Assessment of Selenium Bioavailability in Natural Selenium-rich Soil Based on Diffusive Gradients in Thin Films
-
摘要: 有效硒是评价土壤中硒对植物供给能力的重要指标,中国目前尚无测定土壤有效硒的统一方法。化学提取法、土壤溶液法常用于测定土壤有效硒含量,但存在缺乏普遍适用提取剂类型、目标态提取不完全和对非目标态溶解等问题。梯度扩散薄膜(DGT)技术是一种基于解离、扩散动力学的有效态测定方法,已有学者将其应用于土壤有效硒的测定并取得良好效果,但是否适用于天然富硒土壤中硒生物有效性评价尚不明确。为探明梯度扩散薄膜技术评价天然富硒土壤中硒生物有效性的可行性,本文以浙江省上墅乡和汾口镇分布的天然富硒土壤为研究对象,实验应用化学提取法、土壤溶液法和DGT技术[包括Fe-oxide(水铁矿型)DGT、Zr-oxide(水合氢氧化锆型)DGT]评价土壤中硒的生物有效性。结果表明:①Fe-oxide DGT测得的有效硒平均含量为0.17±0.076μg/L,Zr-oxide DGT测得的有效硒平均含量为0.20±0.13μg/L。两种类型DGT测得有效硒含量差异不大,但由于Zr-oxide DGT对Se4+具有专性吸附特征,导致Zr-oxide DGT无法有效反映植物体内硒含量水平。对于检测土壤硒生物有效量,Fe-oxide DGT要优于Zr-oxide DGT;②植物体内硒含量Cplant-Se与三种方法测定的有效硒含量均呈显著正相关,但Cplant-Se与Fe-oxide DGT测定的有效硒含量相关系数(r=0.705)大于其他两种方法;③基于DGT技术计算得出的R值(土壤颗粒向土壤溶液补充硒的能力)和Kd值(土壤固相与液相之间的分配系数)表明上墅研究区相较于汾口研究区土壤中硒具有更强的迁移性,但其土壤固相向土壤溶液补充硒离子的速率小于汾口研究区。综上认为,对于评价天然富硒土壤中硒生物有效性而言,DGT方法优于化学提取法和土壤溶液法,在测试性能和反映土壤动力学过程信息方面更具优势。要点
(1) 明确了梯度扩散薄膜(DGT)技术可以有效评价天然富硒土壤中硒生物有效性。
(2) DGT技术测定土壤有效硒的效果优于化学提取法和土壤溶液法。
(3) DGT技术相较于化学提取法和土壤溶液法能够反映土壤动力学过程信息。
HIGHLIGHTS(1) The diffusive gradient in thin-films (DGT) technique can be used to efficiently evaluate selenium bioavailability in natural selenium-rich soil.
(2) The DGT technique is better than chemical extraction and soil solution methods in evaluating selenium bioavailability.
(3) The DGT technique can be used to reflect the information of the soil dynamics process when compared with chemical extraction and soil solution methods.
Abstract:BACKGROUNDAvailable selenium is an important index to evaluate the supply capacity of selenium from the soil to plants. Unfortunately, there is no general method for the determination of available selenium in soil in China. Chemical extraction and soil solution methods are commonly used to evaluate bioavailability of selenium. Furthermore, there are problems such as the lack of universally applicable extractant types, incomplete extraction of target states, and dissolution of non-target states. The diffusive gradient in thin-films (DGT) technique is a method based on dissociation and diffusion kinetics which has been successfully used to assess the bioavailability of selenium. However, it is not clear whether the DGT technique can be used in natural selenium-rich soil.OBJECTIVESTo investigate the feasibility of the DGT technique to evaluate the bioavailability of selenium in natural selenium-rich soil.METHODSNatural selenium-rich soils from Shangshu and Fenkou in Zhejiang Province were chosen as the research objects. Fe-oxide DGT, Zr-oxide DGT, chemical extraction, and soil solution methods were used to evaluate selenium bioavailability.RESULTS(1) The average of available selenium measured by Fe-oxide DGT was 0.17±0.076μg/L, whereas the average of available selenium measured by Zr-oxide DGT was 0.20±0.13μg/L. Zr-oxide DGT cannot be used effectively to reflect the content of selenium in plants due to the specific adsorption characteristics to Se4+. Fe-oxide DGT was suitable for the bioavailability evaluation of selenium in soil rather than Zr-oxide DGT. (2) There was a significant positive correlation between the selenium content in plants (Cplant-Se) and the available selenium content determined by the three methods. The correlation between available Se by Fe-oxide DGT and Se concentration in plants (r=0.705) was greater than the chemical extraction method and soil solution method. (3) The Kd value and R value calculated from DGT and soil solution methods indicated that the soil of the Shangshu area had stronger selenium mobility than the Fenkou area, but the rate of Se supply from the soil solid phase to the soil solution was less than the Fenkou area.CONCLUSIONSDGT is more suitable for evaluating selenium bioavailability compared with chemical extraction and soil solution methods because it has more advantages in testing performance and reflecting the information of soil dynamics process. -
锡在地壳中分布较广,目前已知的锡矿物有20余种,主要以锡石SnO2形态存在。锡石不溶于盐酸、硝酸及王水,即使用硫酸长时间加热或用氢氟酸-硫酸处理时,也只有一小部分溶解,所以对于锡矿石的分析测试,样品前处理通常采用碱熔融法[1]。矿石中锡元素的测定方法[2-3]有:极谱法[4-5]、分光光度法[6]、氢化物发生原子荧光光谱法[7]、发射光谱法[8-11]、电感耦合等离子体发射光谱法(ICP-OES)[12-18]、电感耦合等离子体质谱法(ICP-MS)[19]等。陈义等[20]采用过氧化钠碱熔,原子荧光光谱法测定高含量的锡;梁文先等[21]研究了用压片制样X射线荧光光谱法(XRF)快速测定矿石中锡量;刘恒杰等[22]采用熔融制样X射线荧光光谱法测定矿物中Cu、Pb、Zn、Mo、W、Al、Fe、Si、K、Na、Ti、Ca、Sn等13种主次量元素;陈丽梅等[23]采用过氧化钠消解铜浸出渣,使用ICP-OES法测定铜浸出渣中的锡含量;肖细炼等[24]建立了交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银、硼、锡的分析方法;马龙等[25]采用过氧化钠熔融ICP-MS法测定锡矿石中的锡。这些方法的选择主要取决于矿石本身特征及金属锡含量,同时也受操作条件、试剂的选用等客观因素的影响。
ICP-OES法具有灵敏度较高、线性范围较宽、基体效应较低、不仅能够实现对锡矿石主次量元素的同时测定,且有良好的精密度和重现性,能大大提高测试效率。然而,传统分解锡矿石使用的过氧化钠或其他氧化性熔剂会引入大量的盐类,酸化提取后的溶液需要进一步分离或稀释,这样不仅影响分析的准确度及较低含量元素的测定限,长时间测定还会引起等离子体信号降低,造成仪器损伤。因此,选择适宜的样品前处理方法至关重要。有学者尝试采用一些非传统性熔剂进行样品的前处理。如杨新能等[26]采用碳酸锂-硼酸混合熔剂高温熔融ICP-OES法测定铁矿石中铬、铌、钼、钨、锡;王学田等[27]提出了用四硼酸锂作熔剂,熔融制成样片XRF法同时测定钨钼锡矿石中钨、钼、锡元素含量的分析方法;童晓民等[28]采用混合熔剂(四硼酸锂:硼酸锂:氟化锂=10:2.5:1,质量比)加氧化剂硝酸锂熔融制样,建立了XRF测定锡矿石中Fe、Cu、Zn、As、Sn、Sb、Pb、Bi等8种金属元素的分析方法。
偏硼酸锂属于高熔点的非氧化性熔剂,具有很强的分解力[29]。自1964年Ingamells报道了偏硼酸锂是一种很好的助熔剂以来,已成功应用于土壤、硅酸盐岩石[30],甚至一些难熔的岩石和矿物样品[31-34]的分解中。黄劲[35]采取偏硼酸锂熔矿,王水-酒石酸体系提取溶液测定锡矿石中锡钨钼铜铅锌。本文在此研究基础上用偏硼酸锂熔融、硝酸提取,ICP-OES法测定了锡矿石中锡、钨、铁、锰、铜、锌元素的含量,同时结合扫描电镜-能谱(SEM-EDX)微区分析技术,确定了偏硼酸锂熔剂与样品的最佳配比。探讨了锡矿石样品的熔融温度和时间、介质酸度以及基体干扰,通过测定锡矿石标准物质验证了方法的准确度和精密度。
1. 实验部分
1.1 仪器及工作条件
iCap6300全谱直读电感耦合等离子体发射光谱仪(美国ThermoFisher公司)。仪器工作条件见表 1。
表 1 仪器参考工作条件Table 1. Reference operating conditions of the instrument工作参数 设定值 工作参数 设定值 射频功率 1150W 冲洗泵速 50r/min 雾化气流速 0.2L/min 分析泵速 50r/min 辅助气流速 0.5L/min 积分时间 长波段5s 样品冲洗时间 30s 短波段7s 垂直观测高度 10mm 氩气 99.999% F6010CN控温马弗炉(美国ThermoFisher公司)。
KH2200DH型数控超声波清洗器(江苏昆山禾创超声仪器有限公司)。
用光谱纯石墨棒车制的小石墨坩埚15mL(内径25mm,壁厚5mm,内高30mm,外高35mm),瓷坩埚20mL。
1.2 标准溶液的配制和主要试剂
本方法的标准溶液是按表 2所示浓度,适量吸取各单元素储备液配制成混合标准系列,其酸度为5%的硝酸。由于采用偏硼酸锂熔样,样品溶液中引入了大量的锂盐,因此在配制标准溶液时,加入0.7%的偏硼酸锂(与样品溶液相当的锂),并加入一定量的硝酸,使其酸度保持在5%左右,以保证标准溶液的基体和酸度与样品溶液基本一致。
表 2 标准溶液系列Table 2. Standard solution series元素 浓度(μg/mL) STD0 STD1 STD2 STD3 STD4 STD5 Sn 0 0.5 5 10 20 - W 0 0.1 0.5 5 20 - Zn 0 0.1 0.5 5 20 50 Cu 0 0.1 1 10 50 100 Fe 0 5 20 100 200 500 Mn 0 0.1 0.5 5 20 - 硝酸:优级纯。偏硼酸锂:分析纯。高纯水:蒸馏水经Mili-Q纯化系统纯化,电导率18MΩ·cm。
1.3 元素分析谱线和背景扣除模式
利用仪器的性能对每个元素选定2~3条不同级次的谱线进行测定,然后分析观察每条谱线的发射强度,再考虑元素的检出限、共存元素对其干扰和该元素的线性范围,选择测定元素的最佳谱线波长,并校准谱线。各元素分析谱线的波长、级次和背景扣除模式见表 3。
表 3 各元素测定波长和背景扣除模式Table 3. Measurement wavelength and background subtraction mode分析
项目波长
(nm)级次 左背景 右背景 峰位 位置 主要干扰 位置 主要干扰 Sn 189.989 477 1+2 / 11+12 / 7+8 W 239.709 141 1+2 / 11+12 / 6+7 Zn 206.200 164 1+2 / 11+12 / 6+7 Cu 327.396 103 2+3 / 11+12 / 7+8 Fe 259.940 130 2+3 / 11+12 / 7+8 Mn 257.610 131 1+2 / 11+12 / 7+8 1.4 实验方法
1.4.1 样品来源
本次实验的样品采自典型矿区云南马关、麻栗坡地区金竹林、瓦渣、南捞等地的锡砂矿。通过扫描电镜-能谱(SEM-EDX)、X射线衍射分析,初步判定样品中的矿物组成,观察锡矿物性状特征、粒径大小,发现锡石的粒径在400~500μm左右,多大于400μm,再通过重砂分析得到锡的含量在130~135g/m3,均已达到锡砂矿的边界品位(100~150g/m3),直接作为本次实验的分析样品。
1.4.2 样品分解
称取350mg无水偏硼酸锂置于15mL石墨坩埚中,再准确称取50.00mg样品,与无水偏硼酸锂混匀,将石墨坩埚放于瓷坩埚中,再将坩埚置于已升温至1000℃的高温炉中恒温熔融15min。取出坩埚,立即将赤热的熔珠倒入盛有30mL 5%硝酸的100mL烧杯中,熔融物立即炸裂为细小的微粒。将烧杯放入超声波振荡器(温度60℃,频率为80Hz),待熔盐完全溶解清亮后(约15min),移入50mL容量瓶中,用5%硝酸稀释至刻度,摇匀待测。随同试样进行2份空白试验。
将标准溶液系列和待测样品溶液引入ICP-OES进行分析,分别采用锡、铁、铜、锌、锰、钨在激发态下的发射波长(表 3)为分析谱线,测定各元素的含量。
2. 结果与讨论
2.1 熔样条件实验
2.1.1 坩埚的选择
含锂硼酸盐类熔剂熔样快速,熔样对坩埚材料的侵蚀不严重,熔样引入的外来离子不给以后的测试增添额外的分离步骤,通常偏硼酸锂熔矿可在铂金坩埚和石墨坩埚中进行。在铂器皿中熔融时,熔融物粘附在坩埚壁上很难被洗脱,同时样品中的铁、锰、钴等元素可能被萃入铂坩埚中。在石墨坩埚中熔样,得到的熔珠易于取出。熔样宜在高温炉中进行,空气不能完全隔绝,否则某些金属氧化物易被还原为挥发性的金属而损失。本实验采用石墨坩埚外套一个瓷坩埚。
2.1.2 熔剂与样品的比例
已有文献报道,熔剂与样品的比例(质量比)为5:2至7:1[30],较低的熔/样比需要较高的熔样温度,较高的熔/样比会给测定引入更多的盐类。实验分别加入250mg、300mg、350mg、500mg、800mg偏硼酸锂,即熔剂与样品的比例分别为5:1、6:1、7:1、10:1、16:1,当熔剂与样品的比例低于7:1时,样品不易形成一个规则的球体,熔珠散落在坩埚中很难收集,实验中对收集不完全而附着在坩埚底部的白色固体物质进行了扫描电镜观察,发现这些白色物质呈片状、球状、块状、絮状,主要为金属氧化物和偏硼酸锂的熔融物,必然导致测定结果偏低。图 1、图 2所示分别为部分残渣的形貌图和能谱数据图。
熔剂与样品比例为5:1、6:1、7:1、8:1、9:1时,将冷却后的熔珠置于扫描电镜下观察,熔珠的表面结构如图 3所示。5倍熔剂下形成的熔珠表面比较平滑(图 3a),孔隙较大较多(图 3b),容易破碎;6倍熔剂下形成的熔珠呈层状结构(图 3c),也有平滑处(图 3d),且孔隙也较多(图 3e);7倍熔剂下形成的熔珠颗粒较大较圆(图 3f),片状和层状相互交替(图 3g),结构更为致密;8倍和9倍熔剂下的熔珠结构与7倍的熔珠结构相似(图 3中h~l)。但能谱数据显示含有一定量的硼,如图 4所示,可能是硼过量引起的,从而说明熔剂过量。
结合残渣和熔珠的扫描电镜-能谱分析结果,实验选择熔剂和样品比为7:1,快速提取,保证样品能完全转移。
2.1.3 熔融时间和温度
偏硼酸锂为高熔点熔剂,熔融温度在900~1100℃。分别选择熔融温度为900℃、950℃、1000℃、1050℃进行实验,熔融时间均为15min,具体测量数据如表 4所示。由表 4数据结果表明,熔融温度为900℃时,有时候某些试样不能熔融完全形成熔珠状或提取时有残渣附着在石墨坩埚中,当熔融温度为950℃以上时,样品呈熔珠状,流动性好。并且由数据可知,温度在950℃、1000℃、1050℃时,元素的含量变化相差不大(GBW07281),测定误差满足《地质矿产实验室测试质量管理规范第三部分岩石矿物样品化学成分分析》(DZ/T 0130.3—2006)的要求,且趋于稳定,因此选择1000℃为本实验的熔融温度。
表 4 熔融温度的影响Table 4. Effects of fusion temperature元素 不同熔融温度下的测定值(%) 标准值
(%)900℃ 950℃ 1000℃ 1050℃ 1100℃ Sn 3.96 4.32 4.36 4.39 4.28 4.47±0.08 W 0.047 0.058 0.062 0.059 0.056 0.068±0.005 Zn 0.68 0.75 0.71 0.68 0.69 0.74±0.02 Cu 0.25 0.27 0.26 0.25 0.24 0.26±0.01 Fe 24.72 25.16 25.06 25.23 25.09 25.13±0.25 Mn 0.76 0.89 0.93 0.92 0.88 0.91±0.05 样品熔融温度为1000℃时,分别选择熔融时间为10、15、20min进行高温熔融时间条件实验,结果发现熔融时间为10min时,某些试样不能熔融完全,不能形成熔珠状,容易粘附在坩埚壁;当熔融时间为15、20min时试样熔融完全,样品呈熔珠状,流动性好,易于提取。由于过长的熔融时间会造成某些元素的损失,并增大熔融器皿的损耗。通过实验确定熔融时间为15min。
2.1.4 提取溶液酸度的选择
用偏硼酸锂熔融,尽管矿物完全分解,甚至当熔珠溶于稀酸后,还完整地保留Si-O晶体结构骨架碎片,提取时极易析出硅酸,控制提取液的酸度,使分析溶液的pH值在硅酸不易聚合的范围内(pH=1~3),但又要防止铁、铝、钛等元素沉淀或水解;加大提取液体的体积,使硅酸的浓度始终保持在溶解度以下。实验选择30mL浓度为5%的硝酸溶液进行提取。
2.1.5 干扰实验
本法采用偏硼酸锂熔样,会引入大量的易电离元素锂,从而破坏等离子体中的电离平衡,影响元素的测定。本次实验发现锂对待侧元素的影响不大,这也说明了等离子体光源基体干扰小的特点。随着锂浓度的增大,对于Fe 259.94nm强度值略有降低,而其他元素降低得并不明显。同时在标准溶液中加入与样品分解流程中引入的0.7%的锂盐,使得样品溶液和标准溶液的基体基本一致,基体干扰可以忽略不计。
2.2 方法检出限
对与样品同时熔融处理的偏硼酸锂熔剂100mg的空白溶液,用5%硝酸稀释至50mL,摇匀,进行10次测定,计算标准偏差,10倍标准偏差再乘以稀释倍数计算方法检出限,得到各元素检出限分别为:Sn 18.66μg/g,W 97.67μg/g,Zn 21.14μg/g,Cu 23.45μg/g,Fe 78.40μg/g,Mn 12.32μg/g。
2.3 方法精密度和准确度
通过锡矿石国家一级标准物质GBW07281,对方法的可靠性进行了验证。应用本法在不同的时间里制样12份,在不同的时间进行测定,统计其标准误差、相对标准偏差(RSD),列于表 5。方法各元素测定相对误差为1.33%~8.80%,相对标准偏差为1.20%~8.06%,符合锡矿石分析的技术参数要求。
表 5 方法精密度和准确度Table 5. Precision and accuracy tests of the method项目 Sn W Zn Cu Fe Mn 含量测定均值(%) 4.31 0.056 0.76 0.23 24.61 0.87 标准值(%) 4.47±0.08 0.068±0.005 0.74±0.02 0.26±0.01 25.31±0.25 0.91±0.05 相对误差(%) 4.20 8.80 1.33 6.12 1.40 2.25 RSD(%) 1.20 8.06 2.01 3.21 2.36 3.87 2.4 锡矿实际样品分析
本次实验的五个样品,编号1~5,分别采自典型矿区云南马关、麻栗坡地区金竹林、瓦渣、南捞等地的锡砂矿,且经重砂分析均已达到锡矿的边界品位。
2.4.1 锡含量测定方法的比对
选择3个锡矿样品和GBW07282,采用《锡矿石化学分析方法锡量测定》(GB/T 15924—2010)与本文方法分别测定样品中的锡,将结果进行比较,计算相对误差,与《地质矿产实验室测试质量管理规范第三部分岩石矿物样品化学成分分析》(DZ/T 0130.3—2006)规定允许相对误差相比,相对误差绝对值小于允差误差(表 6),说明本文方法能准确测定锡矿石中的锡。
表 6 本文ICP-OES方法与GB/T 15924—2010方法测定Sn含量数据对比Table 6. Comparison of Sn content determined by ICP-OES and GB/T 15924—2010 method样品
编号Sn含量4次平行测定值(μg/g) Sn含量测定平均值(μg/g) GB/T 15924 —2010方法Sn测定值(μg/g) 相对误差(%) DZ/T 0130.3 —2006规定允许相对误差(%) 锡矿
样品112218 11962
12019 1088911772 12166 3.24 6.39 锡矿
样品28398 8466
8019 79058182 7854 4.18 7.12 锡矿
样品35005 4879
5612 47845070 4783 6.01 8.06 GBW07282 11876 11634
12959 1201512121 11827 2.48 6.39 2.4.2 酸溶和偏硼酸锂熔融处理样品测定铁铜锌锰钨结果的比对
取5件锡矿样品,采用酸溶与本文的偏硼酸锂熔融方法处理,ICP-OES测定钨、锌、铜、铁、锰元素含量进行比对。酸溶步骤如下:将试料置于15mL带盖聚四氟乙烯坩埚中,加入3mL 50%盐酸于150~160℃电热板上加热蒸干,取下冷却,用水吹洗盖子内侧和烧杯内壁,再加1mL浓硝酸、1mL氢氟酸、0.5mL高氯酸,加盖置于180~190℃电热板上加热至试料分解完全(6~8h),用水吹洗盖子内侧和烧杯内壁并去盖,继续加热至高氯酸烟冒尽,取下稍冷,加入4 mL 50%盐酸并吹洗烧杯内壁,加热至盐类溶解完全,取下,冷却至室温,移入25mL塑料容量瓶(或比色管)中,用水稀释至刻度,摇匀备测。
测试数据列于表 7中,两种方法测定结果的相对误差为0.54%~12.00%,说明本文方法能准确测定锡矿石中的钨、锌、铜、铁、锰。
表 7 酸溶和偏硼酸锂熔融法测定铁、铜、锌、锰、钨数据比对Table 7. Comparison of iron, copper, zinc, manganese, and tungsten content determined by acid dissolution and lithium metaborate fusion样品编号 W含量(%) Zn含量(%) Cu含量(%) Fe含量(%) Mn含量(%) 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 锡矿样品1 0.0080 0.0068 8.11 0.014 0.011 12.00 0.010 0.0089 5.82 0.89 0.81 4.71 0.041 0.036 6.49 锡矿样品2 0.037 0.038 1.33 0.015 0.018 9.09 0.022 0.018 10.00 1.75 1.69 1.74 0.17 0.14 9.68 锡矿样品3 0.040 0.034 8.11 0.017 0.020 8.11 0.0044 0.0051 7.37 1.52 1.38 1.38 0.15 0.16 3.23 锡矿样品4 0.036 0.030 9.09 0.28 0.25 5.66 0.070 0.082 7.89 1.84 1.69 4.25 0.068 0.059 7.09 锡矿样品5 0.041 0.040 1.23 0.14 0.13 3.70 0.035 0.039 5.41 1.76 1.70 1.73 0.075 0.062 9.49 GBW07281 0.068 0.057 8.80 0.74 0.76 1.33 0.26 0.23 6.12 25.31 24.29 2.06 0.91 0.81 5.81 GBW07282 0.015 0.013 7.14 0.91 0.96 2.67 0.32 0.29 4.92 24.06 23.80 0.54 0.33 0.34 1.49 3. 结论
采用偏硼酸锂熔融,超声波水浴处理,用ICP-OES法测定锡矿石中锡、钨、锌、铜、铁、锰元素的含量,以基体匹配方式消除了基体干扰,各待测元素之间没有明显干扰,方法准确可靠。结合扫描电镜-能谱微区分析技术,观察不同熔剂量下样品残渣和熔珠的形貌特征,测定其成分,发现当熔剂与样品比为7:1时,样品熔珠颗粒结构致密,且未见硼元素检出,说明样品完全熔融,且熔剂量适中,为确定熔剂与样品的最佳配比提供了理论依据。
采用本文方法,样品前处理简单,熔盐提取快速,分析成本低,环境污染小,能够满足锡矿石中锡钨锌铜铁锰含量分析的要求。相比于传统的化学分析方法,该方法更加方便快捷,节省了大量的时间和成本,易于掌握。
-
表 1 DGT装置规格参数
Table 1 Specifications of DGT equipment
DGT参数 Fe-oxide DGT Zr-oxide DGT 吸附膜 厚度0.6mm 厚度0.4mm 应用条件 pH:3.0~7.0 pH:3~10;离子强度:
10-5~0.75mol/L
硝酸钠溶液扩散膜 聚丙烯酰胺:
厚度0.8mm聚丙烯酰胺:
厚度0.8mm滤膜 PES(聚醚砜):
厚度0.14mm,
孔径0.45μmPES(聚醚砜):
厚度0.14mm,
孔径0.45μm采样面积 3.14cm2 2.54cm2 D0(扩散系数) 7.44(E-6cm2/s) 7.44(E-6cm2/s) 表 2 不同方法测得土壤有效Se与作物Se含量相关系数
Table 2 Correlation coefficent between available Se in soil by different methods and Se concentration in plants
参数 上墅 汾口 全部 CDGT(Fe-oxide)-Se 0.757** 0.790** 0.705** CDGT(Zr-oxide)-Se 0.144 0.324 0.263 Csoln-Se 0.556* 0.556** 0.369* CKH2PO4-Se 0.130 0.638** 0.565** C(F1+F2+F3)-Se 0.787** 0.503 0.465* 注:“*”表示在0.05水平(双侧)上显著相关;“**”表示在0.01水平(双侧)上显著相关。 表 3 DGT测定土壤有效Se含量结果
Table 3 Analytical results of available Se in soil with DGT measurement method
DGT类型 研究区 CDGT(μg/L) R(CDGT/Csoln) 最小值 最大值 平均值 中位数 最小值 最大值 平均值 中位数 Fe-oxide
DGT上墅 0.089 0.41 0.18 0.16 0.020 0.087 0.049 0.041 汾口 0.051 0.34 0.15 0.14 0.024 0.13 0.056 0.055 全部 0.051 0.41 0.17 0.15 0.020 0.13 0.053 0.050 Zr-oxide
DGT上墅 0.050 0.55 0.19 0.14 0.0096 0.23 0.058 0.034 汾口 0.066 0.56 0.21 0.17 0.016 0.27 0.085 0.073 全部 0.050 0.56 0.20 0.16 0.0096 0.27 0.072 0.049 -
周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158 Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 31(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158
成晓梦, 马荣荣, 彭敏, 等. 中国大宗农作物及根系土中硒的含量特征与富硒土壤标准建议[J]. 物探与化探, 2019, 43(6): 1367-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906026.htm Cheng X M, Ma R R, Peng M, et al. Characteristics of selenium in crops and roots in China and recom-mendations selenium-enriched soil standards[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1367-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906026.htm
Dinh Q T, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035
周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm
梁东丽, 彭琴, 崔泽玮, 等. 土壤硒的形态转化及其对有效性的影响研究进展[J]. 生物技术进展, 2017, 7(5): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705010.htm Liang D L, Peng Q, Cui Z W, et al. Progress on selenium bioavailibility and influential factors in soil[J]. Current Biotechnology, 2017, 7(5): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705010.htm
Menzies N W, Donn M J, Kopittke P M. Evaluation of extractants for estimation of the phyto available trace metals in soils[J]. Environmental Pollution, 2007, 145(1): 121-130. doi: 10.1016/j.envpol.2006.03.021
Tian Y, Wang X, Luo J, et al. Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice[J]. Environmental Science & Technology, 2008, 42(20): 7649-7654. https://pubmed.ncbi.nlm.nih.gov/18983088/
Luo J, Zhang H, Zhao F J, et al. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants[J]. Environmental Science & Technology, 2010, 4(4): 6636-6641.
Luo J, Zhang H, Santner J, et al. Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(Ⅴ), Selenium(Ⅵ), vanadium(Ⅴ), and antimony(Ⅴ)[J]. Analytical Chemistry, 2010, 82(21): 8903-8909. doi: 10.1021/ac101676w
Davison W, Zhang H. Progress in understanding the use of diffusive gradients in thin films(DGT)-back to basics[J]. Environment Chemistry, 2012, 9(1): 1-13. doi: 10.1071/EN11084
Zhang H, Davison W. Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability[J]. Environmental Chemistry, 2015, 12(2): 85-101. doi: 10.1071/EN14105
Wang M K, Cui Z W, Xue M Y, et al. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L. ) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J]. Science of the Total Environment, 2019, 689: 1-9.
Peng Q, Wang M K, Cui Z W, et al. Assessment of bio-availability of selenium in different plant-soil systems by diffusive gradients in thin films (DGT)[J]. Environment Pollution, 2017, 225: 637-643. doi: 10.1016/j.envpol.2017.03.036
Peng Q, Li J, Wang D, et al. Effects of ageing on bio-availability of selenium in soils assessed by diffusive gradients in thin-films and sequential extraction[J]. Plant Soil, 2019, 436: 159-171. doi: 10.1007/s11104-018-03920-y
赵万伏, 宋垠先, 管冬兴, 等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7): 1332-1341. http://www.cnki.com.cn/Article/CJFDTotal-NHBH201807005.htm Zhao W F, Song Y X, Guan D X, et al. Pollution status and bioavailability of heavy metals in soils of a typical black shale area[J]. Journal of Agro-Environment Science, 2018, 37(7): 1332-1341. http://www.cnki.com.cn/Article/CJFDTotal-NHBH201807005.htm
宋明义. 浙西地区下寒武统黑色岩系中硒与重金属的表生地球化学及环境效应[D]. 合肥: 合肥工业大学, 2009: 14-15. Song M Y. Supergenic geochemistry and environmental effects of selenium and heavy metals in the lower Cambrian black series of western Zhejiang Province, China[D]. Hefei: Hefei University of Technology, 2009: 14-15.
Ding S, Xu D, Wang Y, et al. Simultaneous measurements of eight oxyanions using high-capacity diffusive gradients in thin films (Zr-oxide DGT) with a high-efficiency elution procedure[J]. Environmental Science & Technology, 2016, 50(14): 7572-7580. https://ui.adsabs.harvard.edu/abs/2016EnST...50.7572D/abstract
陈海杰, 马娜, 陈卫明, 等. 抑制植物样品消解过程中硒挥发的方法[J]. 分析化学报告, 2020, 48(9): 1268-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202009021.htm Chen H J, Ma N, Chen W M, et al. A method for suppressing volatile loss of selenium in digestion of plant samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(9): 1268-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202009021.htm
罗军, 王晓蓉, 张昊, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅰ: 工作原理、特性与在土壤中的应用[J]. 农业环境科学学报, 2011, 30(2): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201102003.htm Luo J, Wang X R, Zhang H, et al. Theory and application of diffusive gradients in thin films in soils[J]. Journal of Agro-Environment Science, 2011, 30(2): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201102003.htm
戴高乐, 侯青叶, 杨忠芳, 等. 洞庭湖平原土壤铅活动性影响因素研究[J]. 现代地质, 2019, 33(4): 783-793. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201904011.htm Dai G L, Hou Q Y, Yang Z F, et al. Factors affecting mobility of lead in the soils of the Dongting Lake Plain, China[J]. Geoscience, 2019, 33(4): 783-793. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201904011.htm
马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm
陈静, 孙琴, 姚羽, 等. DGT和传统化学方法比较研究复合污染土壤中Cd的生物有效性[J]. 环境科学研究, 2014, 27(10): 1172-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201410014.htm Chen J, Sun Q, Yao Y, et al. Comparison of DGT technique with traditional method for evaluating cadmium bioavailability in soils with combined pollution[J]. Research of Environmental Sciences, 2014, 27(10): 1172-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201410014.htm
吴雄平, 鲍俊丹, 伊田, 等. 石灰性土壤有效硒浸提剂和浸提条件研究[J]. 农业环境科学学报, 2009, 28(5): 931-936. doi: 10.3321/j.issn:1672-2043.2009.05.012 Wu X P, Bao J D, Yi T, et al. Extractants and optimum extracting conditions of soil available selenium in calcareous soil[J]. Journal of Agro-Environment Science, 2009, 28(5): 931-936. doi: 10.3321/j.issn:1672-2043.2009.05.012
耿建梅, 王文斌, 罗丹, 等. 不同浸提剂对海南稻田土壤有效硒浸提效果对比[J]. 土壤, 2010, 42(4): 624-629. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201004022.htm Geng J M, Wang W B, Luo D, et al. Comparative studies on effects of several extractants on available selenium of paddy soils in Hainan[J]. Soils, 2010, 42(4): 624-629. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201004022.htm
谢薇, 杨耀栋, 管桂芹, 等. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究[J]. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063 Xie W, Yang Y D, Jian G Q, et al. A comparative study of four extractants on the extraction of available selenium in vegetable and orchard soils[J]. Rock and Mineral Analysis, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063
张艳玲, 潘根兴, 胡秋辉, 等. 江苏省几种低硒土壤中硒的形态分布及生物有效性[J]. 植物营养与肥料学报, 2002, 8(3): 355-359. doi: 10.3321/j.issn:1008-505X.2002.03.018 Zhang Y L, Pan G X, Hu Q H, et al. Selenium fractionation and bio-availabiliyt in some low-Se soils of central Jiangsu Province[J]. Plant Nutrition and Fertilizer Science, 2002, 8(3): 355-359. doi: 10.3321/j.issn:1008-505X.2002.03.018
Dillon K S, Rani N, Dillon S K. Evaluation of different extractants for the estimation of bioavailable selenium in seleniferous soils of northwest India[J]. Soil Research, 2005, 43(5): 639-645. doi: 10.1071/SR04166
Wang J, Bai L, Zeng X, et al. Assessment of arsenic availability in soils using the diffusive gradients in thin films(DGT) technique-A comparison study of DGT and classic extraction methods[J]. Environmental Science-Processess & Impacts, 2014, 16(10): 2355-2361. https://pubs.rsc.org/en/content/articlelanding/2014/em/c4em00215f
Bade R, Oh S, Shin W S. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations[J]. Science of the Total Environment, 2012, 416(2): 127-136.
彭琴. 基于梯度扩散薄膜技术评价土壤硒的生物有效性[D]. 杨凌: 西北农林科技大学, 2017: 19-21. Peng Q. Assessment of selenium bioavailability in soils based on diffusion gradients in thin films technique[D]. Yangling: Northwest A & F University, 2017: 19-21.
伊芹, 程皝, 尚文郁. 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(1): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095 Yi Q, Cheng H, Shang W Y. Review on characteristics of selenium in soil and related analytical techniques[J]. Rock and Mineral Analysis, 2021, 40(1): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095
Cartes P, Gianfreda L, Mora M L. Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms[J]. Plant and Soil, 2005, 276(1-2): 359-367. doi: 10.1007/s11104-005-5691-9
Zhao C, Ren J, Xue C. Study on the relationship between soil selenium and plant selenium uptake[J]. Plant and Soil, 2005, 277(1-2): 197-206. doi: 10.1007/s11104-005-7011-9
Pezzarossa B, Petruzzelli G, Petacco F, et al. Absorption of selenium by Lactuca sativa as affected by carboxymethylcellulose[J]. Chemosphere, 2007, 67: 322-329. doi: 10.1016/j.chemosphere.2006.09.073
Mason S, Mcneill A, Mclaughlin M J, et al. Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods[J]. Plant Soil, 2010, 337(1-2): 243-258. doi: 10.1007/s11104-010-0521-0
Nolan A L, Zhang H, Mclaughlin M J. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques[J]. Journal of Environmental Quality, 2005, 34(14): 496-507. doi: 10.2134/jeq2005.0496
宋宁宁, 王芳丽, 沈跃, 等. 梯度薄膜扩散技术(DGT)与传统化学方法评估黑麦草吸收Cd的对比[J]. 环境化学, 2012, 31(12): 1960-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201212021.htm Song N N, Wang F L, Shen Y, et al. Comparison of the method of diffusive gradients in thin films with traditional chemical extraction techniques for evaluating cadmium bioavailability in ryegrass[J]. Environmental Chemistry, 2012, 31(12): 1960-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201212021.htm
侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020: 2621. Hou Q Y, Yang Z F, Yu T, et al. Geochmical parameters of soils in China[M]. Beijing: Geological Publishing House, 2020: 2621.
柳云龙, 章立佳, 韩晓非, 等. 上海城市样带土壤重金属空间变异特征及污染评价[J]. 环境科学, 2012, 33(2): 599-605. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201202045.htm Liu Y L, Zhang L J, Han X F, et al. Spatial variability and evaluation of soil heavy metal contamination in the urban-transect of Shanghai[J]. Environmental Science, 2012, 33(2): 599-605. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201202045.htm
杨奎, 李湘凌, 张敬雅, 等. 安徽庐江潜在富硒土壤硒生物有效性及其影响因素[J]. 环境科学研究, 2018, 31(4): 715-724. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201804015.htm Yang K, Li X L, Zhang J Y, et al. Selenium bioavailability and influential factors in potentially selenium enriched soils in Lujiang County, Anhui Province[J]. Research of Environmental Sciences, 2018, 31(4): 715-724. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201804015.htm
王潇, 张震, 朱江, 等. 青阳县富硒土壤中硒的形态与水稻富硒的相关性研究[J]. 地球科学与环境, 2019, 47(3): 336-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201903013.htm Wang X, Zhang Z, Zhu J, et al. Study of correlation between rice selenium and status of selenium in selenium-rich soil in Qingyang County[J]. Earth and Environment, 2019, 47(3): 336-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201903013.htm
樊俊, 王瑞, 胡红青, 等. 不同价态外源硒对土壤硒形态及酶活性、微生物数量的影响[J]. 水土保持学报, 2015, 29(5): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201505025.htm Fan J, Wang R, Hu H Q, et al. Effects of exogenous selenium with different valences on Se forms, enzyme activities and microbial quantity of soil[J]. Journal of Soil and Water Conservation, 2015, 29(5): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201505025.htm
Shaheen S M, Kwon E E, Biswas J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles orginating from Germang and Egypt[J]. Chemosphere, 2017, 180: 553-563. doi: 10.1016/j.chemosphere.2017.04.054
Li J, Peng Q, Liang D L, et al. Effects of aging on the fraction distribution and bioavailability of selenium in three different soils[J]. Chemosphere, 2016, 144: 2351-2359. doi: 10.1016/j.chemosphere.2015.11.011
况琴, 吴山, 黄庭, 等. 生物炭质和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究[J]. 岩矿测试, 2019, 38(6): 705-714. doi: 10.15898/j.cnki.11-2131/td.201901190014 Kuang Q, Wu S, Huang T, et al. Effect and mechanism of biomass carbon and steel slag as ameliorants on soil selenium availability in typical Se-rich are of Fengcheng City, Jiangxi Province[J]. Rock and Mineral Analysis, 2019, 38(6): 705-714. doi: 10.15898/j.cnki.11-2131/td.201901190014
Peng Q, Guo L, Ali F, et al. Influence of Pak choi plant cultivation on Se distribution, speciation and bioavailability in soil[J]. Plant and Soil, 2016, 403: 331-342. doi: 10.1007/s11104-016-2810-8
Luo J, Cheng H, Ren J, et al. Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish[J]. Environmental Science & Technology, 2014, 48(13): 7305-7313. https://pubmed.ncbi.nlm.nih.gov/24853263/
Zhang H, Davison W, Knight B, et al. In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT[J]. Environmental Science & Technology, 1998, 32(5): 704-710. http://lib3.dss.go.th/fulltext/Journal/Environ%20Sci.%20Technology1998-2001/1998/no.5/5,1998%20vol.32no.5,p704-710.pdf
Guan D X, Zheng J L, Luo J, et al. A diffusive gradients in thin-films technique for the assessment of bisphenols desorption from soils[J]. Journal of Hazardous Materials, 2017, 331: 321-328. doi: 10.1016/j.jhazmat.2017.02.053
魏天娇, 管冬兴, 方文, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅲ: 植物有效性评价的理论基础与应用潜力[J]. 农业环境科学学报, 2018, 37(5): 841-849. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805001.htm Wei T J, Guan D X, Fang W, et al. Theory and application of diffusive gradients in thin-films(DGT)in the environment Ⅲ: Theoretical basis and application potential in phytoavailability assessment[J]. Journal of Agro-Environment Science, 2018, 37(5): 841-849. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805001.htm
-
期刊类型引用(21)
1. 郭春丽,张斌武,郑义,许箭琪,赵迁迁,闫金禹,周睿,符伟,黄可. 中国花岗岩型锂矿床:重要特征、成矿条件及形成机制. 岩石学报. 2024(02): 347-403 . 百度学术
2. 姜军胜,郭欣然,徐净,田立明,熊光强,王力圆,陈素余,黄维坤. 江西甘坊洞上稀有金属花岗岩中铷矿化特征及成因机制. 地质通报. 2024(01): 86-100 . 百度学术
3. 刘金宇,王成辉,刘善宝,秦锦华,陈振宇,刘泽,赵晨辉. 赣西北狮子岭花岗岩型锂矿床成因:来自岩石地球化学和锆石U-Pb年代学的约束. 矿床地质. 2024(01): 195-214 . 百度学术
4. 徐喆,张芳荣,张福神,王光辉,吴俊华,唐维新,楼法生,谢春华,高原,董菁,陈军,况二龙,周宾. 江西九岭南缘蚀变花岗岩型锂矿床成矿地质特征及找矿方向. 矿床地质. 2024(02): 244-264 . 百度学术
5. 吴福元,郭春丽,胡方泱,刘小驰,赵俊兴,李晓峰,秦克章. 南岭高分异花岗岩成岩与成矿. 岩石学报. 2023(01): 1-36 . 百度学术
6. 陈振宇,李建康,周振华,高永宝,李鹏. 硬岩型锂-铍-铌-钽资源工艺矿物学评价指标体系. 岩石学报. 2023(07): 1887-1907 . 百度学术
7. 刘泽,陈振宇,王成辉. 赣西北狮子岭花岗岩型锂-钽矿床的矿物学特征及成矿机制. 岩石学报. 2023(07): 2045-2062 . 百度学术
8. 徐净,侯文达,王力圆,赵太平,陈素余,田立明. 稀有金属花岗岩结晶分异过程中铷的富集与成矿:来自江西甘坊岩体的矿物学证据. 地质学报. 2023(11): 3766-3792 . 百度学术
9. 聂晓亮,王水龙,刘爽,徐林. 江西茜坑锂矿床地质地球化学特征与锂云母~(40)Ar/~(39)Ar年代学研究. 矿物学报. 2022(03): 285-294 . 百度学术
10. 邓红云,钟盛文,刘雨鑫,彭卫发,张绍军. 硫酸法从锂磷铝石中提取锂工艺研究及优化. 有色金属科学与工程. 2022(04): 35-43 . 百度学术
11. 王水龙,王大钊,刘爽,廖生万,聂晓亮,李凯旋,徐林,周宾. 江西甘坊岩体发现罕见的含铍矿物——红磷锰铍石. 岩矿测试. 2022(04): 688-690 . 本站查看
12. 甘德清,田晓曦,刘志义,高锋. 循环冲击状态下砂岩力学及损伤特性研究. 中国矿业. 2021(03): 203-211 . 百度学术
13. 黄传冠,贺彬,夏明,周渝,胡为正. 赣南地区伟晶岩型锂矿资源禀赋特征与找矿新进展. 中国矿业. 2021(03): 212-216+223 . 百度学术
14. 李超,王登红,屈文俊,孟会明,周利敏,樊兴涛,李欣尉,赵鸿,温宏利,孙鹏程. 关键金属元素分析测试技术方法应用进展. 岩矿测试. 2020(05): 658-669 . 本站查看
15. 张勇,潘家永,马东升. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报. 2020(11): 3321-3342 . 百度学术
16. 刘善宝,杨岳清,王登红,代鸿章,马圣钞,刘丽君,王成辉. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义. 地质学报. 2019(06): 1309-1320 . 百度学术
17. 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报. 2019(06): 1189-1209 . 百度学术
18. 王成辉,王登红,陈晨,刘善宝,陈振宇,孙艳,赵晨辉,曹圣华,凡秀君. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义. 地质学报. 2019(06): 1359-1373 . 百度学术
19. 屈文俊,王登红,朱云,樊兴涛,李超,温宏利. 稀土稀有稀散元素现代仪器测试全新方法的建立. 地质学报. 2019(06): 1514-1522 . 百度学术
20. 王登红,郑绵平,王成辉,高树学,商朋强,杨献忠,樊兴涛,孙艳. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果. 中国地质调查. 2019(06): 1-11 . 百度学术
21. 夏明,贺彬. 江西省宁都县三坑地区新发现磷锂铝石富锂矿物. 世界有色金属. 2018(22): 222-223 . 百度学术
其他类型引用(3)