Geochemical Characteristics of Selenium in Surface Soil of Central Townships in Zhaojue County, Sichuan Province
-
摘要:
硒元素是人体必需的微量元素之一,食用富硒农产品是人体获取和补充硒元素的主要途径,调查区域硒地球化学特征是有效地利用富硒土地资源以及开发富硒农副产品的重要依据。本文选择四川省昭觉县域内较为重要的农耕乡镇采集表层土壤样品,采用原子荧光光谱法、X射线荧光光谱法、电感耦合等离子体质谱/发射光谱法等方法测定1328件土壤、19件玉米及20件土豆中硒等地球化学指标含量,利用相关分析与统计学等方法,结合距离加权反比插值法,探讨研究区硒含量、分布和影响因素等地球化学特征,评价土壤与作物的富硒情况及安全性。结果表明:①研究区表层土壤硒含量范围为0.04~1.50mg/kg,平均值为0.33mg/kg,划定富硒土壤面积为7.23km2,占全区土壤面积的30.31%,玄武岩发育的土壤硒含量最高,平均值为0.4mg/kg,表明区内地质背景与土壤硒含量密切相关,区内富硒土壤主要受含玄武岩夹苦橄岩、凝灰质砂泥岩的峨眉山玄武岩组地层控制;②不同的用地类型和土壤类型对硒元素的富集能力不同,人为农业活动导致土壤对硒的吸附能力下降,黄棕壤土层中黏粒或铁氧化物等易与硒结合富集;酸性土壤中硒含量与pH值成反比;土壤有机质与硒含量呈显著的正相关;土壤质地对硒含量具有一定的控制作用;③富硒土壤产出的玉米和土豆富硒率极低。研究结果认为昭觉县在开发利用富硒土壤时,旱地与水田等农耕区应及时补充有机肥并调节土壤酸碱度,并积极利用富硒资源开发其他农业产品。
要点(1) 研究区富硒土壤面积为7.23km2,空间上与二叠系峨眉山玄武岩组地层分布一致,有较强规律性。
(2) 除成土母质外,用地类型、土壤类型、土壤pH值、土壤有机质及土壤质地等均对土壤硒的富集活化产生影响。
(3) 区内玉米和土豆作物重金属均未超标,但富硒率较低,其中玉米籽粒硒含量高于土豆。
HIGHLIGHTS(1) The selenium-enriched land covers 7.23km2, which is consistent with the distribution of Permian Emeishan basalt Formation, indicating strong regularity in space.
(2) In addition to soil parent material, land utilization type, soil type, soil pH value, soil organic matter and soil texture all affected the enrichment and activation of selenium in soil.
(3) Heavy metals in corn and potatoes did not exceed the standard, but the selenium enrichment rates were low, and silenium content was higher in corn than in potatoes.
Abstract:BACKGROUNDSelenium (Se) is one of the essential trace elements for humans, and an important way for humans to obtain and supplement selenium is by eating natural selenium-enriched agricultural products. The geochemical characteristics of selenium in the survey area are an important basis for the effective utilization of selenium-enriched land resources and the development of selenium-enriched agricultural and sideline products.
OBJECTIVESTo investigate the geochemical characteristics of selenium content, distribution and influence factors in the study area.
METHODSSoil and crop samples were collected from a central village of Zhaojue County, Sichuan Province. AFS, XRF and ICP-MS were used to determine the contents of elements including Se, Al2O3, TFe2O3, SiO2, OrgC, and pH values. Geochemical characteristics of selenium content, distribution and influencing factors in the study area were investigated using statistical and correlation analysis.
RESULTS(1) The soil selenium content in the study area ranged from 0.04 to 1.50mg/kg, with an average value of 0.33mg/kg. The delineated selenium-enriched soil area was 7.23km2, accounting for 30.31% of the total soil area. The selenium content of the soil developed in basalt was the highest, with an average of 0.4mg/kg, indicating that the geological background in the area was closely related to the soil selenium content. The Se-enriched soil in the area was mainly controlled by the Emeishan basalt Formation, which contained basalt intercalating with picrite and tuffaceous sand and mudstone. (2) The enrichment capacity of selenium varied in different land utilization and soil types. The absorption capacity of selenium in soil decreased due to human agricultural activities. Clayey particles or iron oxides in the yellow-brown loam layer were easy to combine and enrich selenium. The selenium content in acidic soil was inversely correlated to pH value. There was a significant positive correlation between soil organic matter and selenium content. Soil texture had a certain effect on selenium content. (3) Corn and potatoes from selenium-enriched soils had very low selenium content.
CONCLUSIONSDuring the exploitation and utilization of selenium-enriched soil, organic fertilizer should be added in time and soil pH should be adjusted in agricultural areas such as dry land and paddy field, and other agricultural products should be developed by using selenium-enriched resources.
-
稀土元素的化学性质稳定,常被作为地球化学示踪剂。Nb、Ta、Zr、Hf等元素的信息在岩石成因、构造演化、地球化学等地质环境研究中具有重要的意义。快速、准确、简便地测定地质样品中的稀土元素及Nb、Ta、Zr、Hf对于开发利用稀有、稀土资源具有现实意义。
随着仪器设备的发展和测试技术的提高,电感耦合等离子体质谱法(ICP-MS)在灵敏度、精密度、多元素同时分析能力、线性动态范围等方面极具优势,特别适用于基体复杂、检测限低的多元素样品的检测分析[1-8]。ICP-MS测定样品稀土元素的前处理方法主要有碱熔法[9-13]、敞口酸溶法[14-16]、高压密闭酸溶法[17]和微波消解法[18-20]。碱熔法的工序繁琐,流程长,溶液盐度高,易产生基体干扰和堵塞仪器进样系统。微波消解法的准确度高、高效快速、无污染、无损失,但因一次消解样品数太少,只适合少量样品的分析。敞口酸溶法易操作,但易造成待测元素的损失,Nb、Ta、Zr、Hf由于赋存在少量难溶的副矿物相中而无法完全溶解,致使这些元素的测定结果严重偏低[21-23]。高压密闭酸溶法比常压敞开酸溶法有了显著的改进,但对于少数特殊样品,如铝含量高的样品等,存在溶矿不完全(Zr、Hf等)或在稀释时析出稀土元素等,致使这些元素的测定结果偏低。
贾双琳等[24]通过实验得出,加入硫酸的混合酸敞开酸溶体系,对于测定稀土元素有比较理想的测定结果,说明硫酸能够有效地溶解稀土元素。曾惠芳等[25]用偏硼酸锂熔融法经高温熔融、酸提取,高倍稀释后测试的方法虽解决了铌、钽、锆、铪等难熔元素的分解问题,但又引入了较多的盐类,带来了基体干扰,也不利于仪器检测系统的维护。本文选择加入硫酸的混合酸敞开酸溶体系,在硫酸-氢氟酸、硝酸-氢氟酸-硫酸、硝酸-氢氟酸-盐酸-硫酸-高氯酸体系中,为避免试剂用量过大并保证溶解效果,选取硝酸-氢氟酸-硫酸作为酸溶体系来消解样品,用国家一级标准物质随同样品同时溶解的产物制作标准曲线,通过消除基体干扰保证测定结果准确。同时对偏硼酸锂碱熔法进行改进,采用偏硼酸锂碱熔酸提取后补加氢氧化钠调节溶液至碱性的条件下与被测元素共沉淀,经过滤与熔剂分离,酸复溶滤渣后测定稀土及铌、钽、锆、铪等19种元素。将敞开混合酸溶体系应用于测定陕南柞水—商南地区地质调查样品中的稀土元素,将改进的偏硼酸锂熔融法应用于测定该地区地质调查样品中的稀土和铌、钽、锆、铪等难熔元素,结果令人满意。
1. 实验部分
1.1 仪器及工作条件
X-SeriesⅡ电感耦合等离子体质谱仪(美国ThermoFisher公司),主要工作参数为:入射功率1400W,雾化器流量0.91L/min,冷却气流量13.0L/min,辅助气流量1.0L/min,四极杆偏压0.1V,六极杆偏压-3.0V,采样深度140mm,分辨率125,测量方式:跳峰。
1.2 标准物质和主要试剂
水系沉积物、土壤、岩石国家一级标准物质GBW07328、GBW07107、GBW07450、GBW07311(中国地质科学院地球物理地球化学勘查研究所研制)。
GSB 04-1789-2004、GSB 04-1768-2004标准储备液(国家有色金属及电子材料分析测试中心研制):浓度100mg/L;用3%硝酸逐级稀释配制标准曲线系列。103Rh、185Re混合内标溶液(国家有色金属及电子材料分析测试中心研制):浓度10ng/mL,用3%硝酸逐级稀释配制。
氢氟酸、硝酸、硫酸、盐酸均为优级纯(成都市科隆化学品有限公司);30%过氧化氢、过氧化钠、氢氧化钠均为分析纯(陕西省凯利化玻仪器有限公司);高纯水:电阻率18.25MΩ·cm(北京双峰众邦科技发展有限公司)。
1.3 实验方法
混合酸敞开酸溶法:称取0.1000g样品于50mL聚四氟乙烯坩埚中,用少量去离子水润湿,依次加入5mL氢氟酸放置于180℃的电热板上蒸干、再加5mL硝酸于电热板蒸至近干、1mL硫酸放置于200℃的电热板蒸发至硫酸冒烟(2~3h),取下冷却;加入5mL氢氟酸,放置过夜,重复以上操作一次至硫酸烟冒尽;趁热加入5mL新配制的王水,在电热板上加热至溶液体积为1~2mL,用约10mL去离子水冲洗杯壁,在电热板上微热5~10min至溶液清亮,取下冷却;用3%硝酸准确稀释至100mL,摇匀后上机测定。
偏硼酸锂碱熔法:准确称取0.1000g样品于刚玉坩埚中,按1:3的质量比例加入0.3g偏硼酸锂混匀,覆盖0.5g偏硼酸锂,将坩埚放入已升温至1050℃的高温炉中,保温熔融15min,取出冷却后放入200mL烧杯中,加入80.0mL热水使熔块溶解提取,放置过夜。以慢速滤纸(42号)过滤提取液,用2%氢氧化钠溶液洗沉淀10次,用8mol/L热硝酸溶解沉淀,定容至25mL。稀释后用ICP-MS测定。
2. 结果与讨论
2.1 基体干扰和内标元素的选择
Siewers[26]对ICP-MS测定的溶液中总溶解固体量(TDS)所产生的基体干扰进行了详细的研究。当TDS为500μg/mL时,元素的分析信号在短时间内便会产生明显漂移,一般要求TDS最好小于0.1%。但地质样品因为背景极其复杂,样品元素之间的比例差异也会引起基体效应。这种基体效应通过仪器最佳化和样品稀释[27]就能有效地减轻。
内标元素的选择及使用可监测和校正信号的短期和长期漂移[28]。一般地,选取内标元素的原则是待测组分不含内标元素或对内标元素的干扰尽可能少。胡圣虹等[29]考察了115In、103Rh、187Re作为内标元素在稀土分析中的行为及其对基体的补偿作用,并选取115In和103Rh作为双内标。但是由于In在样品中的含量有时较高,且115In受115Cd干扰较大,而103Rh和187Re在地球化学样品中的含量极低,因此本文选择103Rh-187Re双元素作为内标,用国家一级标准物质随样品一同溶解制作的标准曲线来测试样品,补偿了基体效应,消除了背景偏差,使测试结果得到明显改善。
2.2 样品前处理方法比较
2.2.1 混合酸敞开酸溶法
本文使用氢氟酸-硝酸-硫酸敞开酸溶法对标准样品进行消解。实验考察了加酸步骤和溶解次数对测试结果的影响,测定结果见表 1。可以看出,对稀土元素来说,无论是分步骤加酸还是直接加入混合酸,都对测定结果的影响不大。而加入混合酸溶解两次要稍好于溶解一次的测定结果,但与认定值相比,敞开混合酸溶法的结果偏低。尤其是重稀土元素,直接加入混合酸法的测定值与认定值的相对偏差为-46.4%~0%,结果不可靠。
表 1 混合酸敞开酸溶法的测定结果Table 1. Analytical results of elements treated with the mixed acid open dissolution元素 GBW07328 GBW07107 GBW07450 GBW07311 认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸法
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
合酸
相对
误差
(%)认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸法
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
合酸
相对
误差
(%)认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
相对
误差
(%)认定
值
(μg/g)分步
骤加
酸法
(μg/g)直接
加混
合酸
(μg/g)混合
酸溶
解两
次法
(μg/g)直接
加混
合酸
相对
误差
(%)Y 15.3 12.1 11.9 12.5 -22.2 26 20.4 18.9 22.8 -27.3 27 21.1 21.7 24.3 -19.6 43 38.2 37.1 38.9 -13.7 La 32.5 28.4 27.0 28.4 -16.9 62 53.6 53.7 55.2 -13.4 26 21.4 22.7 25.5 -12.7 30 24.4 23.2 27.1 -22.7 Ce 60.5 60.2 60.5 60.3 0.0 109 123 108 109 -0.9 52 48.1 52.4 53.4 0.8 58 52.5 54.1 57.1 -6.7 Pr 6.94 6.69 6.68 6.72 -3.7 13.6 12.6 12.9 13.2 -5.1 6.4 5.55 6.23 6.34 -2.7 7.4 6.18 7.06 7.19 -4.6 Nd 25.7 26.1 26.6 25.7 3.5 48 52.8 53.5 54.9 11.5 25 24.7 27.5 26.5 10.0 27 26.6 25.4 26.4 -5.9 Sm 4.49 4.64 4.75 4.39 5.8 8.4 8.37 8.32 8.41 -1.0 5.1 5.11 5.37 5.86 5.3 6.2 6.27 6.17 6.30 -0.5 Eu 0.96 0.847 0.853 0.867 -11.1 1.7 1.61 1.67 1.71 -1.8 1.13 0.966 1.02 1.06 -9.7 0.6 0.478 0.510 0.588 -15.0 Gd 3.74 3.53 3.50 3.63 -6.4 6.7 6.90 6.87 6.93 2.5 4.7 4.55 4.81 4.97 2.3 5.9 6.07 6.07 6.04 2.9 Tb 0.54 0.432 0.441 0.461 -18.3 1.02 0.899 0.917 0.933 -10.1 0.8 0.634 0.698 0.702 -12.8 1.13 0.996 1.06 1.03 -6.2 Dy 2.94 2.81 2.71 2.85 -7.8 5.1 5.39 5.45 5.60 6.9 4.8 4.33 4.62 4.60 -3.7 7.2 7.26 7.30 7.30 1.4 Ho 0.58 0.437 0.455 0.464 -21.6 0.98 0.928 0.945 0.961 -3.6 0.98 0.785 0.819 0.838 -16.4 1.4 1.37 1.45 1.36 3.6 Er 1.64 1.46 1.43 1.49 -12.8 2.7 2.83 2.78 2.87 3.0 2.8 2.48 2.63 2.66 -6.1 4.6 4.41 4.37 4.42 -5.0 Tm 0.25 0.133 0.134 0.138 -46.4 0.43 0.302 0.328 0.324 -23.7 0.47 0.284 0.308 0.314 -34.5 0.74 0.623 0.631 0.722 -14.7 Yb 1.63 1.41 1.40 1.46 -14.1 2.6 2.59 2.61 2.69 0.4 3 2.42 2.55 2.59 -15.0 5.1 4.90 5.07 5.07 -0.6 Lu 0.25 0.124 0.137 0.179 -45.2 0.41 0.33 0.31 0.32 -24.4 0.47 0.286 0.304 0.306 -35.3 0.78 0.643 0.660 0.754 -15.4 Nb 10.5 5.79 6.02 7.20 -42.7 14.3 10.1 9.19 11.3 -35.7 11.4 9.28 8.96 9.25 -21.4 25 19.7 22.8 22.2 -8.8 Ta 1.2 0.667 1.06 0.924 -11.7 1 0.436 0.488 0.722 -51.2 0.84 0.582 0.617 0.514 -26.5 5.7 5.31 5.33 5.44 -6.5 Zr 184 108 115 128 -37.5 96 47.3 53.2 57.7 -44.6 190 162 157 164 -17.4 153 132 138 140 -9.8 Hf 5.5 1.99 2.02 2.65 -63.3 2.9 1.45 1.36 1.62 -53.1 5.5 3.22 3.58 4.22 -34.9 5.4 4.76 4.43 4.52 -18.0 采用国家一级标准物质与样品一起溶解制作标准曲线,一方面可以克服基体干扰,另一方面可以消除由于消解而引入的不确定误差,使测试结果偏低的现象得以解决。表 2列出了采用直接加入混合酸的步骤,用国家一级标准物质制作标准曲线测定稀土元素的结果,测定值与认定值基本一致,无偏低现象,说明偏差已得到校正。考虑到实际样品的分析测试,加混合酸溶解两次的方法耗时较长,因而选择加混合酸溶解一次的方法,通过曲线校正,测定结果与认定值准确度(ΔlgC)在三倍检出限以上均小于0.11,满足规范DZ/T 0011—2015的要求。
表 2 采用国家一级标准物质制作标准曲线的测定结果Table 2. Analytical results of elements using the national standard reference materials as standard curve元素 GBW07328 GBW07107 GBW07450 GBW07311 ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)89Y 15.3 14.9 0.012 26 27.1 0.018 27 26.4 0.010 43 43.2 0.002 139La 32.5 32.7 0.003 62 63.1 0.008 26 25.9 0.002 30 29.6 0.006 140Ce 60.5 60.4 0.001 109 109 0.001 52 53.1 0.009 58 57.9 0.001 141Pr 6.94 6.84 0.006 13.6 13.6 0.001 6.4 6.39 0.000 7.4 7.51 0.007 146Nd 25.7 25.7 0.001 48 49.0 0.009 25 26.0 0.017 27 27.0 0.000 147Sm 4.49 4.50 0.000 8.4 8.41 0.001 5.1 5.14 0.004 6.2 6.31 0.007 153Eu 0.96 0.957 0.001 1.7 1.71 0.003 1.13 1.09 0.014 0.6 0.613 0.009 157Gd 3.74 3.68 0.007 6.7 6.80 0.006 4.7 4.76 0.006 5.9 6.04 0.010 159Tb 0.54 0.56 0.017 1.02 0.989 0.013 0.8 0.782 0.010 1.13 1.03 0.012 163Dy 2.94 2.95 0.002 5.1 5.10 0.000 4.8 4.74 0.006 7.2 7.31 0.006 165Ho 0.58 0.591 0.008 0.98 0.975 0.002 0.98 0.988 0.004 1.4 1.39 0.005 166Er 1.64 1.64 0.000 2.7 2.87 0.027 2.8 2.76 0.006 4.6 4.59 0.001 169Tm 0.25 0.248 0.003 0.43 0.423 0.007 0.47 0.474 0.004 0.74 0.725 0.009 172Yb 1.63 1.65 0.006 2.6 2.68 0.013 3 2.99 0.001 5.1 5.06 0.004 175Lu 0.25 0.249 0.002 0.41 0.409 0.001 0.47 0.486 0.015 0.78 0.75 0.015 铌、钽、锆、铪由于酸溶无法完全溶解,加之铌、钽的易水解性,使以上元素测试结果严重偏低,故混合酸敞开酸溶法不适合用于测定这四种元素。
2.2.2 偏硼酸锂碱熔法
常用的过氧化钠碱熔方法,需要经阳离子交换树脂柱进行分离,流程更长,测定元素不多。也有用偏硼酸锂熔融[13],经高温熔融、酸提取、高倍稀释后用ICP-MS直接测定。但引入的盐类太多,不适合大批量样品的测定。本文结合以上两种方法进行了改进。采用偏硼酸锂熔融提取后在氢氧化钠碱性溶液中将被测元素沉淀,经过滤、分离、酸复溶后进行测定,达到难溶元素的完全溶解。因实验中未加入共沉淀剂,而是使被测元素在碱性介质中随可沉淀基体元素自行沉淀,因此避免了测定溶液含盐量增加过多而引入的污染因素。
采用偏硼酸锂作熔剂,测定结果见表 3。从结果来看,Nb、Ta、Zr、Hf不能定量沉淀,原因可能是偏硼酸锂提取液的碱度不够,铌、钽等是以铌酸钠、钽酸钠形式沉淀,需要在更高浓度的钠盐溶液中才可完全沉淀。因此,本实验在偏硼酸锂熔融、酸提取后补加氢氧化钠调节溶液为强碱性来进行沉淀。加入氢氧化钠后,表 4测定数据表明,该步骤保证了稀土及Nb、Ta、Zr、Hf等元素的完全沉淀,难溶元素的分析结果可靠。
表 3 偏硼酸锂作为熔剂的测定结果Table 3. Analytical results of elements using lithium metaborate as flux元素 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 89Y 15.3 16.2 0.025 26 27.1 0.018 27 27.8 0.013 43 42.8 0.002 139La 32.5 33.5 0.013 62 64.2 0.015 26 27.3 0.022 30 31.3 0.018 140Ce 60.5 61.8 0.009 109 110 0.005 52 51.3 0.006 58 56.3 0.013 141Pr 6.94 6.72 0.014 13.6 11.3 0.080 6.4 6.27 0.009 7.4 7.61 0.012 146Nd 25.7 24.4 0.023 48 46.5 0.014 25 27.3 0.039 27 28.4 0.023 147Sm 4.49 4.61 0.012 8.4 8.56 0.008 5.1 5.02 0.007 6.2 6.11 0.006 153Eu 0.96 0.949 0.005 1.7 1.78 0.021 1.13 1.12 0.004 0.6 0.623 0.016 157Gd 3.74 3.86 0.014 6.7 6.78 0.005 4.7 4.39 0.029 5.9 6.18 0.020 159Tb 0.54 0.561 0.017 1.02 1.14 0.049 0.8 0.822 0.012 1.13 1.32 0.068 163Dy 2.94 3.07 0.018 5.1 5.36 0.022 4.8 4.98 0.016 7.2 7.44 0.014 165Ho 0.58 0.596 0.012 0.98 1.01 0.014 0.98 0.999 0.008 1.4 1.33 0.023 166Er 1.64 1.66 0.004 2.7 2.59 0.017 2.8 2.92 0.018 4.6 4.77 0.015 169Tm 0.25 0.233 0.031 0.43 0.411 0.020 0.47 0.455 0.014 0.74 0.772 0.018 172Yb 1.63 1.64 0.003 2.6 2.78 0.028 3 2.88 0.018 5.1 5.14 0.004 175Lu 0.25 0.238 0.021 0.41 0.424 0.015 0.47 0.488 0.016 0.78 0.733 0.027 93Nb 10.5 4.72 0.347 14.3 8.53 0.224 11.4 6.16 0.267 25 11.4 0.343 181Ta 1.2 0.812 0.170 0.9 0.657 0.137 0.84 0.431 0.290 5.7 2.74 0.318 90Zr 184 98.2 0.273 96 45.1 0.328 190 97.5 0.290 153 68.2 0.351 178Hf 5.5 2.99 0.265 2.9 1.08 0.430 5.5 2.14 0.409 5.4 3.27 0.218 表 4 偏硼酸锂为熔剂时加氢氧化钠碱化后的测定结果Table 4. Analytical results of elements using lithium metaborate as flux and adding sodium hydroxide to alkalization元素 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 认定值
(μg/g)测定值
(μg/g)ΔlgC 89Y 15.3 14.8 0.014 26 26.3 0.005 27 27.4 0.006 43 41.8 0.012 139La 32.5 33.7 0.016 62 61.3 0.005 26 24.8 0.020 30 28.5 0.023 140Ce 60.5 58.6 0.014 109 107 0.007 52 50.3 0.014 58 57.8 0.002 141Pr 6.94 6.74 0.013 13.6 14.8 0.036 6.4 6.51 0.008 7.4 7.65 0.015 146Nd 25.7 26.2 0.009 48 50.2 0.020 25 24.9 0.000 27 26.5 0.007 147Sm 4.49 4.34 0.015 8.4 8.33 0.004 5.1 5.21 0.010 6.2 6.41 0.014 153Eu 0.96 0.962 0.001 1.7 1.67 0.007 1.13 1.23 0.036 0.6 0.631 0.022 157Gd 3.74 3.88 0.016 6.7 6.78 0.005 4.7 4.54 0.015 5.9 6.05 0.011 159Tb 0.54 0.519 0.017 1.02 0.992 0.012 0.8 0.778 0.012 1.13 1.14 0.005 163Dy 2.94 2.72 0.033 5.1 5.32 0.018 4.8 4.76 0.004 7.2 7.12 0.005 165Ho 0.58 0.566 0.011 0.98 0.973 0.003 0.98 0.973 0.003 1.4 1.44 0.012 166Er 1.64 1.71 0.018 2.7 2.55 0.024 2.8 2.93 0.020 4.6 4.75 0.014 169Tm 0.25 0.233 0.029 0.43 0.452 0.022 0.47 0.455 0.014 0.74 0.731 0.005 172Yb 1.63 1.67 0.011 2.6 2.76 0.027 3 2.87 0.019 5.1 5.38 0.023 175Lu 0.25 0.273 0.038 0.41 0.408 0.002 0.47 0.462 0.007 0.78 0.765 0.008 93Nb 10.5 9.38 0.049 14.3 13.8 0.016 11.4 10.9 0.020 25 24.3 0.013 181Ta 1.2 1.30 0.035 0.9 0.879 0.010 0.84 0.794 0.024 5.7 5.54 0.013 90Zr 184 187 0.008 96 95.8 0.001 190 194 0.010 153 152 0.003 178Hf 5.5 5.25 0.021 2.9 2.86 0.007 5.5 5.33 0.014 5.4 5.37 0.002 偏硼酸锂法的优点是容易得到纯度较高的偏硼酸锂,并且其用量少,而且空白较低,沉淀元素种类多,使分析成本降低。此法对于混合酸敞开酸溶法或密闭酸溶法难以溶解的样品有很好的测定结果,也可作为酸溶法的补充和验证方法。
2.3 方法技术指标
2.3.1 方法检出限
本方法的检出限是根据所选取溶解流程中的样品空白连续12次测定值的10倍标准偏差所相当的分析浓度(μg/g)。混合酸敞开酸溶法所测的稀土元素和改进的偏硼酸锂碱熔法测定稀土元素及铌钽锆铪的方法检出限如表 5所示。从表中可以看出,混合酸敞开酸溶法具有更低的检出下限,在测定稀土元素方面具有更大的优势。铌钽锆铪等难熔元素,用改进的偏硼酸锂碱熔法检出限也都在1μg/g以下,满足测试需求。
表 5 方法检出限Table 5. Detection limit of the method元素 检出限(μg/g) 混合酸敞开
酸溶法改进的偏硼
酸锂碱熔法89Y 0.101 0.038 139La 0.095 0.087 140Ce 0.163 0.519 141Pr 0.018 0.032 146Nd 0.084 0.066 147Sm 0.014 0.037 153Eu 0.003 0.023 157Gd 0.003 0.106 159Tb 0.01 0.085 163Dy 0.009 0.044 165Ho 0.058 0.09 166Er 0.007 0.033 169Tm 0.002 0.087 172Yb 0.005 0.036 175Lu 0.001 0.072 93Nb - 0.221 181Ta - 0.073 90Zr - 0.926 178Hf - 0.063 2.3.2 方法准确度和精密度
为了验证两种方法的准确度和精密度,采用敞开混合酸溶法对国家一级标准物质(西藏沉积物GBW07328、岩石GBW07107、土壤GBW07450、水系沉积物GBW07311)进行12次平行测定,采用偏硼酸锂碱熔法对同样的标准物质进行12次平行测定,结果如表 6所示。两种方法分析标准样品的测定值与认定值基本一致,二者的对数误差绝对值(ΔlgC)均小于0.11,相对标准偏差(RSD)小于10%,符合DZ/T 0011—2015规范要求。
表 6 混合酸敞开酸溶和偏硼酸锂碱熔法的准确度和精密度Table 6. Accuracy and precision tests of the mixed acid open dissolution method and lithium metaborate alkali fusion method元素 混合酸敞开酸溶法 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)89Y 15.3 14.7 0.017 1.14 26 24.6 0.024 3.11 27 25.7 0.021 2.26 43 45.7 0.026 1.97 139La 32.5 30.1 0.033 7.91 62 60.9 0.008 4..26 26 26.9 0.015 1.80 30 28.6 0.021 2.21 140Ce 60.5 63.2 0.019 6.32 109 113 0.016 2.16 52 54.7 0.022 2.16 58 56.9 0.008 1.73 141Pr 6.94 6.78 0.010 6.64 13.6 13.2 0.013 4.57 6.4 6.29 0.008 1.93 7.4 7.19 0.013 1.46 146Nd 25.7 24.1 0.028 4.37 48 47.1 0.008 1.58 25 23.6 0.025 5.63 27 25.6 0.023 1.92 147Sm 4.49 4.62 0.012 8.85 8.4 8.16 0.013 3.72 5.1 5.24 0.012 3.71 6.2 6.06 0.010 1.47 153Eu 0.96 0.993 0.015 2.57 1.7 1.57 0.035 7.96 1.13 1.23 0.037 4.30 0.6 0.717 0.077 2.95 157Gd 3.74 3.56 0.021 7.92 6.7 6.83 0.008 4.34 4.7 4.59 0.010 2.25 5.9 5.76 0.010 2.24 159Tb 0.54 0.522 0.015 3.84 1.02 0.984 0.016 4.62 0.8 0.773 0.015 3.16 1.13 1.21 0.030 1.14 163Dy 2.94 2.73 0.032 6.26 5.1 5.24 0.012 2.93 4.8 4.67 0.012 2.81 7.2 7.04 0.010 1.72 165Ho 0.58 0.551 0.022 8.24 0.98 0.952 0.013 4.29 0.98 1.06 0.034 4.94 1.4 1.32 0.026 1.57 166Er 1.64 1.61 0.008 7.22 2.7 2.56 0.023 4.40 2.8 2.89 0.014 4.64 4.6 4.71 0.010 3.08 169Tm 0.25 0.234 0.029 2.43 0.43 0.417 0.013 5.51 0.47 0.493 0.021 5.76 0.74 0.729 0.007 2.57 172Yb 1.63 1.60 0.008 2.15 2.6 2.49 0.019 4.17 3 2.82 0.026 4.19 5.1 4.84 0.023 1.09 175Lu 0.25 0.227 0.042 2.59 0.41 0.424 0.015 4.92 0.47 0.492 0.020 2.63 0.78 0.746 0.019 3.56 元素 偏硼酸锂碱熔法 GBW07328 GBW07107 GBW07450 GBW07311 认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)认定值
(μg/g)测定平均值
(μg/g)ΔlgC RSD
(%)89Y 15.3 14.7 0.017 1.46 26 25.4 0.010 2.71 27 25.7 0.021 2.51 43 41.6 0.014 4.40 139La 32.5 31.1 0.019 2.52 62 60.6 0.010 3.94 26 25.4 0.010 1.74 30 31.7 0.024 2.62 140Ce 60.5 59.1 0.011 1.27 109 105 0.016 2.77 52 49.5 0.021 3.07 58 59.3 0.010 1.95 141Pr 6.94 6.62 0.021 1.76 13.6 14.4 0.025 3.82 6.4 6.28 0.008 2.19 7.4 7.51 0.006 1.41 146Nd 25.7 25.9 0.003 4.52 48 46.1 0.018 2.81 25 27.3 0.038 2.50 27 26.3 0.011 1.79 147Sm 4.49 4.37 0.012 1.97 8.4 8.07 0.017 4.73 5.1 5.33 0.019 6.48 6.2 6.08 0.008 3.77 153Eu 0.96 0.906 0.025 6.49 1.7 1.75 0.013 1.79 1.13 1.21 0.030 3.63 0.6 0.571 0.022 2.23 157Gd 3.74 3.77 0.003 3.73 6.7 6.46 0.016 2.08 4.7 4.58 0.011 2.97 5.9 6.23 0.024 5.01 159Tb 0.54 0.556 0.013 1.53 1.02 0.944 0.034 1.17 0.8 0.831 0.017 1.81 1.13 1.24 0.040 4.33 163Dy 2.94 3.12 0.026 4.63 5.1 5.26 0.013 5.17 4.8 4.56 0.022 3.41 7.2 7.02 0.011 2.19 165Ho 0.58 0.543 0.029 8.52 0.98 0.947 0.015 7.90 0.98 1.02 0.019 2.92 1.4 1.51 0.033 1.75 166Er 1.64 1.62 0.005 3.79 2.7 2.74 0.007 6.46 2.8 2.84 0.006 6.09 4.6 4.68 0.007 3.10 169Tm 0.25 0.262 0.020 2.58 0.43 0.449 0.019 2.60 0.47 0.445 0.024 2.33 0.74 0.771 0.018 1.29 172Yb 1.63 1.6 0.008 5.71 2.6 2.82 0.035 4.68 3 3.16 0.023 4.83 5.1 5.18 0.007 3.03 175Lu 0.25 0.235 0.027 3.08 0.41 0.441 0.032 5.22 0.47 0.459 0.010 2.98 0.78 0.792 0.007 2.24 93Nb 10.5 11.2 0.028 2.25 14.3 13.1 0.038 4.70 11.4 10.7 0.028 9.45 25 26.1 0.019 1.33 181Ta 1.2 1.22 0.007 5.82 0.9 0.921 0.010 8.72 0.84 0.822 0.009 9.73 5.7 5.82 0.009 1.80 90Zr 184 179 0.012 2.12 96 92.7 0.015 6.71 190 197 0.016 3.45 153 147 0.017 4.37 178Hf 5.5 5.36 0.011 9.30 2.9 2.63 0.043 5.60 5.5 5.28 0.018 5.93 5.4 4.89 0.043 5.81 2.3.3 地质调查样品分析与比对
为了检验方法的可靠性,用混合酸敞开酸溶法测定陕南柞水—商南地区地质调查样品水系沉积物(样品编号P1~P6)中的稀土元素,用碱熔法测定其中的铌、钽、锆、铪元素,将样品测定的结果与陕西省地质与矿产研究所采用密闭酸溶法的测定结果进行比较。从比对数据可以看出,相对偏差基本都在17%之间,满足日常测试要求。但同时也发现P5号样品的Zr元素,两实验室间的结果相差较大,相对偏差为32.3%,原因可能是样品的特殊成分导致了密闭溶样法无法完全溶解此元素,更深入的原因则有待进一步的研究。
3. 结论
本文提供了测定稀土元素及铌、钽、锆、铪的两种溶样方案。采用氢氟酸-硝酸-硫酸混合酸敞开酸溶法,减少了化学试剂的使用量,降低了成本,同时以国家一级标准物质制作标准曲线测定稀土元素,消除了基体干扰,确保了测定结果准确,方法准确度(ΔlgC)为0.001~0.027。采用改进的偏硼酸锂碱熔法同时测定15种稀土元素及铌、钽、锆、铪,加入碱性溶液氢氧化钠后,所测元素沉淀完全,改善了传统酸溶法由于溶矿不完全而导致的铌、钽、锆、铪测定结果严重偏低的现象。
实验表明,混合酸敞开酸溶法适用于测定地质样品中的稀土元素,偏硼酸锂碱熔法不仅适用于测定地质样品中的稀土元素及铌钽锆铪,也适用于测定如古老高压变质岩石及铝含量高的样品中的铌钽锆铪。
-
表 1 土壤样品分析方法、检出限及数据合格率
Table 1 Analysis method, detection limit and qualified rate of data for soil samples
分析指标 分析方法 检出限 单位 重复样合格率(%) 分析指标 分析方法 检出限 单位 重复样合格率(%) As HG-AFS 1 mg/kg 98.5 Zn ICP-MS 2 mg/kg 99.5 Cd ICP-MS 30 μg/kg 99.5 Al2O3 XRF 0.05 % 100 Cr XRF 5 mg/kg 98.5 TFe2O3 XRF 0.05 % 100 Cu ICP-MS 1 mg/kg 100 SiO2 XRF 0.1 % 100 Hg CV-AFS 0.5 μg/kg 99.5 Se AFS 0.01 mg/kg 99.5 Ni ICP-MS 2 mg/kg 99.5 Corg POT 0.1 % 99.3 Pb ICP-MS 2 mg/kg 100 pH POT 0.1 mg/kg 100 注:HG-AFS为氢化物发生原子荧光光谱法;ICP-MS为电感耦合等离子体质谱法;XRF为X射线荧光光谱法;CV-AFS为冷蒸汽原子荧光光谱法;POT为电位法。 表 2 作物样品分析方法、检出限及数据合格率
Table 2 Analysis method, detection limit and qualified rate of crop samples
分析指标 分析方法 检出限 数据合格率(%) CRMs 实验室重复样 As HG-AFS 0.01mg/kg 100 100 Cd ICP-MS 10μg/kg 100 100 Cr ICP-MS 0.2mg/kg 100 100 Cu ICP-MS 1mg/kg 100 100 Hg HG-AFS 0.5μg/kg 100 100 Ni ICP-MS 0.2mg/kg 100 100 Pb ICP-MS 0mg/kg 100 100 Zn ICP-MS 2mg/kg 100 100 Se ICP-MS 0.01mg/kg 100 100 注:HG-AFS为氢化物发生原子荧光光谱法;ICP-MS为电感耦合等离子体质谱法; CRMs为国家标准物质。 表 3 表层土壤元素地球化学特征值
Table 3 Geochemical characteristics of elements in topsoil
指标 平均值 中位数 最大值 最小值 标准差 变异系数 四川表层土壤平均值 中国表层土壤平均值 K1 K2 Se(mg/kg) 0.33 0.32 1.50 0.04 0.15 0.45 0.25 0.20 1.34 1.67 Al2O3(%) 16.40 16.72 25.09 5.30 2.02 0.12 14.04 12.6 1.17 1.30 TFe2O3(%) 8.84 7.74 17.10 2.85 3.08 0.35 5.59 4.70 1.58 1.88 SiO2(%) 54.30 55.94 81.36 21.39 9.75 0.18 61.59 65.0 0.88 0.84 pH 5.53 5.35 8.11 4.34 0.57 0.10 / / / / 有机质(%) 2.34 1.95 12.80 0.36 1.35 0.57 1.46 0.35 1.60 6.69 As(mg/kg) 10.03 8.86 39.11 1.14 6.80 0.68 9.50 10.0 1.06 1.00 Cd(mg/kg) 0.26 0.23 2.84 0.04 0.16 0.63 0.34 0.09 0.76 2.88 Cr(mg/kg) 92.1 84.5 395 25.8 38.1 0.41 82.0 65.0 1.12 1.42 Cu(mg/kg) 96.9 53.3 1067 14.9 88.3 0.91 32.0 24.0 3.03 4.04 Hg(mg/kg) 0.09 0.09 0.25 0.02 0.04 0.45 0.10 0.04 0.99 2.37 Ni(mg/kg) 43.5 42.1 112 17.0 12.8 0.30 36.0 26.0 1.21 1.67 Pb(mg/kg) 30.9 31.2 88.5 9.33 8.43 0.27 38.0 23.0 0.81 1.34 Zn(mg/kg) 108 95.9 255 38.4 35.9 0.33 90.0 68.0 1.20 1.59 注:四川表层土壤平均值引自《中国土壤地球化学参数》(侯青叶、杨忠芳等,2020);中国表层土壤平均值引自《中国土壤元素背景值》(魏复盛,1990)。K1为本区表层土壤平均值/四川表层土壤平均值; K2为本区表层土壤平均值/中国表层土壤平均值;“/”表示无此数据。 表 4 不同用地类型和土壤类型表层土壤中硒含量特征
Table 4 Characteristics of selenium content in topsoil from different land utilization types and soil types
用地类型 样品数量(件) Se含量平均值(mg/kg) Se含量中位数(mg/kg) Se含量范围(mg/kg) 标准差(mg/kg) 变异系数 研究区Se含量背景值(mg/kg) 旱地 632 0.29 0.27 0.06~1.05 0.13 0.45 0.33 水田 13 0.24 0.21 0.09~0.32 0.06 0.27 草地 554 0.39 0.37 0.05~1.10 0.14 0.37 林地 129 0.34 0.30 0.03~1.50 0.19 0.58 土壤类型 样品数量(件) Se含量平均值(mg/kg) Se含量中位数(mg/kg) Se含量范围(mg/kg) 标准差(mg/kg) 变异系数 研究区Se含量背景值(mg/kg) 黄壤 648 0.34 0.33 0.10~1.10 0.12 0.36 0.33 红壤 63 0.23 0.16 0.04~1.50 0.21 0.94 黄棕壤 545 0.36 0.35 0.06~0.94 0.16 0.46 紫色土 50 0.17 0.16 0.05~0.36 0.08 0.46 其他 22 0.22 0.21 0.09~0.32 0.06 0.28 表 5 不同统计单元表层土壤硒与有机质相关关系
Table 5 Correlation between topsoil selenium and organic matter in different statistical units
统计单元 样品数量(件) 相关系数 统计单元 样品数量(件) 相关系数 Pe 518 0.508** 草地 554 0.587** T1f-j 119 0.492** 林地 129 0.489** T1-2f-l 173 0.751** 黄壤 648 0.545** T2l 235 0.569** 红壤 63 0.510** T3xj 264 0.641** 黄棕壤 545 0.721** 旱地 632 0.691** 紫色土 50 0.913** 水田 13 0.451 汇总 1328 0.615** 注:“**”表示在0.01水平(双侧)上显著相关。 表 6 研究区表层土壤环境地球化学等级划分
Table 6 Environmental geochemical grade in topsoil of the study area
重金属元素 无风险 风险可控 面积(km2) 比例(%) 面积(km2) 比例(%) As 221.22 99.74 0.58 0.26 Cd 178.00 80.25 43.80 19.75 Cr 219.82 99.11 1.98 0.89 Cu 157.04 70.80 64.77 29.20 Hg 221.81 100.00 0 0.00 Ni 214.20 96.57 7.60 3.43 Pb 221.81 100.00 0 0.00 Zn 221.81 100.00 0 0.00 表 7 研究区不同作物重金属元素含量
Table 7 Heavy metal element contents in different crops of the study area
作物种类 含量特征 As Cd Cr Cu Hg Ni Pb Zn 玉米 最小值(mg/kg) 0.008 0.001 0.070 1.23 0.001 0.02 0.005 13.38 最大值(mg/kg) 0.030 0.015 0.108 4.89 0.003 0.27 0.086 31.53 平均值(mg/kg) 0.017 0.004 0.079 2.17 0.001 0.07 0.028 19.17 中位数(mg/kg) 0.017 0.003 0.078 1.96 0.001 0.05 0.017 18.15 标准差(mg/kg) 0.005 0.004 0.009 0.81 0.001 0.06 0.025 4.12 变异系数 0.30 0.82 0.11 0.37 0.57 0.86 0.90 0.22 限量值(mg/kg) 0.5 0.1 1.0 / 0.02 / 0.2 / 土豆 最小值(mg/kg) 0.007 0.005 0.005 0.35 0.00002 0.01 0.002 1.56 最大值(mg/kg) 0.013 0.067 0.011 1.65 0.00009 0.21 0.027 3.60 平均值(mg/kg) 0.009 0.016 0.007 0.79 0.00003 0.05 0.005 2.23 中位数(mg/kg) 0.009 0.013 0.007 0.73 0.00003 0.03 0.004 2.10 标准差(mg/kg) 0.001 0.014 0.002 0.31 0.00002 0.05 0.006 0.50 变异系数 0.13 0.84 0.21 0.39 0.49 1.00 1.05 0.22 限量值(mg/kg) 0.5 0.1 0.5 / 0.01 / 0.2 / -
[1] Fordyce F M, Zhang G D, Green K, et al. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China[J]. Applied Geochemistry, 2000, 15(1): 117-132. doi: 10.1016/S0883-2927(99)00035-9
[2] 韩晓霞, 魏洪义. 硒的营养生物学研究进展[J]. 南方农业学报, 2015, 46(10): 1798-1804. doi: 10.3969/j:issn.2095-1191.2015.10.1798 Han X X, Wei H Y. Research progress in nutritional biology of selenium[J]. Journal of Southern Agriculture, 2015, 46(10): 1798-1804. doi: 10.3969/j:issn.2095-1191.2015.10.1798
[3] Rayman M P. Food-chain selenium and human health: Emphasis on intake[J]. British Journal of Nutrition, 2008, 100(2): 254-268. doi: 10.1017/S0007114508939830
[4] Bullock L A, John P, Magali P, et al. High selenium in the carboniferous coal measures of northumberland, North East England[J]. International Journal of Coal Geology, 2018, 195: 61-74. doi: 10.1016/j.coal.2018.05.007
[5] Yanai J, Mizuhara S, Yamada H. Soluble selenium content of agricultural soils in Japan and its determining factors with reference to soil type, land use and region[J]. Soil Science and Plant Nutrition, 2015, 61(2): 312-318. doi: 10.1080/00380768.2014.997147
[6] Yamada H, Kamada A, Usuki M, et al. Total selenium content of agricultural soils in Japan[J]. Soil Science and Plant Nutrition, 2009, 55(5): 616-622. doi: 10.1111/j.1747-0765.2009.00397.x
[7] Zhu J M, Zheng B S. Distribution and affecting factors of selenium in soil in the high-Se environment of Yutangba mini-landscape[J]. Chinese Science Bulletin, 1999(Supplement 2): 46-48.
[8] 张建东, 王丽, 王浩东, 等. 紫阳县土壤硒的分布特征研究[J]. 土壤通报, 2017, 48(6): 1404-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201706017.htm Zhang J D, Wang L, Wang H D, et al. Distribution of soil total selenium in Ziyang, Shaanxi[J]. Chinese Journal of Soil Science, 2017, 48(6): 1404-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201706017.htm
[9] 徐强, 迟凤琴, 匡恩俊, 等. 方正县土壤硒的分布特征及其与土壤性质的关系[J]. 土壤通报, 2015, 46(3): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201503014.htm Xu Q, Chi F Q, Kuang E J, et al. Distribution characteristics of selenium in Fangzheng County and its relationship with soil properties[J]. Chinese Journal of Soil Science, 2015, 46(3): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201503014.htm
[10] 马迅, 宗良纲, 诸旭东, 等. 江西丰城生态硒谷土壤硒有效性及其影响因素[J]. 安全与环境学报, 2017, 17(4): 1588-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704073.htm Ma X, Zong L G, Zhu X D, et al. Effectiveness and influential factors of soil selenium in selenium valley, Fengcheng, Jiangxi[J]. Journal of Safety and Environment, 2017, 17(4): 1588-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704073.htm
[11] 息朝庄, 张鹏飞, 吴林锋, 等. 贵州省惠水县涟江大坝土壤硒分布特征及影响因素研究[J/OL]. 中国地质, https://kns.cnki.net/kcms/detail/11.1167.P.20210301.1622.008.html. Xi C Z, Zhang P F, Wu L F, et al. Distribution characteristics and influencing factors of selenium in soil from Lianjiang Dam, Huishui County, Guizhou Province[J/OL]. Geology in China, https://kns.cnki.net/kcms/detail/11.1167.P.20210301.1622.008.html.
[12] 杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012, 26(5): 837-849. doi: 10.3969/j.issn.1000-8527.2012.05.001 Yang Z F, Yu T, Hou Q Y, et al. Geochemical characteristics of soil selenium in farmland of Hainan Island[J]. Geoscience, 2012, 26(5): 837-849. doi: 10.3969/j.issn.1000-8527.2012.05.001
[13] 余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm Yu T, Yang Z F, Wang R, et al. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi[J]. Soils, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm
[14] 迟凤琴, 徐强, 匡恩俊, 等. 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 2016, 53(5): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605017.htm Chi F Q, Xu Q, Kuang E J, et al. Distribution of selenium and its influencing factors in soils of Heilongjiang Province, China[J]. Acta Pedologica Sinica, 2016, 53(5): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605017.htm
[15] 戴慧敏, 宫传东, 董北, 等. 东北平原土壤硒分布特征及影响因素[J]. 土壤学报, 2015, 52(6): 1356-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506015.htm Dai H M, Gong C D, Dong B, et al. Distribution of soil selenium in the northeast China Plain and its influencing factors[J]. Acta Pedologica Sinica, 2015, 52(6): 1356-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506015.htm
[16] 吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm Wu X S. Characteristics and genesis of selenium-rich soil in Wuping area, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm
[17] 任海利, 高军波, 龙杰, 等. 贵州开阳地区富硒地层及风化土壤地球化学特征[J]. 地球与环境, 2012, 40(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202006.htm Ren H L, Gao J B, Long J, et al. Geochemical characteristics of selenium-rich strata and weathered soil from Kaiyang County, Guizhou Province[J]. Earth and Environment, 2012, 40(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202006.htm
[18] 刘才泽, 王永华, 曾琴琴, 等. 成渝典型地区土壤硒地球化学特征及其成因分析[J]. 物探与化探, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm Liu C Z, Wang Y H, Zeng Q Q, et al. The distribution and source of soil selenium in typical areas of Chengdu—Chongqing Region[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm
[19] 宋明义, 李恒溪, 魏迎春, 等. 浙江省龙游志棠地区硒的地球化学研究[J]. 贵州地质, 2005, 22 (3): 176-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200503005.htm Song M Y, Li H X, Wei Y C, et al. Geochemistry of the selenium, Zhitang Town, Longyou County, Zhejiang Province[J]. Guizhou Geology, 2005, 22(3): 176-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200503005.htm
[20] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158 Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158
[21] 谭建安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989. Tan J A. The atlas of endemic diseases and their environments in the People's Republic of China[M]. Beijing: Science Press, 1989.
[22] 魏振山, 涂其军, 唐蜀虹, 等. 天山北坡乌鲁木齐至沙湾地区富硒土壤地球化学特征及成因探讨[J]. 物探与化探, 2016, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm Wei Z S, Tu Q J, Tang S H, et al. A discussion on the geochemical features and origin of selenium-rich soil on the northern slope of the Tianshan Mountains from Urumqi to Shawan County[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm
[23] 冯彩霞, 刘家军, 刘木焱, 渔等. 塘坝硒矿硅质岩的地球化学特征及成因[J]. 沉积学报, 2002, 20(4): 727-732. Feng C X, Liu J J, Liu M Y, et al. The geochemistry and genesis of siliceous rocks of selenium diggings in Yutangba[J]. Acta Sedimentologica Sinica, 2002, 20(4): 727-732.
[24] 郑翔, 钱汉东, 吴雪枚. 湖北恩施双河硒矿床地球化学特征及成因探讨[J]. 高校地质学报, 2006, 12(1): 83-92. doi: 10.3969/j.issn.1006-7493.2006.01.009 Zheng X, Qian H D, Wu X M. Geochemical and genetic characteristics of selenium ore deposit in Shuanghe, Enshi, Hubei Province[J]. Geological Journal of China Universities, 2006, 12(1): 83-92. doi: 10.3969/j.issn.1006-7493.2006.01.009
[25] 牛志军, 徐安武, 段其发, 等. 湖北建始北部二叠纪地层硒的来源与富集[J]. 中国区域地质, 2000, 19(4): 396-401. doi: 10.3969/j.issn.1671-2552.2000.04.010 Niu Z J, Xu A W, Duan Q F, et al. Origin and enrichment of selenium in Permian strata in the northern part of Jianshi, Hubei[J]. Regional Geology of China, 2000, 19(4): 396-401. doi: 10.3969/j.issn.1671-2552.2000.04.010
[26] 吴文斌, 杨鹏, 唐华俊, 等. 土地利用对土壤性质影响的区域差异研究[J]. 中国农业科学, 2007(8): 1697-1702. doi: 10.3321/j.issn:0578-1752.2007.08.015 Wu W B, Yang P, Tang H J, et al. Regional variability of effects of land use system on soil properties[J]. Scientia Agricultura Sinica, 2007(8): 1697-1702. doi: 10.3321/j.issn:0578-1752.2007.08.015
[27] 童建川. 重庆紫色土硒分布、迁移富集及影响因子研究[D]: 重庆: 西南大学, 2009. Tong J C. The distrbution, migration and enricichment law and influencing factors of Se in purple soil of Chongqing[D]: Chongqing: Southwest University, 2009.
[28] 曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084 Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084
[29] Qin H B, Zhu J M, Xu W P, et al. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J]. Environmental Pollution, 2017, 225: 361-369. doi: 10.1016/j.envpol.2017.02.062
[30] Yamada H, Kamada A, Usuki M, et al. Total selenium content of agricultural soils in Japan (soil chemistry and soil mineralogy)[J]. Soil Science and Plant Nutrition, 2009, 55(5): 616-622. doi: 10.1111/j.1747-0765.2009.00397.x
[31] 蒋惠俏, 陆国斌, 赵震云, 等. 广西钟山县主要农用地土壤硒的地球化学特征[J]. 矿产与地质, 2020, 34(2): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202002022.htm Jiang H Q, Lu G B, Zhao Z Y, et al. Geochemical characteristics of soil selenium of main agricultural land in Zhongshan County of Guangxi[J]. Mineral Resources and Geology, 2020, 34(2): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202002022.htm
[32] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 2014, 65(1): 2-3. doi: 10.1111/ejss.12115
[33] Wright A L, Hons F M. Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes[J]. Soil Science Society of America Journal, 2005, 69(1): 141-147. doi: 10.2136/sssaj2005.0141a
[34] 黄春雷, 宋明义, 魏迎春. 浙中典型富硒土壤区土壤硒含量的影响因素探讨[J]. 环境科学, 2013, 34(11): 4405-4410. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201311043.htm Huang C L, Song M Y, Wei Y C, et al. Study on selenium contents and combined forms of typical selenium-rich soil in the central part of Zhejiang Province[J]. Earth and Environment, 2013, 34(11): 4405-4410. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201311043.htm
[35] 蔡子华, 宋明义, 胡艳华, 等. 湖沼相富硒土壤的发现及其生态学意义[J]. 物探与化探, 2011, 35(2): 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201102023.htm Cai Z H, Song M Y, Hu Y H, et al. The discovery of lake facies selenium-rich soil and its ecological significance[J]. Geophysical and Geochemical Exploration, 2011, 35(2): 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201102023.htm
[36] 郭莉, 杨忠芳, 阮起和, 等. 北京市平原区土壤中硒的含量和分布[J]. 现代地质, 2012, 26(5): 859-864. doi: 10.3969/j.issn.1000-8527.2012.05.003 Guo L, Yang Z F, Ruan Q H, et al. Content and distribution of selenium in soil of Beijing Plain[J]. Geoscience, 2012, 26(5): 859-864. doi: 10.3969/j.issn.1000-8527.2012.05.003
[37] 王金达, 于君宝, 张学林. 黄土高原土壤中硒等元素的地球化学特征[J]. 地理科学, 2000, 20(5): 469-473. doi: 10.3969/j.issn.1000-0690.2000.05.014 Wang J D, Yu J B, Zhang X L. Geochemical features of elements of selenium etc. in soil of Loess Plateau[J]. Scientia Geographica Sinica, 2000, 20(5): 469-473. doi: 10.3969/j.issn.1000-0690.2000.05.014
[38] 王子健, 赵利华, 彭安. 低硒带土壤中硒的挥发过程研究[J]. 环境化学, 1989, 8(2): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX198902001.htm Wang Z J, Zhao L H, Peng A. Selenium evaportion from soils of Chinese Se-defficient belt[J]. Environmental Chemistry, 1989, 8(2): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX198902001.htm
[39] Zhang L H, Shi W M, Wang X C. Difference in selenium accumulation in shoots of two rice cultivars[J]. Pedosphere, 2006(5): 646-653.
[40] 章海波, 骆永明, 吴龙华, 等. 香港土壤研究Ⅱ. 土壤硒的含量、分布及其影响因素[J]. 土壤学报, 2005, 42(3): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200503008.htm Zhang H B, Luo Y M, Wu L H, et al. Hong Kong soil researchesⅡ. Distribution and content of selenium in soils[J]. Acta Pedologica Sinica, 2005, 42(3): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200503008.htm
[41] 朱建明, 梁小兵, 凌宏文, 等. 环境中硒存在形式的研究现状[J]. 矿物岩石地球化学通报, 2003, (1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200301015.htm Zhu J M, Liang X B, Ling H W, et al. Advances in studying occurrence modes of selenium in environment[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200301015.htm
[42] 刘铮. 中国土壤微量元素[M]. 南京: 江苏科学技术出版社, 1996. Liu Z. Soil trace elements in China[M]. Nanjing: Jiangsu Science and Technology Press, 1996.
[43] 孙彬彬, 周国华, 刘占元, 等. 黄河下游山东段沿岸土壤中重金属元素异常的成因[J]. 地质通报, 2008, 27(2): 265-270. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200802015.htm Sun B B, Zhou G H, Liu Z Y, et al. Origin of heavy metal anomalies in soils along the Shandong reach of the Lower Yellow River, China[J]. Geological Bulletin of China, 2008, 27(2): 265-270. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200802015.htm
[44] 黄锦法, 洪春来, 陈轶平, 等. 浙北嘉兴平原土壤和作物硒元素研究初报[J]. 浙江农业科学, 2010(6): 1356-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201006075.htm Huang J F, Hong C L, Chen Y P, et al. Se in soils and crops of Jiaxing Plain Region in northern Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2010(6): 1356-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201006075.htm
[45] Selinus O, Alloway B, Centeno J, et al. Essentials of medical geology: Impacts of the natural environment on public health[M]. Elsevier Academic Press, 2005.
[46] 韩伟, 王乔林, 宋云涛, 等. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101026.htm Han W, Wang Q L, Song Y T, et al. Geochemical characteristics and genesis of selenium in soil in northern Muchuan County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101026.htm
[47] 耿建梅, 王文斌, 温翠萍, 等. 海南稻田土壤硒与重金属的含量、分布及其安全性[J]. 生态学报, 2012, 32(11): 3477-3486. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201211019.htm Geng J M, Wang W B, Wen C P, et al. Concentrations and distributions of selenium and heavy metals in Hainan paddy soil and assessment of ecological security[J]. Acta Ecologica Sinica, 2012, 32(11): 3477-3486. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201211019.htm
[48] 郭跃品, 傅杨荣, 何玉生, 等. 琼北火山岩区农田土壤重金属和硒含量评价及来源研究[J]. 安全与环境学报, 2015, 15(1): 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201501071.htm Guo Y P, Fu Y R, He Y S, et al. Evaluation and source analysis of the heavy metals and selenium in the farmland soils of volcanic area, north of Hainan Island[J]. Journal of Safety and Environment, 2015, 15(1): 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201501071.htm
[49] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm
[50] 唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm Tang R L, Wang H Y, Lyu X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China[J]. Geoscience, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm
[51] 安梦鱼, 张青, 王煌平, 等. 土壤植物系统硒累积迁移的影响因素及调控[J]. 中国农学通报, 2017, 33(11): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201711012.htm An M Y, Zhang Q, Wang H P, et al. Selenium accumulation and transfer in soil-plant system: Influence factors and control[J]. Chinese Agricultural Science Bulletin, 2017, 33(11): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201711012.htm
[52] Wan Y, Yu Y, Wang Q, et al. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium[J]. Ecotoxicology & Environmental Safety, 2016, 133: 127-134.
[53] 郑淑华, 朱凰榕, 李榕, 等. 自然富硒土中Se对不同水稻籽粒吸收Cd的影响[J]. 环境保护科学, 2014, 40(5): 74-76, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBH201405017.htm Zheng S H, Zhu H R, Li R, et al. Effect of Se in the natural selenium-rich soils on absorption of Cd in rice grains[J]. Environmental Protection Science, 2014, 40(5): 74-76, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBH201405017.htm
[54] 周墨, 陈国光, 张明, 等. 赣南地区土壤硒元素地球化学特征及其影响因素研究: 以青塘—梅窖地区为例[J]. 现代地质, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm Zhou M, Chen G G, Zhang M, et al. Geochemical characteristics and influencing factors of selenium in soils of south Jiangxi Province: A typical area of Qingtang—Meijiao[J]. Geoscience, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm
-
期刊类型引用(35)
1. 李光一,马景治,李策,汪岸,贾正勋,董学林. 电弧分馏富集-发射光谱法测定含铌钽矿石中铌钽. 冶金分析. 2025(02): 49-55 . 百度学术
2. 韩亚军,王啸,甘黎明,冯博鑫,李荣华,王佳明,宋永涛. 氟化氢铵焙烧分离-碱熔-电感耦合等离子体质谱(ICP-MS)法测定高硅矿物中稀土元素及铌、钽. 中国无机分析化学. 2025(04): 500-505 . 百度学术
3. 郭娜,王啸,孙莎,张威,杨晓辉,贺怡欣. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法测定锰矿石中14种元素. 中国无机分析化学. 2025(04): 545-553 . 百度学术
4. 王家松 ,王力强 ,王娜 ,方蓬达 ,郑智慷 ,曾江萍 . 偏硼酸锂熔融-酒石酸络合-超声提取-电感耦合等离子体原子发射光谱法测定岩矿型锆矿石中10种元素的含量. 理化检验-化学分册. 2024(02): 125-133 . 百度学术
5. 张安丰,杨博为,王永鑫,庞文品,毛珂,金修齐. 动能歧视(KED)-电感耦合等离子体质谱(ICP-MS)法测定贵州沉积型稀土矿中16种稀土元素. 中国无机分析化学. 2024(05): 575-585 . 百度学术
6. 周万峰,王永鑫,张安丰. ICP-MS测定川滇黔相邻区高岭石黏土岩矿物中伴生关键三稀元素的前处理方法研究. 贵州地质. 2024(01): 101-108+17 . 百度学术
7. 郭琳,于汀汀,孙红宾,朱云. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素. 岩矿测试. 2024(02): 356-365 . 本站查看
8. 童晓旻,董再蒸,高鹏. X荧光测定铌钽原矿中铌和钽及不确定度评定. 江西化工. 2024(04): 6-10 . 百度学术
9. 刘江斌,牛红莉,党亮. 二米光栅——原子发射光谱法应用于地质样品多元素半定量全分析. 甘肃地质. 2024(03): 84-88 . 百度学术
10. 孙孟华,朱永晓,赵烨,陈庆芝,宋凡,孙凯茜. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽和稀土元素. 冶金分析. 2024(09): 35-44 . 百度学术
11. 杨博为 ,周万峰 ,王永鑫 ,张安丰 . 碱熔-二次沉淀分离-电感耦合等离子体质谱法测定贵州古陆相沉积型稀土矿中16种稀土元素及铌、钽、锆、铪的含量. 理化检验-化学分册. 2024(10): 1012-1020 . 百度学术
12. 唐碧玉,张征莲,谷娟平,古行乾. 电感耦合等离子体质谱(ICP-MS)法测定锰矿冶炼烟尘中多种重金属元素. 中国无机分析化学. 2023(07): 677-683 . 百度学术
13. 张浩宇,付彪,王娇,马晓玲,罗光前,姚洪. 电感耦合等离子体串联质谱法测定煤灰中痕量稀土元素. 光谱学与光谱分析. 2023(07): 2074-2081 . 百度学术
14. 曾美云,何启生,邵鑫,杨小丽. 全自动石墨消解-电感耦合等离子体质谱法测定土壤和水系沉积物中稀土元素. 岩矿测试. 2023(03): 502-512 . 本站查看
15. 汤少展,张响荣,李策,董学林,任小荣,陈玉娇. 氟化氢铵快速分解-电感耦合等离子体质谱(ICP-MS)法测定多金属矿中痕量稀土元素. 中国无机分析化学. 2023(08): 839-844 . 百度学术
16. 冯先进,马丽. 电感耦合等离子体质谱(ICP-MS)法在我国矿物中“四稀”元素检测的应用. 中国无机分析化学. 2023(08): 802-812 . 百度学术
17. 孙孟华 ,李晓敬 ,王文娟 ,王昕 ,于聪灵 . 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽锂铍钒磷铀锰. 冶金分析. 2022(01): 78-84 . 百度学术
18. 李黎,郭冬发,黄秋红,李伯平,王娅楠,谢胜凯,刘瑞萍. 混合硼酸锂盐熔融-混酸消解-ICP-MS测定伟晶岩样品中的稀土、铀、钍等元素. 铀矿地质. 2022(02): 361-369 . 百度学术
19. 杨惠玲,杜天军,王书勤,何沙白,杨秋慧. 电感耦合等离子体质谱法测定金属矿中稀土和稀散元素. 冶金分析. 2022(05): 8-14 . 百度学术
20. 张鹏鹏,徐进力,胡梦颖,张灵火,白金峰,张勤. 激光诱导击穿光谱分析土壤样品中的锆、铪和铌元素含量实验研究. 光谱学与光谱分析. 2022(07): 2163-2168 . 百度学术
21. 李辉. 电感耦合等离子体质谱法测定化探样品中钨铌钽含量的分析方法优化研究. 安徽地质. 2022(02): 174-177 . 百度学术
22. 胡璇,程紫辉,张树朝,石磊. 基体分离-电感耦合等离子体发射光谱法测定赤泥中的稀土氧化物. 光谱学与光谱分析. 2022(10): 3130-3134 . 百度学术
23. 胡兰基,霍成玉,马龙,马文. 酸溶消解-质谱法测定地球化学样品及稀有、稀土矿中铌和钽. 化学工程师. 2022(11): 23-27 . 百度学术
24. 曾美云,何启生,邵鑫,杨小丽. 全自动石墨消解-电感耦合等离子体质谱法测定岩石样品中稀土元素. 华南地质. 2022(04): 708-714 . 百度学术
25. 王家松,王力强,王娜,方蓬达,曾江萍,张莉娟. 偏硼酸锂熔融分解锆英砂的实验条件优化研究. 华北地质. 2022(04): 48-52 . 百度学术
26. 王佳翰,李正鹤,杨峰,杨秀玖,黄金松. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素. 岩矿测试. 2021(02): 306-315 . 本站查看
27. 张祎玮,蒋俊平,李浩,沈讷敏. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化. 岩石矿物学杂志. 2021(03): 605-613 . 百度学术
28. 龚仓,丁洋,陆海川,卜道露,王立华,熊韬,张志翔. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素. 岩矿测试. 2021(03): 340-348 . 本站查看
29. 周成英,刘美子,张华,李宝城,满旭光,刘英,臧慕文. 铜精矿化学成分分析实验室间比对结果评价和离群值原因分析. 岩矿测试. 2021(04): 619-626 . 本站查看
30. 周艺蓉. 浅谈电感耦合等离子体质谱法样品前处理技术. 科技与创新. 2021(18): 47-48 . 百度学术
31. 王力强,王家松,魏双,郑智慷,吴良英,张楠,曾江萍. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素. 岩矿测试. 2021(05): 688-697 . 本站查看
32. 金一,安帅,宋丽华. 偏硼酸锂熔融-电感耦合等离子体光谱法和质谱法测定东北黑土中32种特征成分的含量. 理化检验-化学分册. 2021(12): 1074-1081 . 百度学术
33. 王力强,王家松,吴良英,曾江萍,方蓬达,郑智慷. 偏硼酸锂熔融-电感耦合等离子体原子发射光谱法测定锆矿石中10种元素. 冶金分析. 2020(09): 63-69 . 百度学术
34. 程龙军,陈昌铭,温炎燊,彭义华,郑冠立. 高纯硫酸铜中17种稀土杂质元素ICP-MS法检测. 化学试剂. 2020(10): 1196-1200 . 百度学术
35. 胡璇. 电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物. 岩矿测试. 2020(06): 954-960 . 本站查看
其他类型引用(3)