.20 109.25 191.80 8.06 178.76 2.21
    WS02-9 26.43 382.25 491.17 0.78 0.052954664 0.000994737 0.20600679 0.003891296 0.028261949 0.000183 327.84 42.59 190.20 3.28 179.66 1.15
    WS02-10 10.38 130.90 207.45 0.63 0.049377333 0.001784532 0.18873552 0.006546347 0.027953044 0.0002377 164.90 87.95 175.55 5.59 177.72 1.49
    WS02-11 22.22 300.23 410.94 0.73 0.052497602 0.001023893 0.20769834 0.004161734 0.028732664 0.0001882 305.62 44.44 191.62 3.50 182.61 1.18
    WS02-12 38.32 701.01 575.53 1.22 0.050521629 0.000821741 0.19443142 0.003348741 0.027897904 0.0001672 220.44 34.25 180.40 2.85 177.38 1.05
    WS02-13 15.41 248.04 256.19 0.97 0.050553309 0.001345129 0.19415114 0.005059312 0.02803746 0.0002147 220.44 56.47 180.17 4.30 178.25 1.35
    WS02-14 16.30 256.91 298.04 0.86 0.050617744 0.001296767 0.19604288 0.004959068 0.028254753 0.0002041 233.40 59.25 181.77 4.21 179.62 1.28
    WS02-15 9.86 128.93 197.58 0.65 0.053200153 0.001778239 0.20301776 0.006439848 0.027963384 0.0002068 344.50 75.92 187.68 5.44 177.79 1.30
    WS02-16 11.93 159.19 228.39 0.70 0.051343842 0.001688606 0.20303925 0.006728144 0.028755703 0.0002669 257.47 71.29 187.69 5.68 182.76 1.67
    WS02-17 23.68 362.75 419.53 0.86 0.054711601 0.001166784 0.21235292 0.00470457 0.028205027 0.0002095 466.71 50.92 195.53 3.94 179.30 1.31
    WS02-18 10.80 134.97 212.47 0.64 0.055085188 0.00186445 0.21549537 0.007139035 0.028663977 0.0002485 416.72 80.55 198.15 5.96 182.18 1.56
    WS02-19 22.29 417.16 350.97 1.19 0.051618269 0.002041641 0.19860798 0.007722468 0.02798546 0.0002789 333.39 95.36 183.95 6.54 177.93 1.75
    WS02-21 28.22 505.10 401.58 1.26 0.053629164 0.001209577 0.20969736 0.004457275 0.028636014 0.0002611 353.76 51.85 193.30 3.74 182.01 1.64
    WS02-22 13.76 199.73 247.98 0.81 0.050498539 0.001704943 0.19981518 0.007007338 0.028780503 0.0003232 216.74 47.22 184.97 5.93 182.91 2.03
    WS02-23 15.67 233.95 279.27 0.84 0.053609854 0.001945143 0.20426492 0.006872007 0.027979173 0.0002475 353.76 50.92 188.73 5.79 177.89 1.55
    WS02-24 12.13 155.47 242.85 0.64 0.048139881 0.001435921 0.18517718 0.005419974 0.028059585 0.0002194 105.65 70.37 172.51 4.64 178.39 1.38
    WS02-25 21.94 294.47 456.44 0.65 0.05015908 0.001703097 0.18973048 0.006066855 0.027568544 0.0002324 211.19 79.62 176.40 5.18 175.31 1.46
    WS02-26 11.03 202.63 163.39 1.24 0.048642808 0.001868937 0.18622353 0.007027353 0.028034949 0.0002515 131.57 90.73 173.40 6.02 178.24 1.58
    WS02-27 18.79 270.47 307.16 0.88 0.0592801 0.001671102 0.23539905 0.006493675 0.02893611 0.0002062 575.96 58.32 214.65 5.34 183.89 1.29
    WS02-28 15.65 205.15 290.46 0.71 0.050701322 0.001279128 0.20087159 0.005146519 0.028781368 0.0002166 227.85 57.40 185.86 4.35 182.92 1.36
    WS02-29 17.27 254.50 308.03 0.83 0.051600767 0.001357782 0.19851122 0.005220095 0.028089674 0.0002205 333.39 61.10 183.87 4.42 178.58 1.38
    WS02-30 15.90 246.27 276.75 0.89 0.051720434 0.001294036 0.19826738 0.004938912 0.027877092 0.0001995 272.29 57.40 183.66 4.19 177.25 1.25
    WS05-1 64.67 982.05 957.01 1.03 0.049821594 0.000679027 0.21445247 0.003309532 0.031186237 0.0002163 187.12 31.48 197.28 2.77 197.97 1.35
    WS05-2 57.13 549.94 1168.26 0.47 0.051369046 0.00067504 0.22227668 0.003450735 0.031302054 0.0002225 257.47 29.63 203.80 2.87 198.69 1.39
    WS05-3 47.18 434.72 1006.50 0.43 0.0506981 0.000730666 0.2174262 0.003523028 0.031061297 0.0002109 227.85 33.33 199.77 2.94 197.19 1.32
    WS05-4 34.20 444.49 539.30 0.82 0.050076452 0.00089561 0.21978911 0.003838643 0.031905458 0.0002253 198.23 36.10 201.73 3.20 202.46 1.41
    WS05-5 27.24 293.62 512.29 0.57 0.050704918 0.000898261 0.2223234 0.004083565 0.03180311 0.0002221 227.85 73.14 203.84 3.39 201.82 1.39
    WS05-6 36.62 406.81 627.91 0.65 0.053227511 0.000811598 0.23413474 0.003583162 0.031928406 0.0001706 338.95 35.18 213.61 2.95 202.61 1.07
    WS05-7 83.00 979.16 1509.58 0.65 0.050594466 0.00081154 0.21775243 0.003377792 0.031220547 0.0001736 233.40 37.03 200.04 2.82 198.18 1.09
    WS05-8 32.42 390.91 580.70 0.67 0.050650678 0.000990998 0.21692246 0.004238077 0.031130835 0.000211 233.40 72.21 199.35 3.54 197.62 1.32
    WS05-9 29.94 328.98 562.17 0.59 0.052125927 0.000943859 0.22710559 0.004118635 0.031673079 0.0002015 300.06 40.74 207.81 3.41 201.01 1.26
    WS05-11 44.07 450.63 852.34 0.53 0.050493385 0.000603843 0.22279877 0.002627975 0.03205128 0.000192 216.74 32.40 204.24 2.18 203.37 1.20
    WS05-12 11.55 105.13 237.06 0.44 0.051080959 0.001477309 0.22439572 0.00633483 0.032046799 0.0002526 242.66 66.66 205.56 5.25 203.35 1.58
    WS05-14 42.65 589.47 697.76 0.84 0.05127644 0.001010592 0.22059852 0.004252904 0.031231933 0.000197 253.77 46.29 202.41 3.54 198.25 1.23
    WS05-15 39.70 446.39 683.49 0.65 0.052426052 0.001056312 0.23066064 0.004658531 0.031933659 0.0002448 305.62 46.29 210.74 3.84 202.64 1.53
    WS05-16 30.83 351.35 540.24 0.65 0.05575571 0.001034747 0.24554158 0.004129216 0.032092859 0.0002217 442.64 8.33 222.95 3.37 203.63 1.38
    WS05-17 31.36 393.76 522.41 0.75 0.050483307 0.001147105 0.22167031 0.004880911 0.031926872 0.0002473 216.74 84.25 203.30 4.06 202.60 1.54
    WS05-18 105.40 988.45 2090.24 0.47 0.055715982 0.000922293 0.2396987 0.003938731 0.031188268 0.0002232 442.64 4.63 218.17 3.23 197.98 1.40
    WS05-19 41.50 594.60 650.78 0.91 0.052764976 0.000837416 0.22901688 0.00383827 0.031430675 0.0001724 320.43 35.18 209.39 3.17 199.50 1.08
    WS05-20 32.81 439.05 545.05 0.81 0.050598044 0.001078644 0.22137187 0.004978527 0.031761313 0.0002199 233.40 80.54 203.05 4.14 201.56 1.37
    WS05-21 35.38 283.00 748.80 0.38 0.053983443 0.000743583 0.23800768 0.003481432 0.031971686 0.0002069 368.57 63.88 216.79 2.86 202.88 1.29
    WS05-22 28.57 328.62 500.85 0.66 0.050519726 0.001050105 0.22322756 0.004803931 0.032029526 0.0002293 220.44 48.14 204.59 3.99 203.24 1.43
    WS05-23 42.59 608.47 643.73 0.95 0.049834093 0.000955096 0.22053286 0.004450034 0.032048558 0.0002182 187.12 44.44 202.35 3.70 203.36 1.36
    WS05-24 8.17 60.44 177.56 0.34 0.052461445 0.001898692 0.22941335 0.00798765 0.032038934 0.0002929 305.62 83.33 209.71 6.60 203.30 1.83
    WS05-25 24.90 213.14 529.34 0.40 0.053206234 0.000909342 0.23360332 0.004100044 0.031832937 0.0002027 344.50 38.89 213.17 3.37 202.01 1.27
    WS05-26 30.48 333.52 561.03 0.59 0.050610366 0.00098056 0.22392893 0.004444282 0.032039082 0.0001895 233.40 78.69 205.17 3.69 203.30 1.18
    WS05-27 42.92 359.80 939.57 0.38 0.053112655 0.000673233 0.23125454 0.003331502 0.031536009 0.0002358 344.50 27.78 211.23 2.75 200.15 1.47
    WS05-28 24.77 245.33 487.82 0.50 0.05240212 0.001044812 0.23207116 0.004988243 0.032062634 0.0002458 301.91 44.44 211.91 4.11 203.44 1.54
    WS05-29 88.23 961.68 1634.70 0.59 0.051403159 0.000521454 0.22632576 0.00277416 0.03194678 0.0002878 257.47 24.07 207.16 2.30 202.72 1.80
    WS05-30 45.76 621.40 772.57 0.80 0.050900004 0.00083911 0.21961879 0.00358115 0.03129567 0.0001579 235.25 37.03 201.59 2.98 198.65 0.99
    下载: 导出CSV 
    | 显示表格

    两类岩体锆石的稀土含量较高,弱矿化蚀变不等粒二长花岗岩(WS05)的ΣREE为1036.03×10-6~3489.37×10-6,轻稀土LREE含量为13.76×10-6~158.11×10-6,重稀土HREE含量为1022.28×10-6~3415.31×10-6,轻/重稀土比值为0.01~0.09;矿化蚀变流纹质碎斑熔岩(WS02)的ΣREE为579.83×10-6~1110.14×10-6(表 2),轻稀土LREE含量为28.83×10-6~85.54×10-6,重稀土HREE含量为535.47×10-6~1049.04×10-6,轻/重稀土比值为0.05~0.11。轻重稀土分异程度较高,具岩浆锆石稀土元素特征[33-35]。WS05样品锆石δEu值为0.13~0.38,WS02样品δEu值为0.39~0.67,具负异常;WS05样品锆石δCe值为1.57~476.84,WS02样品δCe值为10.48~1613.59,具强正异常,与典型热液锆石差异较大[36]。两类岩体锆石稀土配分曲线具左倾特征,轻稀土亏损、重稀土富集,具岩浆锆石特征(图 4)。

    表  2  锆石稀土元素(×10-6)组成
    Table  2.  REE element (×10-6) compositions of the zircons
    样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE δEu δCe
    WS05-1 0.009 30.818 0.109 2.207 5.808 1.336 37.462 14.819 189.182 78.302 365.255 82.336 775.232 155.907 2317.566 1738.78 40.29 1698.50 0.02 0.28 243.55
    WS05-2 0.136 31.651 0.383 3.864 6.669 0.940 38.640 16.064 209.545 91.003 450.613 107.613 1082.980 229.910 2788.147 2270.01 43.64 2226.37 0.02 0.18 33.96
    WS05-4 0.033 26.488 0.276 4.746 10.352 3.109 61.401 22.084 281.410 113.924 528.866 118.980 1130.763 227.279 3457.657 2529.71 45.00 2484.71 0.02 0.38 68.45
    WS05-5 1.985 26.801 0.971 5.922 5.631 1.404 38.216 15.136 206.981 89.074 430.765 100.296 995.993 206.695 2738.920 2125.87 42.71 2083.16 0.02 0.29 4.73
    WS05-6 7.588 48.479 4.041 22.978 9.309 1.237 35.817 12.572 166.430 71.866 347.266 81.181 817.296 167.611 2167.755 1793.67 93.63 1700.04 0.06 0.21 2.15
    WS05-7 0.410 34.403 0.259 2.745 5.160 0.656 36.139 14.704 194.596 81.371 391.476 88.285 871.715 179.856 2485.255 1901.77 43.63 1858.14 0.02 0.15 25.90
    WS05-8 0.071 26.437 0.180 3.754 6.534 1.671 45.710 17.406 241.011 104.037 496.093 114.322 1096.435 226.859 3098.375 2380.52 38.65 2341.87 0.02 0.30 57.53
    WS05-9 0.634 19.833 0.405 4.501 6.978 1.302 43.246 15.843 207.008 86.747 414.299 94.644 940.131 191.090 2642.584 2026.66 33.65 1993.01 0.02 0.23 9.60
    WS05-11 0.132 22.938 0.122 1.732 3.547 0.468 29.152 11.791 165.304 72.780 361.164 85.935 859.033 177.858 2241.112 1791.96 28.94 1763.02 0.02 0.14 44.37
    WS05-12 0.004 8.790 0.057 1.131 3.136 0.640 19.128 7.017 97.977 41.175 206.170 48.490 497.626 104.694 1221.775 1036.03 13.76 1022.28 0.01 0.25 138.94
    WS05-14 0.009 32.244 0.147 2.820 7.772 2.330 55.584 21.225 286.814 119.502 561.039 124.996 1187.688 245.743 3612.210 2647.91 45.32 2602.59 0.02 0.34 212.89
    WS05-15 21.426 79.810 7.266 36.278 11.865 1.461 39.927 13.963 180.198 75.958 375.290 87.983 872.939 179.036 2355.693 1983.40 158.11 1825.29 0.09 0.21 1.57
    WS05-16 0.293 20.491 0.259 4.083 8.775 1.680 49.344 17.701 216.112 87.518 406.557 90.786 878.944 176.341 2581.778 1958.88 35.58 1923.30 0.02 0.25 18.24
    WS05-17 0.010 21.905 0.154 2.594 6.575 1.483 39.647 15.071 197.835 83.773 397.977 91.152 885.319 176.519 2547.626 1920.01 32.72 1887.29 0.02 0.28 133.88
    WS05-18 0.236 45.705 0.646 6.351 8.428 0.844 47.397 19.589 265.616 113.368 545.382 128.379 1250.060 255.596 3519.237 2687.60 62.21 2625.39 0.02 0.13 28.68
    WS05-19 0.106 31.726 0.695 12.497 23.102 5.938 113.735 37.357 433.393 165.370 720.022 158.983 1491.171 295.277 4901.935 3489.37 74.06 3415.31 0.02 0.35 28.69
    WS05-20 0.018 21.968 0.154 2.858 6.418 1.727 45.681 17.085 223.461 92.612 432.575 100.645 974.587 198.240 2787.431 2118.03 33.14 2084.89 0.02 0.31 103.06
    WS05-21 0.004 21.146 0.046 1.445 3.019 0.626 24.090 10.259 142.687 63.075 325.911 77.391 790.708 167.260 1970.759 1627.67 26.29 1601.38 0.02 0.22 407.07
    WS05-22 0.009 21.816 0.142 3.198 6.343 1.554 41.438 15.424 207.699 87.686 414.011 96.134 937.960 194.215 2622.130 2027.63 33.06 1994.57 0.02 0.29 151.73
    WS05-23 0.003 22.911 0.098 1.891 3.940 1.176 29.171 11.371 149.383 61.629 293.179 65.118 632.896 128.904 1849.730 1401.67 30.02 1371.65 0.02 0.34 316.29
    WS05-25 0.002 16.515 0.045 1.028 3.357 0.484 23.728 10.029 137.925 61.334 312.802 75.410 763.433 161.320 1887.306 1567.41 21.43 1545.98 0.01 0.17 393.39
    WS05-26 1.008 24.326 0.398 2.601 4.114 0.720 25.298 9.861 133.470 56.062 278.105 65.256 647.789 133.518 1756.502 1382.53 33.17 1349.36 0.02 0.22 9.41
    WS05-27 0.092 25.471 0.132 1.488 3.234 0.412 22.485 9.565 134.435 59.983 305.314 76.238 761.997 161.823 1859.903 1562.67 30.83 1531.84 0.02 0.15 56.82
    WS05-28 0.003 18.423 0.075 1.262 3.754 0.691 25.768 9.865 134.315 59.939 296.515 71.285 712.008 147.629 1821.177 1481.53 24.21 1457.32 0.02 0.21 300.82
    WS05-29 0.004 35.127 0.083 1.768 4.805 0.560 36.981 14.534 195.832 83.381 406.337 94.943 902.927 182.187 2596.732 1959.47 42.35 1917.12 0.02 0.13 476.84
    WS05-30 0.036 28.599 0.176 3.424 7.606 1.394 51.304 19.131 240.823 97.181 453.263 101.128 968.755 193.054 2897.227 2165.87 41.24 2124.64 0.02 0.22 88.05
    WS02-1 0.012 34.124 0.201 3.717 7.501 2.472 33.922 10.145 110.736 40.545 175.905 38.370 354.954 72.500 1190.890 885.10 48.03 837.08 0.06 0.47 171.62
    WS02-2 0.004 47.559 0.028 0.832 1.807 0.754 11.337 3.437 45.540 19.866 103.023 26.165 283.910 69.933 671.635 614.20 50.98 563.21 0.09 0.51 1098.02
    WS02-3 0.036 38.471 0.057 1.129 1.884 0.852 13.736 4.517 57.026 24.387 123.912 31.368 334.975 77.953 794.007 710.30 42.43 667.87 0.06 0.51 208.54
    WS02-4 0.012 50.641 0.028 0.917 2.720 1.204 23.208 8.413 108.997 44.986 213.779 49.899 493.407 105.741 1389.597 1103.95 55.52 1048.43 0.05 0.46 663.38
    WS02-5 0.028 25.975 0.035 0.491 1.696 0.609 9.999 3.803 50.945 22.719 116.668 30.012 320.913 76.685 716.429 660.58 28.83 631.74 0.05 0.45 204.19
    WS02-6 0.002 39.230 0.043 1.074 1.639 0.847 14.867 5.382 65.972 26.461 127.859 29.241 297.651 61.893 825.531 672.16 42.83 629.32 0.07 0.52 1165.23
    WS02-8 0.022 49.184 0.100 1.682 4.625 1.492 25.052 8.713 107.265 41.207 186.206 42.565 411.247 85.181 1270.296 964.54 57.11 907.44 0.06 0.42 255.34
    WS02-10 0.037 39.545 0.062 0.682 1.360 0.751 9.690 3.256 44.980 21.913 123.529 33.255 385.436 97.691 775.348 762.19 42.44 719.75 0.06 0.63 201.55
    WS02-11 0.021 50.670 0.048 0.923 3.155 1.071 21.971 7.807 103.572 42.221 202.132 45.845 453.713 95.438 1281.416 1028.59 55.89 972.70 0.06 0.39 393.96
    WS02-12 0.058 79.046 0.052 1.273 3.551 1.560 23.297 8.214 102.291 40.931 194.555 45.875 471.126 105.613 1292.794 1077.44 85.54 991.90 0.09 0.52 351.83
    WS02-13 0.007 41.369 0.031 0.585 1.481 0.882 10.855 3.720 45.719 19.385 103.144 24.923 266.428 61.299 660.738 579.83 44.36 535.47 0.08 0.67 678.70
    WS02-14 0.090 42.582 0.057 0.907 2.388 0.960 15.585 5.242 67.882 29.502 146.837 35.601 377.324 83.402 952.952 808.36 46.98 761.37 0.06 0.48 145.43
    WS02-15 0.001 36.232 0.025 0.652 1.487 0.687 10.554 3.614 47.289 21.155 108.615 27.361 292.008 67.054 706.786 616.73 39.08 577.65 0.07 0.53 1613.59
    WS02-16 0.006 34.544 0.034 0.576 1.889 0.791 11.415 3.799 49.643 20.958 111.258 28.462 308.290 73.409 720.434 645.07 37.84 607.23 0.06 0.52 592.69
    WS02-17 0.019 55.315 0.094 1.178 3.093 1.401 22.447 8.198 105.758 43.429 211.144 49.744 502.611 105.706 1372.515 1110.14 61.10 1049.04 0.06 0.51 317.77
    WS02-18 0.114 33.968 0.085 0.792 2.304 0.919 14.432 5.286 72.123 29.318 141.600 33.361 341.146 71.884 906.553 747.33 38.18 709.15 0.05 0.49 84.73
    WS02-21 3.329 70.750 0.675 4.084 2.962 1.097 16.614 5.693 71.338 29.382 145.671 35.768 374.958 86.700 942.341 849.02 82.90 766.12 0.11 0.48 11.57
    WS02-22 0.016 34.745 0.029 0.489 1.662 0.649 11.137 3.800 52.177 22.416 116.877 28.201 305.484 70.054 710.722 647.73 37.59 610.14 0.06 0.46 403.25
    WS02-23 0.107 62.564 0.076 1.118 2.358 1.186 17.166 6.850 88.307 38.545 193.851 47.299 498.511 118.403 1243.373 1076.34 67.41 1008.93 0.07 0.57 170.98
    WS02-24 2.004 48.432 0.640 3.362 2.621 0.843 14.286 5.148 70.194 31.348 160.890 41.314 434.070 97.581 1022.773 912.73 57.90 854.83 0.07 0.42 10.48
    WS02-26 0.005 46.151 0.095 1.871 5.035 1.709 25.118 7.616 91.112 34.882 155.620 35.799 330.432 66.691 1025.318 802.14 54.87 747.27 0.07 0.46 517.34
    WS02-27 2.028 56.031 0.752 4.134 4.097 1.387 22.082 7.776 94.715 39.040 181.422 42.463 422.544 89.574 1187.650 968.05 68.43 899.62 0.08 0.45 11.12
    WS02-28 0.008 47.547 0.023 0.658 2.307 0.831 14.808 5.122 69.094 31.174 158.314 38.944 424.423 95.861 1005.799 889.11 51.37 837.74 0.06 0.43 873.10
    WS02-29 0.032 49.428 0.052 0.873 2.233 1.023 17.366 6.285 84.980 36.660 184.098 44.561 457.590 101.390 1191.673 986.57 53.64 932.93 0.06 0.50 297.46
    WS02-30 0.004 59.507 0.064 0.916 2.714 1.230 17.426 6.273 80.858 35.278 178.230 44.319 468.570 107.968 1157.665 1003.36 64.43 938.92 0.07 0.55 961.76
    下载: 导出CSV 
    | 显示表格
    图  4  稀土元素球粒陨石标准化配分型式(标准化数据据文献[38])
    Figure  4.  Chondrite-normalized REE patterns (Normalization values after Reference [38])

    弱矿化蚀变不等粒二长花岗岩(WS05)、矿化蚀变流纹质碎斑熔岩(WS02)锆石176Lu/177Hf比值分别为0.001688~0.003588、0.000831~0.001292,176Lu/177Hf比值均较小,表明锆石在形成后,仅具有少量的放射性成因Hf积累,因而可以用初始176Hf/177Hf比值代表形成时的Hf同位素组成[37]176Hf/177Hf初始比值和εHf(t)值根据同一锆石U-Pb测年数据计算;二阶段模式年龄(TDMC)根据亏损幔源计算[27]。测定结果显示,WS05锆石Hf同位素176Hf/177Hf比值为0.282659~0.282820(表 3),176Yb/177Hf比值为0.099606~0.046370,fLu/Hf为-0.95~-0.89,锆石εHf(0)为-4.0~-0.7,εHf(t)为0.1~5.8(图 5);WS02锆石Hf同位素176Hf/177Hf比值为0.282783~0.282850,176Yb/177Hf比值为0.020042~0.035646,fLu/Hf为-0.97~-0.96,锆石εHf(0)为0.4~2.8,εHf(t)为4.3~6.6(图 6)。WS05锆石Hf单阶段模式年龄(TDM)为643~882Ma,二阶段模式年龄(TDMC)为874~1235Ma;WS02锆石Hf单阶段模式年龄(TDM)为570~663Ma,二阶段模式年龄(TDMC)为802~952Ma。

    表  3  乌努格吐山岩体LA-ICP-MS锆石Lu-Hf同位素分析结果
    Table  3.  LA-ICP-MS Zircon Lu-Hf isotopic analysis of Wunugetushan rocks
    样品编号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM (Ma) TDMC(Ma) fLu/Hf
    WS02-001 183.79 0.035646 0.001292 0.282829 2.0 5.9 604 850 -0.96
    WS02-002 181.72 0.022735 0.000914 0.282783 0.4 4.3 663 952 -0.97
    WS02-003 178.76 0.023283 0.000875 0.282837 2.3 6.1 587 833 -0.97
    WS02-004 177.72 0.024778 0.000996 0.282818 1.6 5.4 616 878 -0.97
    WS02-005 177.38 0.030802 0.001225 0.282803 1.1 4.8 641 914 -0.96
    WS02-006 178.25 0.022562 0.000964 0.282825 1.9 5.7 604 860 -0.97
    WS02-007 179.62 0.020253 0.000831 0.282831 2.1 5.9 595 846 -0.97
    WS02-008 177.79 0.026337 0.001096 0.282842 2.5 6.3 582 822 -0.97
    WS02-009 182.76 0.022090 0.000917 0.282804 1.1 5.0 634 905 -0.97
    WS02-010 182.18 0.026716 0.000988 0.282850 2.8 6.6 570 802 -0.97
    WS02-011 182.91 0.023562 0.000917 0.282834 2.2 6.1 591 837 -0.97
    WS02-012 177.89 0.020042 0.000854 0.282819 1.7 5.5 611 873 -0.97
    WS02-013 178.39 0.026401 0.001009 0.282829 2.0 5.8 599 851 -0.97
    WS02-014 178.24 0.024919 0.000902 0.282803 1.1 4.9 634 909 -0.97
    WS02-015 178.58 0.027675 0.001052 0.282809 1.3 5.1 629 897 -0.97
    WS02-016 177.25 0.025114 0.001094 0.282813 1.5 5.2 623 888 -0.97
    WS05-001 197.97 0.067606 0.002426 0.282738 -1.2 2.8 756 1057 -0.93
    WS05-002 197.19 0.060028 0.002184 0.282694 -2.8 1.3 816 1155 -0.93
    WS05-003 201.82 0.073935 0.002745 0.282820 1.7 5.8 643 874 -0.92
    WS05-004 202.61 0.059110 0.002155 0.282728 -1.5 2.6 765 1074 -0.94
    WS05-005 197.62 0.067911 0.002509 0.282731 -1.4 2.6 768 1073 -0.92
    WS05-006 201.01 0.052678 0.002027 0.282712 -2.1 2.0 786 1110 -0.94
    WS05-007 203.37 0.046370 0.001688 0.282703 -2.4 1.8 792 1127 -0.95
    WS05-008 199.5 0.099606 0.003588 0.282743 -1.0 2.9 775 1055 -0.89
    WS05-009 201.56 0.047960 0.001782 0.282714 -2.0 2.1 778 1103 -0.95
    WS05-010 202.88 0.058686 0.002184 0.282702 -2.5 1.7 805 1135 -0.93
    WS05-011 202.01 0.059888 0.002143 0.282712 -2.1 2.0 789 1111 -0.94
    WS05-012 203.3 0.077946 0.002817 0.282659 -4.0 0.1 882 1235 -0.92
    WS05-013 200.15 0.056164 0.002059 0.282711 -2.1 2.0 788 1113 -0.94
    WS05-014 202.72 0.085910 0.003052 0.282701 -2.5 1.5 825 1143 -0.91
    WS05-015 198.65 0.091676 0.003159 0.282751 -0.7 3.2 753 1034 -0.90
    注:εHf(t)=10000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR0-(176Lu/177Hf)CHUR×(eλt-1)]-1};
    TDM=1/λ×ln{1 +[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Hf/177Hf)S-(176Hf/177Hf)DM]};
    TDMC=TDM-(TDM-t)×[(fcc-fs)/(fcc-fDM)],fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1。
    其中:λ=1.867×10-11/a[41];(176Lu/177Hf)S和(176Hf/177Hf)S为样品测量值;(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR0=0.282772[26];(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325[27];(176Lu/177Hf)平均地壳=0.015;fcc=[(176Lu/177Hf)平均地壳/(176Lu/177Hf)CHUR]-1;fs= fLu/HffDM=[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1;t为锆石结晶年龄。
    下载: 导出CSV 
    | 显示表格
    图  5  不等粒二长花岗岩(WS05)锆石εHf(t)-t图(底图据文献[33])
    Figure  5.  εHf(t) versus age diagrams of unequal-grained monzogranite (WS05). Base image according to Reference[33]
    图  6  流纹质碎斑熔岩(WS02)锆石εHf(t)-t图(底图据文献[33])
    Figure  6.  εHf(t) versus age diagrams of rhyolite porphyritic lava (WS02). Base image according to Reference [33]

    乌努格吐山成岩成矿年代学取得大量成果,也存在较大争议[11-15]。本次工作在系统野外地质调查的基础上,选择代表性围岩和成矿母岩进行同位素年龄测试,测试单位为北京锆年领航科技有限公司,测试方法为LA-ICP-MS。锆石U-Pb年龄具有成熟有效,锆石易挑选,封闭体系温度高等优点[39-40],所测年龄结果真实有效,能够有效地代表岩体形成年龄。

    本次工作所测围岩(WS05)不等粒二长花岗岩样品锆石具震荡环带,Tu/U比值较大,锆石稀土强烈富集重稀土、亏损轻稀土,δEu负异常;δCe正异常特征,表明测试用锆石为岩浆成因锆石,测试结果为200.96±0.88Ma,该测试结果与秦克章等[12]测得的矿区黑云二长花岗岩全岩Rb-Sr等时线年龄(211±21Ma)、谭刚[14]获得的外围黑云母花岗岩锆石U-Pb年龄(198.1±2.9Ma)、Wang等[16]获得的矿区黑云花岗岩SIMS锆石U-Pb年龄(203.5±1.6Ma)、Zhang等[17]测得的花岗斑岩脉的SHRIMP锆石U-Pb年龄(201.4±3.1Ma)和Mi等[18]获得的矿区黑云母花岗岩锆石U-Pb年龄(206.9±1.9Ma)在误差范围内,表明了200Ma左右是本区重要的成岩时期,主体为大面积展布的黑云母花岗岩和二长花岗岩,其次为花岗斑岩脉体。其中,本次研究的不等粒二长花岗岩为新报道的一类赋矿围岩,与黑云母花岗岩属于同期形成的岩体在不同部位的岩性过渡。因此,本次所测得的不等粒二长花岗岩年龄(200.96±0.88Ma)可代表赋矿围岩岩体形成的时代,该岩体在靠近斑岩体的部位发育一定程度的蚀变和矿化,表明成矿作用晚于大面积展布的二长花岗岩-黑云母花岗岩围岩的形成时代。

    成矿母岩(WS02)流纹质碎斑熔岩样品锆石具震荡环带,Tu/U比值较大,锆石稀土强烈富集重稀土、亏损轻稀土,δEu负异常;δCe正异常特征,表明测试用锆石为岩浆成因锆石,加权平均值为179.58±0.91Ma,表明矿化蚀变流纹质碎斑熔岩形成于早侏罗世。该测试结果与秦克章等[11]获得的蚀变绢云母K-Ar年龄(183.5±1.7Ma)、Wang等[16]获得的二长花岗斑岩SIMS锆石U-Pb年龄(180.4±1.4Ma)和Mi等[18]获得的流纹斑岩锆石U-Pb年龄(180.4±4.5Ma)年龄在地质误差范围内,也与Zhang等[17]获得的辉钼矿Re-Os加权平均年龄(179.8±1.0Ma)在误差内一致,稍早于谭钢[14]测得的辉钼矿Re-Os等时线年龄(177.4±2.4Ma),说明除了二长花岗斑岩和流纹斑岩,本次研究的流纹质碎斑熔岩也为一种重要的成矿母岩体,其形成年龄可代表矿区的成矿时代。

    赋矿围岩锆石Hf同位素特征表明岩浆源区以新生陆壳物质或幔源物质为主,混有少量古老壳源物质。成矿母岩锆石Hf同位素特征表明岩浆源区主要为新生陆壳物质或幔源物质为主,仅含极少数古老壳源物质。

    本文采用LA-MC-ICP-MS和LA-ICP-MS证实不等粒二长花岗岩和流纹质碎斑熔岩为早侏罗世不同阶段的产物。锆石εHf(t)值及二阶段模式年龄(TDMC)的细微区别反映了岩浆源区的异同。通过对比赋矿围岩和成矿母岩成岩时代和Lu-Hf同位素之间的差异,指示了赋矿围岩岩浆源区为幔源物质和少量古老壳源物质的混合;成矿母岩岩浆源区主要为幔源物质。从赋矿围岩到成矿母岩岩浆源区幔源物质增加,壳源物质减少。

  • 图  1   10种土壤对Sb(Ⅲ)的饱和吸附容量

    Figure  1.   Saturated adsorption capacity of ten soils to Sb(Ⅲ).

    表  1   土壤信息

    Table  1   Soil information

    样品编号 土壤类型 采集地 土壤利用类型
    1# 褐土 天津市和平区蒙古路滨府里小区 城市绿地
    2# 棕壤 河北省邯郸市磁县贾壁乡中贾壁村 菜地
    3# 棕壤 广东省肇庆市金利镇梓里一工业区 绿地
    4# 黄壤 湖南省株洲市渌口区渌湘大道 城市绿地
    5# 褐土 甘肃省兰州市城关区骆驼滩村 绿地
    6# 褐土 山东省德州市德新区新华街道 城市绿地
    7# 棕壤 四川省眉山市丹棱县扬场镇 水稻土
    8# 黄壤 江西省萍乡市芦溪镇温埠村 菜地
    9# 沙土 四川省阿坝州诺尔盖 裸沙地
    10# 红壤 四川省攀枝花市二滩水电站 果园地
    下载: 导出CSV

    表  2   土壤的理化性质

    Table  2   Physical and chemical properties of soils

    样品编号 pH SOM
    (mg/g)
    CEC
    (cmol/kg)
    机械组成(%)
    黏粒(mm) 粉粒(mm) 砂粒(mm)
    < 0.005 0.005~0.01 0.01~0.05 0.05~0.075 0.075~0.25 0.25~0.5 0.5~1.0
    1# 7.76 8.59 22.2 20.3 11.3 51.2 7.90 6.50 1.70 1.10
    2# 8.12 6.44 29.5 18.3 9.30 56.9 6.20 5.00 1.60 2.70
    3# 6.81 7.81 22.6 23.7 14.2 53.4 5.10 2.40 0.70 0.50
    4# 6.53 1.33 17.4 37.3 10.9 26.0 5.20 12.80 2.90 4.90
    5# 7.72 2.33 13.6 20.3 2.50 66.5 8.40 1.70 0.30 0.30
    6# 8.57 2.67 19.8 16.1 10.0 40.1 24.9 5.40 1.40 2.10
    7# 6.59 14.5 15.1 34.4 10.9 34.9 1.00 13.5 3.60 1.70
    8# 5.04 5.09 12.9 43.1 11.1 28.8 5.60 9.40 0.90 1.10
    9# 7.67 1.43 7.10 2.20 97.8
    10# 7.09 4.76 32.5 36.2 3.90 10.1 2.10 22.6 10.6 14.5
    下载: 导出CSV

    表  3   土壤的主要化学成分及锑的含量

    Table  3   Main chemical composition and Sb content of soils

    样品编号 SiO2
    (%)
    Al2O3
    (%)
    Fe2O3
    (%)
    MnO2
    (%)
    CaO
    (%)
    MgO
    (%)
    K2O
    (%)
    Na2O
    (%)
    Sb
    (mg/kg)
    1# 71.5 11.6 2.75 0.086 5.99 2.60 3.67 0.72 1.52
    2# 70.6 13.9 5.12 0.093 3.31 1.25 4.21 0.77 1.46
    3# 77.1 13.0 5.47 0.066 0.22 0.40 3.15 0.16 2.94
    4# 58.2 20.4 3.34 0.062 0.46 0.64 4.47 0.30 2.91
    5# 44.3 12.1 2.69 0.094 6.78 2.38 2.38 0.88 1.24
    6# 59.4 6.63 1.95 0.101 5.73 1.98 2.05 0.51 1.28
    7# 73.2 10.2 3.60 0.048 0.53 0.83 2.14 0.25 1.85
    8# 50.3 14.2 2.71 0.020 0.14 0.47 16.65 0.19 1.26
    9# 85.8 6.76 2.09 0.036 1.43 0.28 1.72 0.68 0.94
    10# 53.5 22.2 12.3 0.048 0.37 0.39 0.80 0.18 1.97
    下载: 导出CSV

    表  4   土壤中不同形态铁锰氧化物的含量

    Table  4   Content of iron and manganese oxide forms in soils

    样品编号 游离铁
    (mg/g)
    无定形铁
    (mg/g)
    络合铁
    (mg/kg)
    游离锰
    (mg/kg)
    无定形锰
    (mg/kg)
    络合锰
    (mg/kg)
    1# 5.00 3.19 89.0 315 277 27.1
    2# 4.99 2.12 38.0 261 192 14.5
    3# 12.7 2.50 127 328 249 112
    4# 23.8 1.98 58.5 99.0 65.5 8.70
    5# 2.56 1.61 32.5 171 82.0 9.40
    6# 3.64 1.80 38.5 256 115 9.30
    7# 9.97 5.91 479 193 187 94.0
    8# 15.8 2.87 229 189 27.0 4.60
    9# 3.06 0.82 29.5 54.0 94.0 12.4
    10# 36.5 8.24 53.5 285 212 19.0
    下载: 导出CSV

    表  5   土壤对Sb(Ⅲ)饱和吸附容量与土壤理化性质及各形态铁锰含量的相关性

    Table  5   Correlation between soil with saturated adsorption capacity for Sb(Ⅲ) and soil physical and chemical properties, various forms of iron and manganese content

    参数 氧化铁 氧化锰 游离铁 无定形铁 络合铁 游离锰 无定形锰
    土壤对Sb(Ⅲ)饱和吸附容量 0.828** -0.052 0.685* 0.833** 0.052 0.645* 0.643*
    参数 pH 络合锰 SOM CEC 黏粒 粉粒 砂粒
    土壤对Sb(Ⅲ)饱和吸附容量 -0.08 0.131 0.363 0.815** 0.234 -0.114 -0.101
    注:“*”表示在0.05水平上显著相关; “**”表示在0.01水平上显著相关。
    下载: 导出CSV

    表  6   主成分分析特征值及其贡献率

    Table  6   Eigenvalues and proportion of principal component analysis

    成分 解释的总方差(初始特征值) 解释的总方差
    (提取平方和载入)
    合计 方差
    (%)
    累积
    (%)
    合计 方差
    (%)
    累积
    (%)
    1 5.28 35.17 35.17 5.28 35.17 35.17
    2 3.30 21.96 57.13 3.29 21.96 57.14
    3 2.59 17.23 74.36 2.59 17.23 74.37
    4 1.81 12.07 86.43 1.81 12.07 86.44
    5 0.98 6.54 92.98
    6 0.46 3.10 96.07
    7 0.25 1.68 97.76
    8 0.19 1.30 99.05
    9 0.14 0.95 100
    10 1×10-13 1×10-13 100
    11 1×10-13 1×10-13 100
    12 1×10-13 1×10-13 100
    13 -1×10-13 -1×10-13 100
    14 -1×10-13 -1×10-13 100
    15 -1×10-13 -1×10-13 100
    下载: 导出CSV

    表  7   最大方差法旋转成分矩阵

    Table  7   Component matrix with maximum variance rotation method

    因子 F1
    (主成分1)
    F2
    (主成分2)
    F3
    (主成分3)
    F4
    (主成分4)
    饱和吸附容量 0.959 0.074 -0.015 0.168
    氧化铁总量 0.933 -0.158 -0.095 -0.035
    CEC 0.866 0.375 0.156 -0.150
    无定形铁含量 0.790 -0.146 -0.209 0.447
    游离铁含量 0.751 -0.265 -0.549 -0.081
    砂粒 -0.014 -0.959 0.171 -0.148
    粉粒 -0.172 0.947 0.213 0.043
    游离锰含量 0.626 0.603 0.010 0.229
    氧化锰总量 0.017 0.468 0.428 -0.235
    pH -0.029 0.149 0.888 -0.177
    黏粒 0.386 0.240 -0.827 0.249
    无定形锰含量 0.694 0.198 0.596 0.425
    络合铁含量 -0.111 0.006 -0.378 0.882
    SOM含量 0.112 0.240 -0.121 0.865
    络合锰含量 0.416 -0.125 0.443 0.604
    下载: 导出CSV
  • [1]

    Deng R J, Shao R, Ren B Z, et al. Adsorption of antimony(Ⅲ) onto Fe(Ⅲ)-treated humus sludge adsorbent: Behavior and mechanism insights[J]. Polish Journal of Environmental Studies, 2019, 28(2): 577-586.

    [2]

    He M C, Wang N N, Long X J, et al. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. doi: 10.1016/j.jes.2018.05.023

    [3]

    Zhu Y M, Wu Q H, Lv H Q, et al. Toxicity of different forms of antimony to rice plants: Effects on reactive oxidative species production, antioxidative systems, and uptake of essential elements[J]. Environmental Pollution, 2020, 263: 114544. doi: 10.1016/j.envpol.2020.114544

    [4]

    Mbadugha L, Cowper D, Dossanov S, et al. Geogenic and anthropogenic interactions at a former Sb mine: Environmental impacts of As and Sb[J]. Environmental Geochemistry Health, 2020, 42: 3911-3924. doi: 10.1007/s10653-020-00652-w

    [5] 张龙, 宋波, 黄凤艳, 等. 湖南锡矿山周边土壤-农作物系统锑迁移转换特征及污染评价[J]. 环境科学, 2022, 43(3): 1558-1566. doi: 10.13227/j.hjkx.202105162

    Zhang L, Song B, Huang F Y, et al. Characteristics of antimony migration and transformation and pollution evaluation in soil-crop system around tin mine in Hunan Province[J]. Environmental Science, 2022, 43(3): 1558-1566. doi: 10.13227/j.hjkx.202105162

    [6]

    Verbeeck M, Thiry Y, Smolders E. Soil organic matter affects arsenic and antimony sorption in anaerobic soils[J]. Environmental Pollution, 2020, 257: 113566. doi: 10.1016/j.envpol.2019.113566

    [7] 刘冬, 贺灵, 文雪琴, 等. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究[J]. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.20211100139

    Liu D, He L, Wen X Q, et al. Concentration and relationship about heavy metals in soils and rices and influencing of pH in Jinqu Basin[J]. Rock and Mineral Analysis, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.20211100139

    [8] 岑如香, 张旺, 韦小了, 等. 黔产薏苡仁及其产地土壤重金属污染的特征[J]. 水土保持通报, 2021, 41(1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101015.htm

    Cen R X, Zhang W, Wei X L, et al. Characteristics of heavy metal pollution of coix seed and soil from its producing area in Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101015.htm

    [9] 代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818. doi: 10.13227/j.hjkx.201704135

    Dai Y J, Guo J Y, Dong Z, et al. Spatial distribution of soil particles and heavy metals under different psammophilicshrubs in the Ulan Buh Desert[J]. Environmental Science, 2017, 38(11): 4809-4818. doi: 10.13227/j.hjkx.201704135

    [10] 周世伟, 朱丽娜, 贺京哲, 等. 锑/磷在膨润土和高岭土的竞争吸附[J]. 土壤, 2017, 49(3): 492-499. doi: 10.13758/j.cnki.tr.2017.03.010

    Zhou S W, Zhu L, He J Z, et al. Competition adsorption of antimony (Sb) and phosphorus (P) on bentonite and kaolinite[J]. Soils, 2017, 49(3): 492-499. doi: 10.13758/j.cnki.tr.2017.03.010

    [11]

    Verbeeck M, Warrinnier R, Gustafsson J P, et al. Soil organic matter increases antimonate mobility in soil: An Sb(OH)6 sorption and modelling study[J]. Applied Geochemistry, 2019, 104: 33-41. doi: 10.1016/j.apgeochem.2019.03.012

    [12]

    Steely S, Amarasiriwardena D, Xing B. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils[J]. Environmental Pollution, 2007, 148: 590-598. doi: 10.1016/j.envpol.2006.11.031

    [13]

    Rong Q, Zhang C L, Huang H, et al. Immobilization of As and Sb by combined applications Fe-Mn oxides with organic amendments and alleviation their uptake by brassica campestris L. [J]. Journal of Cleaner Production, 2021, 288: 125088. doi: 10.1016/j.jclepro.2020.125088

    [14]

    Lan B Y, Wang Y X, Wang X, et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292: 389-397. doi: 10.1016/j.cej.2016.02.019

    [15] 王鑫浩. 不同晶型MnO2吸附剂对水中铊及锑的吸附效果研究[D]. 西安: 西安工程大学, 2018: 43.

    Wang X H. Study on the adsorption effect of different crystalline MnO2 adsorbents on thallium and antimony in water[D]. Xi'an: Xi'an Polytechnic University, 2018: 43.

    [16]

    Wang H W, Tsang Y F, Wang Y N, et al. Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: Adsorption properties and effects of environmental and chemical conditions[J]. Clean Technologies and Environmental Policy, 2018, 20: 2169-2179. doi: 10.1007/s10098-018-1552-0

    [17]

    Shanggan Y X, Qin X P, Zhao L, et al. Effects of iron oxide on antimony(Ⅴ) adsorption in natural soils: Transmission electron microscopy and X-ray photoelectron spectroscopy measurements[J]. Journal of Soils & Sediments, 2016, 16(2): 509-517.

    [18] 白德奎, 朱霞萍, 王艳艳, 等. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究[J]. 岩矿测试, 2010, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013

    Bai D K, Zhu X P, Wang Y Y, et al. Study on adsorption behaviors of As(Ⅲ) by manganese oxide iron oxide and aluminium oxide[J]. Rock and Mineral Analysis, 2010, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013

    [19]

    Guo X J, Wu Z J, He M C, et al. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 2014, 276: 339-345. doi: 10.1016/j.jhazmat.2014.05.025

    [20] 刘爱叶, 马杰, 马光胜. 氯化铵-乙醇法测定膨胀土阳离子交换量方法的优化[J]. 铁道勘察, 2011, 37(1): 43-45. doi: 10.3969/j.issn.1672-7479.2011.01.014

    Liu A Y, Ma J, Ma G S. Optimized experiment for ammonium chloride-ethanol method in measurement of bentonite cationic exchange capacity[J]. Railway Investigation and Surveying, 2011, 37(1): 43-45. doi: 10.3969/j.issn.1672-7479.2011.01.014

    [21] 徐永昊, 聂军, 鲁艳红, 等. 减施化肥下紫云英翻压量对土壤团聚体及铁锰氧化物的影响[J]. 中国土壤与肥料, 2020(6): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202006003.htm

    Xu Y H, Nie J, Lu Y H, et al. Effects of different returning amount of Chinese milk vetch on soil aggregates and iron and manganese oxides under reduced fertilizer application[J]. Soil and Fertilizer Sciences in China, 2020(6): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202006003.htm

    [22] 顾明华, 李志明, 陈宏, 等. 施锰对土壤锰氧化物形成及镉固定的影响[J]. 生态环境学报, 2020, 29(2): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm

    Gu M H, Li Z M, Chen H, et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil[J]. Ecology and Environmental Sciences, 2020, 29(2): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm

    [23] 姜学钧. 海洋铁锰氧化物沉积物中常、微量元素的地球化学特征[D]. 青岛: 中国海洋大学, 2008: 22.

    Jiang X J. Geochemistry of major and minor elements in marine ferromanganese oxide deposits[D]. Qingdao: Ocean University of China, 2008: 22.

    [24] 郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. doi: 10.15898/j.cnki.11-2131/td.201906110084

    Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. doi: 10.15898/j.cnki.11-2131/td.201906110084

    [25] 薛佳. 液相色谱-原子荧光光谱联用法测定土壤砷铬锑硒元素价态[J]. 岩矿测试, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028

    Xue J. Determination of valences of As, Cr, Sb and Se in soil using HPLC-HG-AFS[J]. Rock and Mineral Analysis, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028

    [26] 谭迪. 锑砷复合污染土壤的风险评价及萃取研究[D]. 长沙: 湖南农业大学, 2019: 2.

    Tan D. Risk assessment and leaching extraction of antimony (Sb) and arsenic (As) contaminated soils[D]. Changsha: Hunan Agricultural University, 2019: 2.

    [27] 马祥爱, 秦俊梅, 张亚尼. 锑在不同土壤中的解吸行为比较[J]. 农业环境科学学报, 2015, 34(8): 1528-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201508014.htm

    Ma X A, Qin J M, Zhang Y N. A comparison of desorption behaviors of Sb in different soils[J]. Journal of Agro-Environment Science, 2015, 34(8): 1528-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201508014.htm

    [28]

    Zhu Y M, Yang J G, Wang L Z, et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants[J]. Science of the Total Environment, 2020, 738: 140232.

    [29] 姜再菊. 锑矿冶炼区周围土壤中锑的吸附释放行为研究[D]. 贵阳: 贵州大学, 2019: 7.

    Jiang Z J. Study on adsorption and release behavior of Sb in soil of antimony ore smelting mine[D]. Guiyang: Guizhou University, 2019: 7.

    [30]

    Lin X L, He F, Sun Z J, et al. Influences of soil pro-perties and long-time aging on phytotoxicity of antimony to barley root elongation[J]. Environmental Pollution, 2020, 262: 114330. http://www.sciencedirect.com/science/article/pii/S0269749120301147

    [31] 孙雪. 不同景观部位土壤铁锰新生体的形态, 组成及形成环境研究[D]. 沈阳: 沈阳农业大学, 2018: 4-5.

    Sun X. The morphology, composition, and formation environment of soil Fe-Mn new growth in different landscape sites[D]. Shenyang: Shenyang Agricultural University, 2018: 4-5.

    [32] 肖作义, 马耀祖, 郑春丽, 等. 季节性冻融作用对土壤吸附稀土元素镧的影响[J]. 应用化工, 2018, 47(9): 1841-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201809011.htm

    Xiao Z Y, Ma Y Z, Zheng C L, et al. The effect of seasonal freeze-thaw on the soil adsorption of rare earth elements lanthanum[J]. Applied Chemical Industry, 2018, 47(9): 1841-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201809011.htm

    [33] 梁化学. 不同形态氧化铁对黄土性土壤表面性质及铅吸附解吸的影响[D]. 杨凌: 西北农林科技大学, 2016: 2-3.

    Liang H X. Effects of iron oxides on surface properties and adsorption-desorption of lead by several loessial soils[D]. Yangling: Northwest A&F University, 2016: 2-3.

    [34]

    Zhou S, Sato T, Otake T. Dissolved silica effects on adsorption and co-precipitation of Sb(Ⅲ) and Sb(Ⅴ) with ferrihydrite[J]. Minerals, 2018, 8(101): 1-12. http://www.onacademic.com/detail/journal_1000040539668010_66d6.html

    [35]

    Qi P F, Pichler T. Sequential and simultaneous adsorption of Sb(Ⅲ) and Sb(Ⅴ) on ferrihydrite: Implications for oxidation and competition[J]. Chemosphere, 2016, 145: 55-60.

    [36] 高雪. 外源砷在土壤中的老化及植物有效性研究[D]. 北京: 中国农业科学院, 2016: 21.

    Gao X. A study on aging process and phytoavailability of exogenous arsenic in soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 21.

    [37]

    Cai Y B, Mi Y T, Zhang H, et al. Kinetic modeling of antimony(Ⅲ) oxidation and sorption in soils[J]. Journal of Hazardous Materials, 2016, 316: 102-109.

    [38]

    Long X J, Wang X, Guo X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences, 2020, 90: 189-204.

    [39]

    Belzile N, Chen Y W, Wang Z J. Oxidation of antimony(Ⅲ) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 2001, 174: 379-387.

  • 期刊类型引用(9)

    1. 张莹,任战利,兰华平,祁凯,邢光远,夏岩. 关中盆地新近系蓝田-灞河组热储层物性及渗流特征研究. 地质通报. 2024(05): 712-725 . 百度学术
    2. 王立新,高青松,周家林,刘岩,曹茜,陈婷,王力. 黏土矿物类型对杭锦旗下石盒子组致密砂岩储层束缚水饱和度的影响. 岩矿测试. 2024(06): 821-835 . 本站查看
    3. 吴春燕,展转盈,李文厚,王宁,吴琳. 联合压汞法表征致密油储层孔喉特征:以陕北定边地区延长组长7段为例. 地质科学. 2023(02): 710-722 . 百度学术
    4. Lei Gong,Xianzhi Gao,Futao Qu,Yongshu Zhang,Guangya Zhang,Jun Zhu. Reservoir Quality and Controlling Mechanism of the Upper Paleogene Fine-Grained Sandstones in Lacustrine Basin in the Hinterlands of Northern Qaidam Basin, NW China. Journal of Earth Science. 2023(03): 806-823 . 必应学术
    5. 杨飞,申志超,杜江民,王芳,董博. 有机酸对致密砂岩中黏土矿物的选择性溶蚀研究. 岩矿测试. 2023(03): 478-490 . 本站查看
    6. 宁凡,赵欣,邹妞妞,谢渊,许安东. 柴北缘侏罗系大煤沟组砂岩储层孔喉分布特征. 非常规油气. 2022(03): 42-51 . 百度学术
    7. 翁剑桥,李夏伟,戚明辉,张烨毓,王禹,张伟. 四川盆地龙马溪组页岩孔隙度实验方法分析. 岩矿测试. 2022(04): 598-605 . 本站查看
    8. 刘广峰,王连鹤,孙仲博,王俊涛,姜帆. 致密砂岩储层孔喉结构研究进展. 石油科学通报. 2022(03): 406-419 . 百度学术
    9. 张宝进,徐吉丰. 油页岩干馏残渣与含油污泥混烧特性研究. 当代化工. 2021(03): 644-647 . 百度学术

    其他类型引用(5)

图(1)  /  表(7)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  78
  • PDF下载量:  24
  • 被引次数: 14
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-01-03
  • 录用日期:  2022-01-29
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-27

目录

/

返回文章
返回