The Impact of Different Clay Mineral Types on the Irreducible Water Saturation in Tight Sandstone Reservoirs: A Case Study of the Lower Shihezi Formation in Hangjinqi Area, Ordos Basin
-
摘要:
现有研究对黏土矿物、孔喉结构和束缚水饱和度关系认识不足,对束缚水饱和度的微观影响因素尚不明确。本文聚焦鄂尔多斯盆地北缘杭锦旗地区锦30井区盒1段致密砂岩储层,探讨黏土矿物类型与含量对束缚水饱和度的影响。在岩心观察基础上,通过X射线衍射分析、高分辨率扫描电镜、铸体薄片分析、一维核磁共振实验和高压压汞实验等多种测试方法,对目的层岩石学特征、黏土矿物类型及产出形态、孔隙结构、束缚水分布展开研究。研究结果显示:①盒1段储层黏土矿物平均含量为18.36%,主要发育高岭石、伊利石、绿泥石和伊/蒙混层等黏土矿物;②不同岩相中黏土矿物的类型存在差异:岩屑石英砂岩中黏土矿物以长石蚀变高岭石为主,发育长石粒内溶孔、高岭石晶间孔;岩屑砂岩以岩屑及杂基蚀变伊利石为主,发育伊利石充填的岩屑粒内溶孔;③束缚水饱和度随黏土矿物总量增加呈增大趋势,伊利石呈丝状发育堵塞孔喉是影响束缚水饱和度分布的主导因素;不同成因高岭石对束缚水分布影响有差异:长石高岭石化形成的高岭石单体排列杂乱且疏松,对应黏土矿物晶间孔隙不发育但长石溶蚀孔较发育,孔隙连通性较好;自生高岭石呈蠕虫状或书页状集合体状分布,相互支撑形成大量微纳米级孔隙,引起束缚水饱和度增加;不同类型黏土矿物分布对束缚水饱和度影响的研究,对致密砂岩储层评与产能预测至关重要。
要点(1)研究层段储层普遍发育高岭石、绿泥石、伊利石和伊/蒙混层,不同岩相下黏土矿物含量及类型存在显著性差异。
(2)储集空间内主要发育高岭石晶间孔、长石粒内溶孔、岩屑溶孔等,孔隙多为中小孔。
(3)伊利石、长石溶蚀形成高岭石及自生高岭石充填部分粒间孔隙形成复杂的束缚水网络,导致不同含量和不同类型黏土矿物作用下束缚水分布存在差异性。
HIGHLIGHTS(1) Kaolinite, chlorite, illite and illite/smectite mixed layers are widely developed in the reservoir of the study section, and there are significant differences in the content and type of clay minerals under different lithofacies.
(2) The reservoir space mainly develops kaolinite intercrystalline pores, feldspar intragranular dissolved pores, lithic dissolved pores, etc., and the pores are mostly small and medium.
(3) The kaolinite formed by the dissolution of illite and feldspar and the intergranular pores filled by authigenic kaolinite form a complex irreducible water network, which leads to the difference in the distribution of irreducible water under the action of different contents and types of clay minerals.
Abstract:The type and content of clay minerals in tight sandstone reservoirs of the He-1 member in the Jin-30 well area of Hangjinqi in the northern margin of the Ordos Basin have a significant effect on irreducible water saturation. On the basis of core observation, the petrological characteristics, clay mineral types and occurrence forms, pore structure and irreducible water distribution of the target layer by means of X-ray diffraction analysis, high-resolution scanning electron microscopy, casting thin section analysis, one-dimensional nuclear magnetic resonance experiment and high-pressure mercury injection experiment were studied. The results show that: (1) The average content of clay minerals in the reservoir is 18.36%, and the clay minerals mainly include kaolinite, illite, chlorite and illite/smectite mixed layers. (2) There are differences in the types of clay minerals in different lithofacies: the clay minerals in lithic quartz sandstone are mainly feldspar altered kaolinite, and feldspar intragranular dissolution pores, and kaolinite intergranular pores are developed. The lithic sandstone is mainly composed of lithic and matrix altered illite, and the intragranular dissolution pores filled with illite are developed. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202407150157.
-
Keywords:
- Ordos Basin /
- tight sandstone /
- clay minerals /
- pore throat structure /
- irreducible water saturation
BRIEF REPORTSignificance:The irreducible water in the reservoir is mainly attached to the surface of clay minerals in the form of film or developed in tiny pores. The evaluation of its distribution characteristics is of great significance to the study of tight sandstone gas content. At present, due to the lack of analysis of pore structure differences under the action of clay minerals, the fine evaluation of reservoir gas content is seriously restricted. The tight sandstone reservoir of He-1 member of the lower Shihezi Formation in Hangjinqi area is taken as the research object[4]. A variety of test methods are used to study the types and output characteristics of clay minerals in the tight sandstone reservoir of the target layer and the difference characteristics of pore structure of different lithofacies, so as to further clarify the relationship between the output difference of different types of clay minerals and irreducible water saturation.
Methods:A total of 143 samples were collected from 15 wells in the first member of the lower Shihezi Formation in the Jin-30 well area of Hangjinqi, Ordos Basin. First, all the samples were tested by X-ray diffraction and high-resolution scanning electron microscopy. Representative samples were selected for casting thin section identification, nuclear magnetic resonance test and high-pressure mercury injection test. All tests are carried out in strict accordance with the latest industry standards, and some samples are tested repeatedly to ensure the accuracy of the test results.
Data and Results:According to the characteristics of core particle size, mineral composition, content and sedimentary structure, the tight sandstone reservoir of the He-1 member in Jin-30 well area is divided into four lithofacies: gravel coarse-grained lithic quartz sandstone, coarse-medium grained lithic quartz sandstone, gravel coarse-grained lithic sandstone and coarse-medium grained lithic sandstone. The clay minerals in lithic quartz sandstone are mainly feldspar altered kaolinite, and feldspar intragranular dissolution pores, and kaolinite intergranular pores are developed. The lithic sandstone is mainly composed of lithic and matrix altered illite, and the intragranular dissolution pores filled with illite are developed. The reservoir space mainly develops four types of pores, including kaolinite intercrystalline pores, feldspar intragranular dissolved pores, debris dissolved pores and matrix micropores, and microfractures are developed. The intragranular dissolved pores of feldspar and intercrystalline pores of kaolinite are mainly developed in the gravel-bearing coarse-grained lithic quartz sandstone, and the proportion of surface pores is 41% and 24%, respectively. Kaolinite intergranular pores, lithic dissolution feldspar intragranular dissolved pores and mold pores are mainly developed in medium-coarse lithic quartz sandstone, and the surface porosity accounts for 25%, 21% and 27%, respectively. The pore types in gravel-bearing coarse-grained lithic sandstone and medium-coarse-grained lithic sandstone are mainly intragranular dissolution pores and kaolinite intergranular pores, and the surface porosity accounts for 35% and 25%, respectively.
The saturation of movable water and irreducible water in different samples can be determined by saturation and centrifugation tests. The size of irreducible water saturation is: gravel-bearing coarse-grained lithic quartz sandstone<coarse-medium-grained lithic quartz sandstone and coarse and medium-grained lithic sandstone<gravel-bearing coarse-grained lithic sandstone. With the decrease of pore radius, the proportion of irreducible water in pores gradually increases, and the irreducible water saturation increases. The correlation analysis of clay mineral content and irreducible water saturation of 21 samples in the study area shows that the irreducible water saturation increases gradually with the increase of clay mineral content. Kaolinite and illite have obvious influence on pore throat structure[16]. The pore throat is blocked by the filamentous development of illite, which is the dominant factor affecting the distribution of irreducible water saturation. The kaolinite monomer formed by feldspar kaolinization is disorderly and loose, and the corresponding intergranular pores of clay minerals are not developed, but the feldspar dissolution pores are more developed, and the pore connectivity is better[35]. The authigenic kaolinite is distributed in worm-like or book-like aggregates to support each other to form a large number of micro-nano pores, causing an increase in irreducible water saturation.
-
铊属于稀散元素,常分散赋存于岩石中;在地球化学上既有亲石性,又有亲硫性。亲石性表现为以类质同象的形式与钾、钠等元素在云母和钾长石等富钾矿物共生;而在低温高硫环境中,则表现为亲硫性,以类质同象的形式进入各种铅锌铜铁等硫化物矿物中。20世纪70年代,为了寻找放射性同位素205Pb曾经存在的证据和探究核素合成的机理,科研人员开始了对铊同位素的研究[1]。在早期的研究中,由于测试用的热电离质谱仪(TIMS)的质量分馏不稳定,且难以激发高电离能的元素,导致铊同位素分析结果的精密度较差,不能满足大部分研究的需要。近些年,随着具备高电离能力的多接收器电感耦合等离子体质谱仪(MC-ICP-MS)的出现,同时得益于铅对分析过程中铊同位素分馏的校正,使分析结果的精密度有了大幅提高(优于0.05‰)[2-5]。
由于铊兼有亲石和亲硫性,其同位素组成对吸附、共沉淀、氧化还原等过程较为敏感,因此可以被应用于天体演化[6]、古环境变化[7]、矿床成因[8]及污染物迁移[9-11]等过程的示踪。但因为自然界样品中铊的含量低(地壳中铊的平均含量仅为0.75mg/kg),且同位素组成的变化范围和自然分馏效应很小[12],导致很难获得高精度和高准确度的铊同位素数据。因此,除高精度的仪器测量外,样品的消解、分离和纯化等化学前处理流程对铊同位素分析结果的准确与否也至关重要。对于铊含量的分析,分解试样时如果不知道矿石中铊的赋存状态,一般选用含有氢氟酸的混合酸或强碱性熔剂分解[13-16]。而对于富含有机质的样品,由于亚铊的氧化物、氯化物等具有挥发性,应避免使用直接灼烧法除去有机质,而是采用湿法氧化分解[14,16]。目前国内外地质样品中铊同位素测定的消解方法主要为电热板加热法。这种方法便于在洁净的化学实验室完成,但清洗容器和样品消解过程的用时较长,耗时往往超过一周[4]。根据地质样品岩性的不同,消解所用的混合酸体系也不相同,尚无统一的标准。铊的分离和纯化一般利用Tl+和Tl3+在盐酸介质中与Cl−络合能力的不同。需要注意的是,在纯化后的铊馏分中应尽可能减小铅量,否则由于残留的铅同位素组成是未知的(校正时添加标液的铅同位素是已知的),会影响铊的同位素分馏校正;此外,天然样品204Pb的自然丰度虽然仅有铅总量的1.4%,但204Pb1H多原子离子干扰对于铊同位素的高精度测量仍不可忽视。目前,使用阴离子交换树脂(如AG1-X8或AG-MP-1M树脂)二次过柱是普遍采用的铊提纯方法。该方法由Rehkämper等[2]首次提出,后经Nielsen等[3]、Baker等[6]、Owens等[17]研究团队发展和完善。该方法两次过柱均采用同一种阴离子交换树脂,第一次分离时采用装有1.5mL树脂的石英柱,依次用硝酸-氢溴酸-饱和溴水淋洗液洗脱基体元素、盐酸-饱和溴水淋洗液洗脱干扰元素铅,最后用盐酸-二氧化硫淋洗液收集铊。收集到的铊馏分经硝酸蒸干后,加入氢溴酸-饱和溴水提取液进行二次过柱,以保证完全消除干扰组分的影响。第二次过柱时,除所用体积与第一次不同之外,淋洗液的类型和浓度均与第一次相同。此外,Wang等[5]开发了磷酸三丁酯(TBP)树脂和AG50W-X12阳离子交换树脂的两级串联分离纯化方案,以NIST 997为参考物质测定BHVO-2、BCR-2、AGV-2、GSP-2、COQ-1、NOD-P-1、NOD-A-1、GBW07406、SCO-1共9种地质标准样品的同位素组成,获得了理想的结果。
微波消解是一种利用微波的穿透性和激活反应能力加热密闭容器内的试剂和样品的技术,具有省时、省酸、安全、空白值低、易实现自动监控、污染小以及损失少等优点,已广泛应用于食物[18-19]、环境[20]、生物[21]、植物[22]以及矿物[23-26]等样品中重金属元素的分析。本文为提高铊同位素分析中化学前处理流程的效率,研究了利用微波消解技术分解地质样品进行铊同位素分析的可行性,比较了硝酸-氢氟酸-盐酸-过氧化氢和硝酸-氢氟酸-高氯酸混合酸体系对样品的消解情况。消解后的样品经AG1-X8阴离子交换树脂分离纯化后,采用MC-ICP-MS结合铅标准溶液(NIST SRM981)质量分馏校正法进行同位素分析。使用优化后的实验方案分析了4个地质标准物质的铊同位素组成,获得较为满意的结果。
1. 实验部分
1.1 仪器和主要装置
铊同位素组成的测试运用Neptune plus多接收器电感耦合等离子体质谱仪(MC-ICP-MS,美国ThermoFisher公司)完成,进样系统包括双路气旋式雾化室、Jet样品锥和X截取锥,检测器包括9个法拉第杯和1个离子计数器。
淋洗曲线标定及回收率测试应用7500cx电感耦合等离子体质谱仪(ICP-MS,美国Agilent公司)完成,内标溶液为10ng/mL铑(2%硝酸介质)。MC-ICP-MS和ICP-MS质谱仪的主要工作参数见表1。
表 1 MC-ICP-MS和ICP-MS仪器主要工作参数Table 1. Main operation conditions of MC-ICP-MS and ICP-MS instruments工作参数 设定值 MC-ICP-MS ICP-MS 冷却气(Ar)流速(L/min) 16.00 14.95 辅助气(Ar)流速(L/min) 0.86 0.28 雾化气(Ar)流速(L/min) 0.05 0.92 射频功率(W) 1152 1470 积分时间(s) 4.194 / 每组测量次数 30 / 测量组数 1 / 实验用水由超纯水系统(美国Millipore公司)制备,电阻率18.2MΩ·cm。
高纯酸由NJ-SCH-I酸纯化器(南京滨正红仪器有限公司)纯化。
样品消解由Ethos1微波消解仪(意大利Milestone公司)完成。
PFA微型离子交换柱:北京博明远科技有限公司,下部为0.65cm(内径)×10.0cm(高),上部为1.5cm(内径)×5cm(高),总容量约15mL,底部为孔径20μm的亲水性筛板。
1.2 标准物质和主要试剂
铅同位素标准溶液NIST SRM981、铊标准溶液GSB 04-1758-2004和地质标准物质(NOD-P-1、NOD-A-1、GBW07406、GSP-2)详细信息见表2。
表 2 地质标准物质和同位素标准溶液的详细信息Table 2. Details of geological reference materials and isotope reference solutions标准物质编号 样品类型 研制单位 推荐值 铊 铅 NIST SRM 981 铅同位素标准溶液 美国标准与技术研究院(NIST) / 10μg/mL GSB 04-1758-2004 铊标准溶液 中国有色金属及电子材料分析测试中心 1000μg/mL / NOD-P-1 铁锰结核 美国地质调查局(USGS) 210±2μg/g 560±6μg/g NOD-A-1 铁锰结核 美国地质调查局(USGS) 120±1.0μg/g 846±8.2μg/g GBW07406 土壤 中国地质科学院地球物理地球化学勘查研究所 2.2±0.6μg/g 314±25μg/g GSP-2 花岗岩 美国地质调查局(USGS) 1.1±0.1μg/g 43±3μg/g 阴离子交换树脂(AG1-X8,100~200目):购自美国Bio-Rad公司。
优级纯的盐酸、硝酸和氢氟酸(上海国药集团化学试剂有限公司):经二次亚沸蒸馏纯化后使用;高氯酸(优级纯,上海国药集团化学试剂有限公司);过氧化氢、饱和溴水(分析纯,广州西陇化工股份有限公司);二氧化硫标准气体(99.9%,广东英德市西洲气体有限公司)。
0.1mol/L盐酸-6%二氧化硫溶液的配制:将二氧化硫标准气体通入0.1mol/L盐酸中,使其质量增加6%,现用现配。
1.3 样品消解
根据铊在样品中的含量,称取50~300mg粉末状样品(200目,105℃烘干2h)于干净的PFA(可溶性聚四氟乙烯)消解罐中,用少量水润湿,加入2mL氢氟酸、2mL硝酸和0.5mL高氯酸;充分混匀,放置反应1h后,加盖拧紧;按表3的升温程序进行微波消解。冷却后,缓慢泄压放气,打开消解罐,将样品转移至15mL 聚四氟乙烯杯中180℃加热至白烟冒尽,加入2mL 6mol/L盐酸溶解,120℃蒸干,重复一次(除尽氢氟酸、硝酸和高氯酸)。最后加入2mL 2mol/L硝酸-1%饱和溴水,加盖密闭后80℃加热12h,待溶液冷却,离心后进行色谱分离。
表 3 样品处理微波消解程序Table 3. Microwave digestion procedure for sample pretreatment步骤 消解温度
(℃)消解功率
(W)加热时间
(min)保持时间
(min)1 120 400 5 5 2 150 800 5 5 3 190 1200 5 20 需要特别注意的是:①所有的敞口操作必须在超净工作台进行,以防外部环境中铅及其他元素的污染;②为避免酸的损失和安全伤害,消解罐必须完全冷却后才能泄压开盖[22]。
1.4 铊的纯化
铊的纯化流程在Nielsen等[3,27]的研究基础上作了部分优化,优化内容主要包括:①将双柱淋洗修改为单柱淋洗;②控制淋洗液的总体积在28mL。详细步骤如下(流程见表4):采用湿法填充树脂柱,将约2mL AG1-X8树脂置于微型离子交换柱中,依次用1mL 0.1mol/L盐酸-6%二氧化硫和1mL超纯水清洗两遍,再用2mL 2mol/L硝酸-1%溴水平衡树脂2次;然后将离心后的样品溶液加载于树脂柱上,用2mL 2mol/L硝酸-1%溴水淋洗6次和2mL超纯水淋洗1次,以除去基体元素;随后用2mL 0.1mol/L盐酸-6%二氧化硫淋洗5次,收集铊。最后将收集到的0.1mol/L盐酸-6%二氧化硫溶液置于电热板120℃蒸干,然后用0.5mL 0.1%硫酸-2%硝酸溶解,准备进行质谱测试。
表 4 铊同位素的离子交换流程(2mL AG1-X8树脂,100~200目)Table 4. Chemical purification procedure for Tl isotopes (2mL AG1-X8 resin, 100-200 mesh)步骤 淋洗液 淋洗液体积
(mL)淋洗
次数实验目的 1 0.1mol/L盐酸-6%二氧化硫 1 2 清洗树脂 2 超纯水 1 2 清洗树脂 3 2mol/L硝酸-1%溴水 2 2 清洗/平衡树脂 4 2mol/L硝酸-1%溴水 2 / 装载样品 5 2mol/L硝酸-1%溴水 2 6 洗脱基质 6 超纯水 2 1 洗脱NO3−和BrO− 7 0.1mol/L盐酸-6%二氧化硫 2 5 收集铊 1.5 铊同位素分析
铊同位素的分析测定在桂林理工大学广西隐伏金属矿产勘查重点实验室进行。由于自然界样品的铊同位素组成的变化范围很小,用传统的千分偏差“δ”往往不能有效地反映其同位素组成的差异,所以国际上铊同位素测试结果普遍以万分偏差“ε”来表示[1]。另外,由于未购买到国际上普遍认可的铊同位素标准物质NIST 997,本文选择以中国有色金属及电子材料分析测试中心研制的铊同位素物质GSB 04-1758-2004为参照,即用ε205TlGSB Tl表示:
$$ \varepsilon^{205}\mathrm{T}\mathrm{l}_{\mathrm{G}\mathrm{S}\mathrm{B}\ \mathrm{T}\mathrm{l}}=\left[\frac{(^{205}\mathrm{T}\mathrm{l}/^{203}\mathrm{T}\mathrm{l})_{\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}}{(^{205}\mathrm{T}\mathrm{l}/^{203}\mathrm{T}\mathrm{l})_{\mathrm{G}\mathrm{S}\mathrm{B}\mathrm{ }\ \mathrm{T}\mathrm{l}}}-1\right]\times10000 $$ 测试时MC-ICP-MS仪器的法拉第杯结构为:L3(202Hg)、L2(203Tl)、L1(204Pb)、C(205Tl)、H1(206Pb)、H2(207Pb)、H3(208Pb),其他主要工作参数见表1。样品引入时的介质均采用2%的硝酸,2ng/mL GSB 04-1758-2004标准溶液对应205Tl电压信号约为1.2V。测试过程产生的质量歧视通过加入已知铅同位素组成的溶液(NIST SRM981)进行校正,计算方法参考文献[5]。在这项研究中,铅标准溶液的质量按照mPb/mTl=10/1加入。在每次测量开始之前,都需要仔细调整仪器参数,以确保铊和铅的信号强度最大化;同时,进行重复的质量扫描,以检查法拉第杯位置是否合适并监测峰形,确保同位素比值测量的仪器条件。此外,为了校正样品的铊同位素组成,在每次分析前后均测量一次标准物质GSB 04-1758-2004。
2. 结果与讨论
2.1 消解条件的优化
2.1.1 无机酸组成及用量的影响
针对土壤和沉积物样品中的金属总量分析,中国环境保护标准《土壤和沉积物 金属元素总量的消解-微波消解法》(HJ 832—2017)推荐使用11mL硝酸-氢氟酸-盐酸的混合酸组合对样品进行消解。然而,若地质样品中的有机质或难溶矿物含量较高时,样品难以被完全分解,需使用硝酸-氢氟酸-高氯酸进行二次消解[28]。高氯酸和过氧化氢可以提高消解体系的分解能力,因此,本文试验了硝酸-氢氟酸-盐酸-过氧化氢和硝酸-氢氟酸-高氯酸两种混合酸体系对样品的消解情况。此外,为了控制干扰元素(特别是铅)的引入,实验中对酸的用量也进行了优化。
选择土壤标样GBW07406,称样量0.2g,加入不同的混合酸组合,按表3中程序进行微波消解,测定结果见表5。在硝酸-氢氟酸-盐酸-过氧化氢混合酸体系中,当用酸量总体积为4mL(组号1-1)时,消解液中有少量不溶的白色沉淀,此时铊回收率仅有84.7%,说明酸用量太少,不足以将0.2g样品消解完全。将酸用量进一步提升(组号1-2和1-3),所得消解液为清亮透彻的黄色溶液,铊回收率均接近100%,说明硝酸-氢氟酸-盐酸-过氧化氢体系中,7mL酸用量(组号1-2)就可以将0.2g样品消解完全。在硝酸-氢氟酸-高氯酸混合酸体系中,消解样品所用的酸量要少,仅4.5mL(组号2-2)就可将0.2g样品消解完全,此时得到的消解液为清澈透亮的黄色溶液,铊回收率为98.2%。鉴于同位素分析中尽可能低本底的需求,本实验选择2mL硝酸-2mL氢氟酸-0.5mL高氯酸(组号2-2)的混合酸体系对样品进行消解。
表 5 不同无机酸种类及用量的消解效果对比(n=3)Table 5. Comparison of digestion effects of different types and volumes of inorganic acids (n=3)混合酸体系 实验组号 混合酸体系各酸用量
(mL)样品消解效果观察 铊回收率
(%)硝酸-氢氟酸-
盐酸-过氧化氢1-1 1+1+1+1 有少量不溶白色沉淀 84.7 1-2 2+2+2+1 黄色消解液清澈透亮 98.4 1-3 5+3+3+1 黄色消解液清澈透亮 98.6 硝酸-氢氟酸-
高氯酸2-1 1+1+0.5 有少量不溶白色沉淀 81.9 2-2 2+2+0.5 黄色消解液清澈透亮 98.2 2-3 5+3+0.5 黄色消解液清澈透亮 99.0 需要特别指出的是,高氯酸与有机质在密闭系统中反应剧烈,易发生爆炸,使用时不仅要严格控制其用量,还要在微波消解之前放置反应一段时间(本文建议时长为1h)。
2.1.2 微波消解程序的选择
为了考察微波消解程序中的最高温度和保持时间对消解效果影响,本文选择土壤标样GBW07406为试验样品,保持其他条件不变;以表3中步骤3的消解温度和保持时间为因素,进行正交试验,分析结果如表6所示。结果表明,当消解温度设定在190℃,保持时间为20min时,铊的回收率大于98%。继续升高消解温度和增加保持时间并不能使铊的回收率显著提高,且高温高压易造成微波消解内管变形,影响其密闭性。因此,190℃保持20min为本文推荐使用的微波消解条件,此时总的微波消解时间为45min。
表 6 消解温度和保持时间的正交试验结果(n=3)Table 6. Orthogonal test results of digestion temperature and holding time (n=3)编号 因素水平 铊回收率
(%)消解温度(℃) 时间(min) 1 180 15 86.6 2 180 20 93.1 3 190 15 94.0 4 190 20 98.2 5 200 15 97.8 6 200 20 99.1 2.2 铊在阴离子交换树脂上的淋洗曲线
203Tl和205Tl的干扰主要来自163Dy40Ar、165Ho40Ar、187Re16O、189Os16O、202Hg1H、204Hg1H和204Pb1H等多原子离子团,因此在进行铊的纯化时需特别关注共存元素镝、钬、铼、锇、汞和铅的分离情况。
选择0.2g消解后的标准物质GBW07406为试验样品,按表4中铊同位素的离子交换流程,以1mL为单位接取馏分;利用ICP-MS测定各馏分中相应元素的含量并绘制淋洗曲线,结果如图1所示。从淋洗曲线中可以看出,绝大多数基质元素及干扰元素(包括镝、钬、铼、锇、汞和铅)被最开始的6mL 2mol/L硝酸-1%溴水洗脱。为了尽可能地减少铅的残留,本课题组继续使用了6mL 2mol/L硝酸-1%溴水淋洗;接下来,用2mL超纯水将树脂中的氧化性离子(NO3−和BrO−)洗脱。随后以10mL 0.1mol/L盐酸-6%二氧化硫淋洗并收集馏分中的铊。通过对该馏分的组分分析发现,铊的回收率约为98.5%,镝、钬、铼、锇和汞几乎无残留,铅的残留量不足铊量的1/10,钡有一定的残留,约为总钡量的4%。其中,接取液中钡和极少量铅的残留对铊的同位素测试没有影响,当地质样品中的铅/铊比值大于1000时,铅的残留可能会导致铊同位素组成测定结果偏高[5],此时建议进行二次过柱。
2.3 基质中铁钙铝对铊测量的影响
铊在地质样品中的含量通常低于0.1μg/g,往往需要加大称样量来提高测试精度。大多数样品以硅质或碳质为主,经消解后,硅和碳都挥发除去,所留下的盐分很少,而富含赤铁矿(铁高)、灰岩(钙高)和高岭土(铝高)等类型的地质样品,消解后的溶液中金属离子的浓度很高,而树脂的总离子交换容量一般在3~6mmol/g(干基)或1~2mmol/g(湿基)。因此,为考察这三种阳离子对淋洗流程的干扰,本文采用标准加入法考察了三氧化二铁、氧化钙和三氧化二铝对上述淋洗曲线中铊回收率的影响。操作步骤为:取三组1mL 1μg/mL铊标准溶液(GSB 04-1758-2004),分别加入0.1~0.5g的Fe2O3、CaO和Al2O3,按第1.3、1.4、1.5节进行前处理和样品测试。三种元素的加入量与铊回收率之间的关系如图2所示。
从图2可以看出,CaO的加入对铊回收率的影响很小,可以忽略。Fe2O3的影响最大,当其加入量为0.4g(约2.56mmol)时,铊的回收率开始下降,约为90%;当加入量为0.5g时,铊的回收率下降到只有75%左右。这可能是因为随着样品中Fe3+的增多,用盐酸淋洗时容易形成络合物FeCl4−,占据离子交换反应位点,使树脂的交换容量达到饱和,从而降低了铊的回收率。而对于Al2O3,当其加入量为0.5g(约4.90mmol)时,铊的回收率略有下降,约为93%,从观察到的实验现象判断,原因应是Al2O3有部分结晶,夹杂着少量铊进入固相析出而导致的。因此,对于基质中含铁、铝矿物较高的样品应控制其称样量,以防树脂的交换容量饱和而导致铊回收率偏低。
2.4 流程空白
通过三份空白试验使用第1.3、1.4、1.5节步骤中的流程进行铊同位素分析,最终确定整个实验流程中铊的空白值低于10pg,远低于普通地质样品中铊含量的1‰,对测试结果的影响可以忽略[23]。
2.5 地质标准物质中铊同位素组成的测定结果
为了确保MC-ICP-MS测定铊同位素的长期可重复性,对铊标准溶液GSB 04-1758-2004进行40次测量,结果如图3所示。图中的205Tl/203Tl值是以铅标准溶液NIST SRM981为外标校正后的结果(相对于208Pb/206Pb=2.1076)。本实验室的测量结果为205Tl/203Tl=2.38775,标准偏差(2σ)为0.00011,说明仪器的稳定性较好。
按照优化后的化学流程,处理4个地质标准物质,并进行铊同位素组成的测定。从表7中的测定结果可以发现,4个标准物质的2SD均优于0.3(n=6),说明本方法具有较高的精密度。由于与文献选用的同位素标准物质不同,方法的准确度可以用两者间差值变化情况来考察。通过与文献的结果对比发现,标准物质NOD-P-1、GBW07406和GSP-2的ε205Tl差值(ε205TlNIST 997−ε205TlGSB Tl)均为0.8,NOD-A-1的ε205Tl差值为0.7,说明方法具有较好的准确性;此外,可以估算标准物质GSB 04-1758-2004相对于NIST 997的ε205Tl值应约等于0.8。
表 7 地质标准物质中铊同位素组成的测定结果及文献对比Table 7. Comparison of analytical results of Tl isotope composition in geological reference materials determined by this method and those in the literatures3. 结论
通过对铊同位素分析中的消解方法、淋洗曲线和流程空白的分析讨论可知,采用微波消解法,在2mL硝酸-2mL氢氟酸-0.5mL高氯酸的混合酸体系中选用适当的消解程序,可以将0.2g土壤标准物质GBW07406彻底消解;利用AG1-X8阴离子交换树脂,依次以2mL 2mol/L硝酸-1%饱和溴水淋洗6次、2mL超纯水淋洗1次和2mL 0.1mol/L盐酸-6%二氧化硫淋洗5次,并收集0.1mol/L盐酸-6%二氧化硫的馏分,可有效地纯化地质样品中的铊。该淋洗流程所允许上样溶液中含有三价铁和三价铝离子的量分别不应超过2.56mmol和4.90mmol,否则引起树脂的离子交换容量饱和而导致铊回收率降低。与前人相比,该流程缩短了消解时间,采用AG1-X8树脂单柱法进行铊同位素的纯化,将淋洗液的总体积优化至24mL。本工作提高了铊同位素分析中化学前处理流程的效率,将此方法应用于4个不同地质标准物质的铊同位素比值的测定,结果证明具有较好的精密度和准确性。
需要指出的是,由于外界因素的制约,国际上普遍认可的NIST 997标准物质在中国已很难购买,影响了国内铊同位素地球化学研究工作的开展,所以中国亟需研制出国际上认可的铊同位素标准物质。
-
图 3 不同类型岩石样品及黏土矿物特征
a—J30-26井(3737.47m),含砾粗粒岩屑石英砂岩;b—H2井(3617.07m),含砾粗粒岩屑石英砂岩;c—J30-26井(3746.28m),粗-中粒岩屑石英砂岩;d—H2井(3613.38m),含砾粗粒岩屑砂岩;e—X701井(3461.92m),含砾粗粒岩屑砂岩;f—H2井(3615.92m),中-粗粒岩屑砂岩;g—X701井(3467.72m),粗粒岩屑砂岩,发育高岭石、高岭石长石化;h—H2井(3614.68m),含砾粗粒岩屑砂岩,岩屑伊利石化;i—H2井(3619.19m),含砾砂岩,杂基向伊/蒙混层转化。
Figure 3. Characteristic diagrams of different types of rock samples and clay minerals
图 4 杭锦旗锦30井区盒1段典型样品孔隙类型
a—H2井(3618.07m),裂缝(红箭头)及长石溶孔(绿箭头);b—H2井(3617.01m),高岭石晶间孔(红箭头)及长石溶孔(绿箭头);c—X701井3466m,杂基溶孔(红箭头)加岩屑溶孔(绿箭头);d—X701井(3466m),岩屑溶孔(红箭头)加高岭石晶间孔(绿箭头);e—J30P10井(3507.76m),含砾粗粒岩屑石英砂岩,凝灰岩屑溶孔(红箭头)f—X101井(3514.83m),含砾中-粗粒岩屑石英砂岩,铸模孔(红箭头)及杂基溶孔(绿箭头)。
Figure 4. Pore type diagrams of typical samples from the He-1 section in well block Jin-30, Hangjinqi area
图 5 杭锦旗锦30井区不同岩性样品孔喉结构分布特征
a—含砾粗粒岩屑石英砂岩样品的进汞-退汞曲线;b—X501井(3649.12m)孔喉半径分布直方图;c—X501井(3649.12m)饱水及离心转速10000r/min下的核磁共振T2谱分布;d—粗-中粒岩屑石英砂岩的进汞-退汞曲线;e—J30-26井(3747.25m)孔喉半径分布直方图;f—J30-26井(3747.25m)饱水及离心转速10000r/min下的核磁共振T2谱分布;g—含砾粗粒岩屑砂岩的进汞-退汞曲线;h—X501井(3663.23m)孔喉半径分布直方图;i—X501井(3663.23m)饱水及离心转速10000r/min下的核磁共振T2谱分布;j—粗-中粒岩屑砂岩的进汞-退汞曲线;k—X101井(3523.61m)孔喉半径分布直方图;l—X101井(3523.61m)饱水及离心转速10000r/min下的核磁共振T2谱分布。
Figure 5. Distribution characteristics of pore throat structure of different lithology samples in well block Jin-30, Hangjinqi area
图 6 不同岩相中黏土矿物显微图像特征
a—X501井(3642.42m),含砾粗粒岩屑砂岩,岩屑绿泥石化;b—J30-26井(3736.76m),含砾粗粒岩屑石英砂岩,发育丝状伊利石;c—X701井(3463.08m),粗粒岩屑砂岩,岩屑溶蚀粒内溶孔形成伊利石;d—X101井(3514.02m),粗粒岩屑砂岩,高岭石集合体呈蠕虫状;e—H2井(3611.28m),粗粒岩屑石英砂岩,书页状高岭石和片状绿泥石;f—X501井(3663.47m),粗-中粒岩屑砂岩,颗粒溶孔形成高岭石。
Figure 6. Microscopic image characteristics of clay minerals in different lithofacies
表 1 盒1段致密砂岩样品全岩黏土矿物组成及含量
Table 1 Section of compact sandstone: full rock clay mineral composition and content
井号 岩性 黏土矿物含量
(%)石英含量
(%)钾长石含量
(%)斜长石含量
(%)方解石含量
(%)黏土矿物相对含量(%) 高岭石 绿泥石 伊利石 伊/蒙混层 J30-26 含砾粗粒岩屑石英砂岩 7.4 92.6 − − − 27.0 11.0 48.0 14.0 H2 砾质粗粒岩屑石英砂岩 4.1 95.7 − − − 26.0 30.0 34.0 10.0 J30-26 粗-中粒岩屑石英砂岩 15.3 80.9 − − 15.3 11.0 25.0 38.0 26.0 X701 中-粗粒岩屑砂岩 19.1 74.9 − − 6.0 29.0 26.0 24.0 21.0 X7 含砾粗粒岩屑石英砂岩 12.0 88.0 − − − 18.0 43.0 21.0 18.0 H2 中-粗粒岩屑砂岩 21.4 76.0 − − 2.1 10.0 62.0 20.0 8.0 X101 含砾粗粒岩屑砂岩 30.2 69.8 − − − 49.0 27.0 13.0 11.0 X701 含砾粗粒岩屑砂岩 24.8 72.4 − − 2.8 30.0 32.0 26.0 12.0 注:“−”为未检出。 -
[1] 曾溅辉, 张亚雄, 张在振, 等. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067−1083. doi: 10.11743/ogg20230501 Zeng J H, Zhang Y X, Zhang Z Z, et al. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution[J]. Oil & Gas Geology, 2023, 44(5): 1067−1083. doi: 10.11743/ogg20230501
[2] 崔耀科. 分流河道砂体精细刻画与储层非均质性研究[D]. 西安: 西安石油大学, 2023. Cui Y K. Study on fine characterization of distributary channel sand body and reservoir heterogeneity: A case study from Chang 2 reservoir of Qiaozhen area in Xiasiwan oil field [D]. Xi’an: Xi’an Shiyou University, 2023.
[3] 王静怡. 鄂尔多斯盆地本溪组致密砂岩储层成岩演化与成藏耦合机理研究[D]. 北京: 中国石油大学(北京), 2023. Wang J Y. Study on coupling mechanism of diagenesis and accumulation of tight sandstone in the Benxi Formation, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2023.
[4] 邱隆伟, 穆相骥, 李浩, 等. 杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J]. 油气地质与采收率, 2019, 26(2): 42−50. doi: 10.13673/j.cnki.cn37-1359/te.2019.02.006 Qiu L W, Mu X J, Li H, et al. Influence of diagenesis of tight sandstone reservoir on the porosity development of lower Shihezi Formation in Hangjinqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 42−50. doi: 10.13673/j.cnki.cn37-1359/te.2019.02.006
[5] 聂海宽, 张金川, 薛会, 等. 杭锦旗探区储层致密化与天然气成藏的关系[J]. 西安石油大学学报(自然科学版), 2009, 24(1): 1−7, 108. Nie H K, Zhang J C, Xue H, et al. Relationship between the densification of reservoir and the accumulation of natural gas in Hangjinqi area of Ordos Baisn[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2009, 24(1): 1−7, 108.
[6] 刘飞, 周文, 李秀华, 等. 鄂尔多斯盆地杭锦旗地区上古生界砂岩中储层粘土矿物特征分析[J]. 矿物岩石, 2006(1): 92−97. doi: 10.19719/j.cnki.1001-6872.2006.01.017 Liu F, Zhou W, Li X H, et al. Analysis of characteritics of the clay minerals in the upper palaeozoic sandstone reservoir of Hangjinqi area in North Ordos Basin[J]. Mineralogy and Petrology, 2006(1): 92−97. doi: 10.19719/j.cnki.1001-6872.2006.01.017
[7] 郭笑锴, 滕飞启, 吴明松, 等. 鄂尔多斯盆地陇东地区铝土岩储层含气性测井评价方法及其应用[J]. 天然气地球科学, 2024, 35(8): 1454−1466. doi: 10.11764/j.issn.1672-1926.2024.04.022 Guo X K, Teng F Q, Wu S M, et al. Logging evaluation method for gas bearing properties of bauxite reservoirs in the Longdong area of Ordos Basin and its application[J]. Natural Gas Geoscience, 2024, 35(8): 1454−1466. doi: 10.11764/j.issn.1672-1926.2024.04.022
[8] 郭明强, 周龙刚, 张兵, 等. 致密砂岩气水分布特征——以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855−864. Guo M Q, Zhou L G, Zhang B, et al. The regularity of gas and water distribution for tight sandstone: Case study of Linxing area, Eastern Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(6): 855−864.
[9] 李港, 张占松, 郭建宏, 等. 基于核磁共振测井的束缚水饱和度评价方法: 以中东地区M层组的孔隙型碳酸盐岩储层为例[J]. 科学技术与工程, 2023, 23(30): 12900−12910. doi: 10.12404/j.issn.1671-1815.2023.23.30.12900 Li G, Zhang Z S, Guo J H, et al. Evaluation method of irreducible water saturation based on nuclear magnetic resonance logging: Taking the porous carbonate reservoir of M Formation in the middle east as an example[J]. Science Technology and Engineering, 2023, 23(30): 12900−12910. doi: 10.12404/j.issn.1671-1815.2023.23.30.12900
[10] 白玉湖, 王苏冉, 徐兵祥, 等. 致密砂岩束缚水饱和度和微观孔喉结构关系实验研究[J]. 中国海上油气, 2022, 34(4): 65−71. doi: 10.11935/j.issn.1673-1506.2022.04.006 Bai Y H, Wang S R, Xu B X, et al. Experimental study on the relationship between irreducible water saturation and micro pore throat in tight sandtone[J]. China Offshore Oil and Gas, 2022, 34(4): 65−71. doi: 10.11935/j.issn.1673-1506.2022.04.006
[11] 苏玉亮, 李东升, 李蕾, 等. 致密砂岩气藏地层水可动性及其影响因素研究[J]. 特种油气藏, 2020, 27(4): 118−122. doi: 10.3969/j.issn.1006-6535.2020.04.018 Su Y L, Li D S, Li L, et al. Formation water mobility and influencing factors in tight sandstone gas reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 118−122. doi: 10.3969/j.issn.1006-6535.2020.04.018
[12] 陈鑫, 马立涛, 史长林, 等. 临兴区块致密砂岩储层水赋存状态及气层含水程度识别方法[J]. 地质与勘探, 2022, 58(6): 1331−1340. Chen X, Ma L T, Shi C L, et al. Water occurrence and identification method of the water-bearing degree of tight sandstone reservoirs in the Linxing block[J]. Geology and Exploration, 2022, 58(6): 1331−1340.
[13] 胡向阳, 张广权, 魏修平, 等. 杭锦旗地区南部气水识别及复杂气水关系成因[J]. 东北石油大学学报, 2019, 43(2): 41−48, 7−8. doi: 10.3969/j.issn.2095-4107.2019.02.005 Hu X Y, Zhang G Q, Wei X P, et al. Identification of gas-water reservoir and geneses of complicated gas-water relationships in southern region of Hangjinqi area[J]. Journal of Northeast Petroleum University, 2019, 43(2): 41−48, 7−8. doi: 10.3969/j.issn.2095-4107.2019.02.005
[14] 薛会, 王毅, 徐波. 鄂尔多斯盆地杭锦旗探区上古生界天然气成藏机理[J]. 石油实验地质, 2009, 31(6): 551−556, 562. doi: 10.3969/j.issn.1001-6112.2009.06.002 Xue H, Wang Y, Xu B, et al. Accumulation mechanism of natural gas in Upper Paleozoic, Hangjinqi block, North Ordos Basin[J]. Petroleum Geology & Experiment, 2009, 31(6): 551−556, 562. doi: 10.3969/j.issn.1001-6112.2009.06.002
[15] 杨晋东, 于振锋, 郭旭, 等. 鄂尔多斯盆地东缘晚古生代泥岩地球化学特征及有机质富集机理[J]. 岩矿测试, 2023, 42(6): 1104−1119. doi: 10.15898/j.ykcs.202306060075 Yang J D, Yu Z F, Guo X, et al. Geochemical characteristics and organic matter enrichment mechanism in Late Paleozoic mudstone, eastern margin of Ordos Basin[J]. Rock and Mineral Analysis, 2023, 42(6): 1104−1119. doi: 10.15898/j.ykcs.202306060075
[16] 覃硕, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒一段致密砂岩储层特征及其主控因素[J]. 地球科学, 2022, 47(5): 1604−1618. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205006 Qin S, Shi W Z, Wang R, et al. Characteristics of tight sandstone reservoirs and their controlling factors of He-1 Member in Hangjinqi block, Ordos Basin[J]. Earth Science, 2022, 47(5): 1604−1618. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205006
[17] 王涛, 侯明才, 陈洪德, 等. 海西构造旋回阴山幕式造山与鄂尔多斯盆地北部旋回充填的耦合关系[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 310−317. Wang T, Hou M C, Chen H D, et al. Coupling relationship between Yinshan episodic orogenic movement of Hercynian tectonic cycle and filling cycle of the North Ordos Basin in China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(3): 310−317.
[18] 赵红坤, 刘亚轩, 马生明, 等. 粉末压片-X射线荧光光谱法测定小样品量土壤和沉积物中主量元素[J/OL]. 岩矿测试(2024-09-25)[2024-11-01]. https://doi.org/10.15898/j.ykcs.202403040030. Zhao H K, Liu Y X, Ma S M, et al. Determination of major elements in small-weight soil and sediment samples by X-ray fluorescence spectroscopy with pressed-powder pellets[J/OL]. Rock and Mineral Analysisl(2024-09-25)[2024-11-01]. https://doi.org/10.15898/j.ykcs.202403040030.
[19] 侯明才, 邓敏, 冯琳, 等. 珠江口盆地流花油田新近系碳酸盐岩白垩状结构化成因机理探讨[J]. 岩石学报, 2014, 30(3): 768−778. Hou M C, Deng M, Feng L, et al. Genesis of calcification in Neogene carbonate rocks of Liuhua oilfield, Pearl River Mouth Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 768−778.
[20] 司马立强, 马骏, 刘俊丰, 等. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1−10. doi: 10.12108/yxyqc.20230201 Sima L Q, Ma J, Liu J F, et al. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(2): 1−10. doi: 10.12108/yxyqc.20230201
[21] 张文凯, 施泽进, 田亚铭, 等. 联合高压压汞和恒速压汞实验表征致密砂岩孔喉特征[J]. 断块油气田, 2021, 28(1): 14−20, 32. Zhang W K, Shi Z J, Tian Y M, et al. The combination of high-pressure mercury injection and rate-controlled mercury injection to characterize the pore-throat structure in tight sandstone reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 14−20, 32.
[22] 刘士靖. 松辽盆地页岩油成藏条件研究及甜点评价[D]. 西安: 西安石油大学, 2022. Liu S J. The study on shale oil accumulation conditions and dessert evaluation in the Songliao Basin [D]. Xi’an: Xi’an Shiyou University, 2022.
[23] 于振锋. 海—塔盆地火山碎屑岩复杂岩性的岩石学机理及其测井响应[D]. 长春: 吉林大学, 2013. Yu Z F. Petrologic mechanism and logging response of complex lithology of volcaniclastic rock in Hailaer—Tamtsag Basin[D]. Changchun: Jilin University, 2013.
[24] 周志恒, 钟大康, 凡睿, 等. 致密砂岩中岩屑溶蚀及其伴生胶结对孔隙发育的影响——以川东北元坝西部须二下亚段为例[J]. 中国矿业大学学报, 2019, 48(3): 592−603, 615. doi: 10.13247/j.cnki.jcumt.000957 Zhou Z H, Zhong D K, Fan R, et al. Effect of dissolution of rock fragments and its associated cementation on pore evolution: A case study of the lower sub-member of the second member of Xujiahe Formation in the west of Yuanba area, Northeastern Sichuan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(3): 592−603, 615. doi: 10.13247/j.cnki.jcumt.000957
[25] 朱晴, 乔向阳, 张磊. 高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用[J]. 岩矿测试, 2020, 39(3): 373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138 Zhu Q, Qiao X Y, Zhang L, et al. Application of high-pressure mercury injection in pore-throat distribution characterization and early productivity evaluation of tight gas reservoirs[J]. Rock and Mineral Analysis, 2020, 39(3): 373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138
[26] 赵全胜. 核磁共振成像测井技术及应用[J]. 新疆石油地质, 2008(5): 650−653. Zhao Q S. Magnetic resonance imaging logging technology and application[J]. Xinjiang Petroleum Geology, 2008(5): 650−653.
[27] 侯伟, 赵天天, 张雷, 等. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例[J]. 吉林大学学报(地球科学版), 2020, 50(2): 608−616. doi: 10.13278/j.cnki.jjuese.20190252 Hou W, Zhao T T, Zhang L, et al. Stress sensitivity and prediction of irreducible water saturation in coal reservoirs in Baode and Hancheng blocks based on low-field nuclear magnetic resonance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 608−616. doi: 10.13278/j.cnki.jjuese.20190252
[28] 郑晓薇. 鄂尔多斯盆地杭锦旗地区盒1段优质储层形成机理研究[D]. 北京: 中国石油大学(北京), 2018. Zheng X W. Formation mechanism of high-quality reservoir in box section 1 of Hangjinli area, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2018.
[29] Yang T, Cao Y C, Friis H, et al. Diagenesis and reservoir quality of lacustrine deep-water gravity-flow sandstones in the Eocene Shahejie Formation in the Dongying sag, Jiyang Depression, Eastern China[J]. Geoscienceworld, 2020(5): 104. doi: 10.1306/1016191619917211
[30] Najmeh J, Ali K, Mohammad B, et al. Reservoir characterization of fluvio-deltaic sandstone packages in the framework of depositional environment and diagenesis, the South Caspian Sea Basin[J]. Journal of Asian Earth Sciences, 2022(9): 224.
[31] 朱林奇, 张冲, 石文睿, 等. 结合压汞实验与核磁共振测井预测束缚水饱和度方法研究[J]. 科学技术与工程, 2016, 16(15): 22−29. doi: 10.3969/j.issn.1671-1815.2016.15.004 Zhu L Q, Zhang C, Shi W R, et al. Study on the method of prediction of irreducible water saturation by combining mercury intrusion and NMR logging data[J]. Science Technology and Engineering, 2016, 16(15): 22−29. doi: 10.3969/j.issn.1671-1815.2016.15.004
[32] 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436−444. doi: 10.11698/PED.2018.03.08 Lu S F, Li J Q, Zhang P F, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436−444. doi: 10.11698/PED.2018.03.08
[33] 张全培. 鄂尔多斯盆地姬塬地区长7致密砂岩储层微观孔喉结构与分级评价研究[D]. 西安: 西北大学, 2022. Zhang Q P. Study on microscopic pore throat structure and grading evaluation of Chang 7 tight sandstone reservoirs in Jiyuan area, Ordos Basin[D]. Xi’an: Northwestern University, 2022.
[34] 钟高润, 任媛, 郭京哲, 等. 鄂尔多斯盆地中部延长组长6段低阻油层成因机理与测井识别[J]. 地球物理学进展, 2023, 38(5): 2230−2238. doi: 10.6038/pg2023GG0543 Zhong G R, Ren Y, Guo J Z, et al. Genetic mechanism and logging identification of low resistivity oil reservoir in Chang 6 member of Yanchang Formation, Ordos Basin[J]. Progress in Geophysics, 2023, 38(5): 2230−2238. doi: 10.6038/pg2023GG0543
[35] 曹桐生, 罗龙, 谭先锋, 等. 致密砂岩储层成因及其孔隙演化过程——以杭锦旗十里加汗地区下石盒子组为例[J]. 断块油气田, 2021, 28(5): 598−603. Cao T S, Luo L, Tan X F, et al. Genesis and pore evolution of tight sandstone reservoir: Taking lower Shihezi Formation in the Shilijiahan block of Hangjinqi area as an example[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 598−603.
-
期刊类型引用(1)
1. 杨波. ICP技术在水产食品重金属检测中的应用. 食品安全导刊. 2024(34): 115-118 . 百度学术
其他类型引用(0)
-
其他相关附件