Distribution of Heavy Metals and Ecological Risk of Soils in the Typical Geological Background Region of Southwest China
-
摘要:
中国西南有22.3%的耕地重金属含量超标,区内广泛分布的峨眉山玄武岩和碳酸盐岩被认为是土壤中重金属的主要母质来源。目前,中国西南地区,尤其是峨眉山玄武岩分布区土壤重金属生态风险的研究程度仍有待提升,不同地质背景区(成土母岩)土壤中重金属含量、空间分布与生态风险缺乏对比。本文选择四川省典型地质背景区采集土壤样品,采用原子荧光光谱法、电感耦合等离子体质谱/发射光谱等方法测定重金属元素(As、Cd、Cr、Cu、Hg、Ni、Pb、Zn)含量和pH数据,结合地累积指数法和潜在生态风险指数法,研究了重金属元素的含量、空间分布特征和土壤重金属生态风险。结果表明:①玄武岩区土壤中Cd、Cr、Cu、Hg、Ni、Zn的含量高于碳酸盐岩区,也高于四川和全国背景值。各元素含量分别为四川背景值的3.25、1.08、5.08、1.72、1.55、1.63倍和全国背景值的2.60、1.40、6.87、1.47、1.87、1.91倍;②As、Cr、Pb的高含量区域与碳酸盐岩分布区对应,Cd、Cu、Hg、Ni、Zn的高含量区域与峨眉山玄武岩的空间分布对应;③地累积指数表明玄武岩分布区土壤中Cd、Cu、Ni、Zn污染程度高于碳酸盐岩区;④研究区内生态危害程度较高的元素为Cd、Cu和Hg;其在玄武岩分布区“强生态危害”及以上的比例比碳酸盐岩区分别高出22.4%、1.15%和26.0%。本研究揭示:①研究区内土壤中重金属元素的含量、分布及生态风险与地质背景密切相关;②产生这一规律的原因在于母岩中元素含量的差异、成土过程中元素的地球化学行为及元素次生富集等因素综合作用的结果;③研究区土壤酸碱度偏低(pH平均值为5.5),需预防土壤进一步酸化引起的重金属活化风险。
-
关键词:
- 峨眉山玄武岩 /
- 碳酸盐岩 /
- 重金属 /
- 生态危害 /
- 电感耦合等离子体质谱法
要点(1) 揭示了峨眉山玄武岩和碳酸盐岩区土壤重金属地球化学特征和生态风险的差异。
(2) 玄武岩区土壤中Cd、Cu、Hg、Ni、Zn的含量高于碳酸盐岩区和四川、全国背景值。
(3) 研究区土壤重金属元素的空间分布主要受地质背景控制。
HIGHLIGHTS(1) The geochemical characteristics and ecological risk of heavy metals in the soils of Emeishan basalt and carbonate rock areas were compared.
(2) The content of Cd, Cu, Hg, Ni and Zn in the basalt areas were higher than those in the carbonate areas and the background values of Sichuan and China.
(3) In the studied area, the spatial distribution of heavy metals in soils was mainly determined by the geological background.
Abstract:BACKGROUND22.3% of the cultivated land in southwest China has excessive heavy metal content. The widely distributed Emeishan basalt and carbonate rocks in the region are considered to be the main source of heavy metals in the soil. At present, the level of research on the ecological risk of soil heavy metals in southwestern China, especially in the Emeishan basalt areas, still needs to be improved. The content, spatial distribution and ecological risk of heavy metals in soils of different geological backgrounds (earthogenic parent rocks) lack comparison.
OBJECTIVESTo understand the content and spatial distribution characteristics of heavy metals in the soils from Emeishan basalt and carbonate rock areas.
METHODSSoil samples from the typical geological background areas of Sichuan were collected. AFS, ICP-MS and ICP-OES were used to determine the content of heavy metal elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and pH values.The content and spatial distribution of the heavy metals in the soils, as well as the ecological risks were studied using the accumulation index and potential ecological risk index methods.
RESULTSThe results showed that: (1) The content of Cd, Cr, Cu, Hg, Ni, and Zn in the soils of the basalt areas were generally higher than those of the non-basalt areas and the background values of Sichuan and China. The content of the above elements were respectively 3.25, 1.08, 5.08, 1.72, 1.55, 1.63 times the Sichuan background values and 2.60, 1.40, 6.87, 1.47, 1.87, 1.91 times background values of China. (2) The high content areas of As, Cr and Pb corresponded well to the carbonate rock areas, whereas the high content areas of Cd, Cu, Hg, Ni and Zn corresponded well to the Emeishan basalt areas. The corresponding relationship indicated that the spatial distribution of heavy metals in the soil was mainly determined by the geological background in the studied area. (3) The Geoaccumulation Index results indicated that the soil pollution degree of Cd, Cu, Ni and Zn in Emeishan basalt areas was obviously higher than those of the non-basalt areas; (4) Ecological hazard index results showed that Cd, Cu and Hg were the highest ecological hazard elements in the studied area. The proportions of "strong ecological hazard", "very strong ecological hazard" and "strong estecological hazard" of Cd, Cu and Hg in the basalt areas were respectively 22.4%, 1.15% and 26.0% higher than those in the non-basalt areas.
CONCLUSIONSThe content, distribution and ecological risk of heavy metal elements in the soil in the study area are closely related to the geological background. Reasons include the differences in the element content in the parent rock, the geochemical behavior of the elements during the soil formation, and the secondary enrichment of the elements. The pH of the soil in the study area is low, and it is necessary to prevent the risk of heavy metal activation caused by further acidification of the soil.
-
中国是稀土资源大国,占世界稀土矿产资源的80%,稀土元素对岩石形成过程、元素的迁移等研究都有一定的作用,提供了有价值的信息[1-3]。由于稀土元素的化学性质极其相似,因此采用传统化学法分析时需要冗长的分离富集过程[4],且只能测定稀土总量,而不能测定特定元素的含量[5]。样品中的稀土元素含量超过0.1%,对于这种通常概念上的微量元素,其实已转变为常量组分,大多采用电感耦合等离子体发射光谱法(ICP-OES)[6]测定,相对于应用X射线荧光光谱法(XRF)的前处理程序比较繁琐且试剂用量大。
XRF法具有制样方法简单、分析速度快、重现性好等特点[7],熔融制样法能消除粒度效应,降低元素间的基体效应影响,使复杂的试样也能完全熔融[8],适合于多种固体样品中主量、次量多元素的同时测定。目前XRF法分析稀土矿石类样品,主要的应用有:混合稀土氧化物中稀土分量的测定[9-11];采用同步辐射XRF法测定稀土元素的最低浓度[12];利用粉末压片法制备样品,通过无标定量分析软件添加与待测组分相似样品来建立标签,从而实现稀土矿物中五氧化二磷的准确测定[13];以及在其他地质矿化类样品中测定主次量元素开展了大量的研究[5, 14-17]。但应用于测定稀土矿石、矿化样品中的主、次量元素的相关报道较少。对于稀土样品的分析,存在现有的稀土国家标准物质少、稀土元素含量较低、重稀土元素谱线重叠严重等问题,从而导致了应用XRF分析稀土矿石类样品中的主量元素和稀土元素仍存在一定的困难。
鉴于此,本文通过现有的国家稀土标准样品和高纯稀土氧化物混合均匀制得的人工标准样品绘制工作曲线,扩大了自然界丰度较大的稀土元素镧、铈、钇的线性范围,应用熔融制样-波长色散XRF法测定样品,采用理论α系数的校准方法对主量元素进行校正的同时加入稀土元素的校正系数,其余元素用经验系数法来校正元素间的基体效应,对有谱线重叠的元素进行重叠干扰校正。通过对未知样品的检测和对标准样品的反测检验方法的可行性,证明了建立的测定方法可满足稀土矿化类样品分析的可靠性,可为地质评估提供满意的数据要求。
1. 实验部分
1.1 仪器和测量条件
Axios型X射线荧光光谱仪(荷兰帕纳科公司)。主要测量参数:X光管最大电压60 kV,最大电流125 mA,满功率4.0 kW,真空光路,视野光栏直径为32 mm,试样盒面罩直径32 mm。各待测元素的谱线选择和测量条件见表 1。
表 1 仪器分析条件Table 1. Working conditions of the elements by XRF元素及谱线 分晶体 准直器
(μm)探测器 电压
(kV)电流
(mA)2θ(°) PHD范围 峰值 背景1 背景2 Si Kα PE 002 550 FL 32 100 109.14 -2.3160 1.7938 26~76 K Kα LiF 200 150 FL 32 100 136.73 -1.1730 2.2190 26~74 Ti Kα LiF 200 150 FL 40 90 86.215 -0.6320 0.8640 26~75 Mn Kα LiF 200 150 DUP 55 66 62.998 -0.7190 0.7868 13~72 Na Kα PX1 550 FL 32 100 27.895 -1.8910 2.1214 22~82 Mg Kα PX1 550 FL 32 100 23.077 -1.8760 2.1788 20~78 Al Kα PE 002 550 FL 32 100 144.98 2.9372 -1.2490 21~76 P Kα Ge 111 550 FL 32 100 141.02 -1.3960 2.8040 23~78 S Kα Ge 111 550 FL 32 100 110.74 -1.5160 1.4708 16~74 Ca Kα LiF 200 150 FL 32 100 113.16 -0.8730 1.6258 28~70 Fe Kα LiF 200 150 DUP 55 66 57.530 -0.7130 0.8854 16~69 Cr Kα LiF 200 150 DUP 55 66 69.365 -0.6450 0.7386 12~73 Ni Kα LiF 200 150 DUP 55 66 48.658 -0.5890 0.8294 18~70 Y Kα LiF 200 150 SC 55 66 23.767 0.7668 -0.7400 23~78 Rb Kα LiF 200 150 SC 55 66 26.581 0.7720 -0.5110 22~78 Sr Kα LiF 200 150 SC 55 66 25.121 -0.5610 0.7542 22~78 Zr Kα LiF 200 150 SC 55 66 22.470 -0.7750 0.8758 24~78 Nb Kα LiF 200 150 SC 55 66 21.372 -0.5870 0.4690 24~78 Cu Kα LiF 200 150 DUP 55 66 45.010 -0.6960 0.9256 20~69 Zn Kα LiF 200 150 SC 55 66 41.796 -0.7050 0.6534 15~78 Ba Kα LiF 200 150 FL 40 90 87.204 0.6376 - 33~71 Rh Kαc LiF 200 150 SC 55 66 18.447 - - 26~78 V Kα LiF 200 150 DUP 40 90 76.929 -0.6230 - 15~74 Br Kα LiF 200 150 SC 55 66 29.940 -0.6830 0.9706 20~78 La Lα LiF 200 150 FL 40 90 82.938 -0.9010 24~78 Ce Lα LiF 200 150 DUP 40 90 79.047 -0.8740 - 26~78 Pr Lα LiF 200 150 DUP 55 66 75.379 -0.8580 - 15~74 Nd Lα LiF 200 150 DUP 55 66 72.141 -0.9860 - 13~74 Sm Lα LiF 200 150 DUP 55 66 66.237 0.9598 - 15~73 Tb Lα LiF 200 150 DUP 55 66 58.800 0.3626 - 15~72 Dy Lα LiF 200 150 DUP 55 66 56.600 -0.8020 - 15~71 Ho Lα LiF 200 150 DUP 55 66 54.575 -0.6550 - 16~71 Er Lα LiF 200 150 DUP 55 66 52.605 0.7728 - 17~71 Yb Lα LiF 200 150 DUP 55 66 49.038 0.8474 - 18~70 Lu Lα LiF 200 150 DUP 55 66 47.417 -0.4030 - 19~70 Ta Lα LiF 200 150 DUP 55 66 44.403 0.9066 - 20~69 Eu Lα LiF 200 150 DUP 55 66 63.591 0.4858 - 15~73 Gd Lα LiF 200 150 DUP 55 66 61.115 -0.8880 - 15~72 注: FL为流气式正比计数器, SC为闪烁计数器。DUP为流气式正比计数器和封闭式正比计数器串联使用,以提高探测效率。PHD为脉冲高度分析器。 Front-1型电热式熔样机(国家地质实验测试中心研制)。
铂金坩埚(95%铂+5%金)。石英表面皿:直径20 cm。
1.2 主要试剂
偏硼酸锂+四硼酸锂混合熔剂[8](质量比22:12,购自张家港火炬仪器厂):将混合溶剂置于大表面皿中,于马弗炉中650℃灼烧2 h,待冷却转入试剂瓶,置于干燥器中保存备。
碘化锂[18](脱模剂):优级纯,浓度为40 g/L。配制方法:称取40.0 g碘化锂溶于100 mL棕色试剂瓶中,待用。
硝酸铵(氧化剂):分析纯。
氧化镧、氧化钇、氧化铈:均为分析纯, 纯度99.99%。
1.3 样片制备
样品及熔剂的称量:精确称取灼烧后的混合溶剂5.8500±0.0002 g于30 mL瓷坩埚中,精确称取0.6500±0.0002 g样品置于瓷坩埚中[16],用玻璃棒充分搅匀(样品的要求:样品的粒径需小于200目,分取样品于纸质样品袋置于烘箱中,在105℃温度下烘样2 h。于干燥器内保存[16])。
熔样机条件设定:熔样温度1150℃,预熔2 min,上举1.5 min,摆平0.5 min,往复4次,熔样时间约为10 min;先粗略称取0.100 g硝酸铵[8]试剂平铺于铂金坩埚中,将称量好的试剂及样品倒入铂金坩埚中,滴两滴碘化锂溶液[18],当熔样机温度到达1150℃后,用坩埚钳将装有试样的铂金坩埚放入熔样机,启动熔样机开始熔样。待熔样机提示熔样完成后,将铂金坩埚取出,此时样品为玻璃熔融状态。观察试样底部是否有气泡,如有气泡可手动将气泡摇出[16],将铂金坩埚置于水平冷却台待样品底部与铂金坩埚分离后吹风冷却约3 min, 此时在玻璃样片上贴上标签,倒出样片置于干燥器中保存, 待测。
制备样片时,将稀土矿石标准物质(GBW07187、GBW07158、GBW07159、GBW07160、GBW07161)和人工配制标准样品(HC-XT-1~HC-XT-8)分别制备两套重复样片,一套用于建立标准曲线,另一套用作样品测量,检测方法的可行性。GBW07188、HC-XT-8分别重复制备10个,用于精密度的分析。岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136)和超基性岩石样品(DZΣ1、DZΣ2)各制备一个用于建立标准曲线。
1.4 样品配制及制备标准曲线的范围
在自然界中,镧、铈、钇的丰度较大,日常样品检测中这三个元素矿化的样品最为常见,因此本文重点通过人工标准物质来解决镧、铈、钇高含量样品的定量问题。在不同的稀土矿石国家标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161)中加入不等量高纯的稀土氧化物(La2O3、CeO2、Y2O3)扩大稀土的含量范围,既使各人工标准基体存在差异,镧、铈、钇含量又有一定梯度。制备人工标准样片时,各高纯稀土氧化物成分的质量和各标准物质称样量见表 2所示。
表 2 人工标准样品的配制Table 2. Preparation of artificial standard samples人工标准样品编号 La2O3加入量
(g)CeO2加入量
(g)Y2O3加入量
(g)国家标准物质编号 标准物质称样量
(g)HC-XT-1 0.0400 0.0500 - GBW07159 0.5600 HC-XT-2 0.0300 0.0400 - GBW07160 0.5800 HC-XT-3 0.0200 0.0300 - GBW07187 0.6000 HC-XT-4 0.0100 0.0200 - GBW07158 0.6200 HC-XT-5 - 0.0100 - GBW07188 0.6400 HC-XT-6 - - - GBW07187 0.3250 HC-XT-7 - - 0.0200 GBW07188 0.3250 HC-XT-8 0.0050 0.0050 - GBW07161 0.6300 GBW07188 0.6400 为满足不同类型稀土样品的测试要求,又要满足日常普通硅酸盐、碳酸盐样品的测试要求,本实验采用稀土矿石标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161),岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136),DZΣ1、DZΣ2和人工配制标准样品(HC-XT-1~HC-XT-8)共33个样片作为标准样品制备标准曲线。
各元素工作曲线范围列于表 3。
表 3 各元素工作曲线浓度范围Table 3. Working range of elements concentration主量元素 含量范围(%) 稀土元素 含量范围(μg/g) SiO2 0.3~74.55 Pr6O11 5.43~890 Al2O3 0.1~19.04 Sm2O3 13.53~2000 TFe2O3 0.07~3.49 Eu2O3 0.31~75 FeO 0.007~0.49 Gd2O3 27.91~2500 TiO2 0.003~0.537 Tb4O7 5.15~550 CaO 0.0224~55.49 Dy2O3 26.04~3700 Na2O 0.014~0.66 Tm2O3 2.29~310 MnO 0.004~0.1 Yb2O3 13.45~2100 P2O5 0.0022~0.124 La2O3* 0.002~6.16 MgO 0.066~20.15 CeO2* 0.0022~7.69 K2O 0.01~5.52 Y2O3* 0.017~3.2 Nd2O3* 0.0024~0.4 Lu2O3 1.91~300 Ho2O3 5.44~640 Er2O3 15.26~2000 Σ RExOy* 0.085~13.92 注:标记“*”的元素含量单位为%。 2. 结果与讨论
2.1 基体效应及谱线重叠干扰的校正
对主量元素采用消去烧失量的理论α系数法, 其余元素用经验系数法来校正元素间的基体效应,其中NiO、Rb2O、SrO、Y2O3、ZrO2、Nb2O5、Sm2O3、CeO2、Tb4O7、Ho2O3、Er2O3、Lu2O3采用Rh Kα线康普顿散射强度作内标校正基体效应[19]。采用帕纳科公司SuperQ3.0软件所用的综合数学校正公式(1),通过回归,同时求出校准曲线的基体校正系数和谱线重叠干扰校正系数。
$ \begin{align} &{{C}_{\text{i}}}=\text{ }{{D}_{\text{i}}}-\sum {{L}_{\text{im}}}{{Z}_{\text{m}}}+{{E}_{\text{i}}}{{R}_{\text{i}}}(1+\sum\limits_{j\ne 1}^{N}{{{\alpha }_{\text{ij}}}\cdot {{Z}_{\text{j}}}+} \\ &\ \ \ \ \ \sum\limits_{j=1}^{N}{\frac{{{\beta }_{\text{ij}}}}{1+{{\delta }_{\text{ij}}}\cdot {{C}_{\text{j}}}}\cdot {{Z}_{\text{j}}}+\sum\limits_{j=1}^{N}{\sum\limits_{k=1}^{N}{{{\gamma }_{\text{ij}}}\cdot {{Z}_{\text{j}}}\cdot {{Z}_{\text{k}}}}})} \\ \end{align} $
式中:Ci为校准样品中分析元素i的含量(在未知样品分析中,Ci为基体校正后分析元素i的含量;Di为分析元素i的校准曲线的截距;Lim为干扰元素m对分析元素i的谱线重叠干扰校正系数;Zm为干扰元素m的含量或计数率;Ei为分析元素i校准曲线的斜率;Ri为分析元素i的计数率(或与内标线的强度比值);Zj、Zk为共存元素的含量;Cj为共存元素j的含量;N为共存元素的数目;α、β、δ、γ为校正基体效应的因子。
根据快速扫描的结果,对有谱线重叠干扰的元素进行谱线重叠干扰校正,表 4列出了各稀土元素所校正的元素。
表 4 稀土元素的重叠谱线和影响元素Table 4. Overlapping spectral lines and influencing elements of rare earth elements待测元素 重叠谱线 校正基体元素 Y Rb Kβ1 Al,Si,Ba,Sr,Ni,Cr,Fe,Ca La Cs Lβ1 Si,Fe,Nd Nd Ce Lβ1 La,Sm,Al Ce Ba Lβ2 - Sm Ce Lβ2 - Tb Sm Lβ1 La,Ce Ho Gd Lβ1 Er,Yb Er Tb Lβ1,Co Kα La,Ce,Fe Yb Ni Kα Y Lu Dy Lβ2,Ni Kβ1 La Pr La Lβ1 La,Ce Eu - La,Ce Gd Ce Lγ1 La,Nd,Dy P Y Lβ1 - 2.2 方法检出限
按照检出限的公式计算出各元素的检出限:
$ \text{LOD}=\frac{3\sqrt{2}}{m}\sqrt{\frac{{{I}_{\text{b}}}}{t}} $
式中:m为计数率;Ib为背景计数率;t为峰值及背景的测量时间。
采用较低的标准物质重复测定12次计算的检出限结果见表 5。因本方法考虑测定的是稀土矿化类样品中的主量元素,而稀土元素检出限均在60 μg/g以下,因此对于高含量稀土元素能够满足定量分析要求。
表 5 分析元素的检出限Table 5. Detection limits of elements元素 方法检出限
(μg/g)Na2O 56.44 MgO 44.34 Al2O3 15.82 SiO2 96.03 P2O5 18.59 K2O 25.36 CaO 30.37 TiO2 20.04 MnO 8.32 Fe2O3 6.69 Y2O3 4.52 La2O3 42.6 Nd2O3 52.85 Sm2O3 42.74 CeO2 38.11 Tb4O7 44.83 Dy2O3 39.23 Ho2O3 8.86 Er2O3 27.19 Yb2O3 30.10 Lu2O3 13.41 Pr6O11 58.19 Eu2O3 6.14 Gd2O3 29.25 2.3 方法精密度和准确度
按照所建立的方法对国家标准物质GBW07188和人工标准样品HC-XT-8分别重复制作13个样片,以表 1所选测量条件测定,计算的相对标准偏差(RSD)和相对误差等测量结果列于表 6,其中绝大多数主量元素的RSD均小于1.5%,稀土元素的RSD在7%以下,个别含量较低元素的精密度较差,例如HC-XT-8号样品的CaO标准值为0.026%,测定平均值为0.021%,RSD为16.3%。而对于其他高含量CaO样品能够实现准确定量,例如GBW07188的CaO标准值为0.29,测定平均值同样为0.29,RSD为1.4%。对于Tb4O7、Lu2O3、Pr6O11等存在相同情况。表 6中的低含量结果仅作为参考数据,在此不作讨论。
表 6 方法准确度和精密度Table 6. Accuracy and precision tests of the method元素 GBW07188 HC-XT-8 测定平均值
(%)标准值
(%)相对误差
(%)RSD
(%)测定平均值
(%)标准值
(%)相对误差
(%)RSD
(%)Na2O 0.62 0.66 5.30 2.35 0.121 0.156 3.54 5.45 MgO 0.13 0.11 11.82 4.07 0.074 0.076 25.0 4.37 Al2O3 13.8 14.26 2.52 0.27 14.51 14.47 2.14 0.213 SiO2 66.8 66.9 0.01 0.19 73.5 73.4 0.15 0.17 K2O 5.56 5.52 1.09 0.32 4.861 4.9 0.86 0.27 CaO 0.29 0.29 0.69 1.40 0.021 0.026 2.80 16.3 TiO2 0.18 0.17 4.12 1.09 0.034 0.022 3.59 7.07 MnO 0.05 0.052 7.69 1.40 0.017 0.017 7.84 2.89 Fe2O3 2.28 2.24 2.05 0.30 1.13 1.13 1.90 0.14 Y2O3 2.14 2.16 0.93 0.71 0.054 0.056 1.78 0.98 La2O3 0.21 0.23 7.83 1.64 0.768 0.771 8.85 0.49 Nd2O3 0.41 0.4 2.50 0.88 0.003 0.003 5.57 69.5 Sm2O3* 2006 2000 0.05 2.92 30 15.5 3.40 34.7 CeO2 0.0619 0.053 26.42 5.39 0.728 0.771 2.26 2.30 Tb4O7* 652 550 16.55 6.94 7.93 8.07 24.17 46.2 Dy2O3* 3645 3700 2.38 0.69 未检出 55.4 6.64 - Ho2O3* 655 640 5.16 2.05 10.8 11.8 7.30 26.9 Er2O3* 1989 2000 1.95 1.94 25.45 35.8 13.71 38.8 Lu2O3* 306 300 5.60 4.13 2.57 5.4 1.02 48.1 Pr6O11* 863 890 8.58 5.40 99.5 6.2 18.49 55.2 Yb2O3* 2063 2100 2.72 0.79 13.55 36 8.95 33.0 Gd2O3* 2536 2500 0.80 1.16 111.9 31.9 7.47 13.4 加和 99.8 - - 0.12 99.6 - - 0.14 注:标记“*”的元素含量单位为μg/g。 2.4 全分析加和结果
以本文所建立的方法测量6个国家一级稀土标准物质、8个人工标准样品及8个未知的稀土样品,分析结果列于表 7,样品中主量元素、稀土元素和烧失量的加和结果均在99.41%~100.63%之间,所建分析方法能够满足全分析加和的要求,符合DZ/T0130—2006《地质矿产实验室测试质量管理规范》规定的一级标准。
表 7 全分析加和结果Table 7. Analytical results of sam additivity标准物质和样品编号 烧失量 主量元素和稀土元素测定值(%) 加和
(%)GBW07187 5.42 94.51 99.93 GBW07188 5.53 94.36 99.89 GBW07158 6.73 93.00 99.73 GBW07159 3.70 96.39 100.09 GBW07160 3.77 96.08 99.85 GBW07161 6.80 92.61 99.41 HC-XT-1 3.19 96.58 99.77 HC-XT-2 3.36 96.18 99.55 HC-XT-3 5.00 94.90 99.90 HC-XT-4 6.42 93.21 99.63 HC-XT-5 5.35 94.52 99.87 HC-XT-6 5.43 94.70 100.13 HC-XT-7 6.59 93.00 99.59 HC-XT-8 3.64 95.93 99.57 GX-TC-F2 7.48 93.15 100.63 GX-TC-F4 5.38 94.76 100.14 GX-DB-F1 5.85 94.27 100.12 GX-DB-F2 6.02 94.59 100.61 GX-DB-F3 3.55 96.55 100.10 GX-DB-F4 3.57 96.29 99.86 GX-DB-F5 3.65 96.53 100.18 XF-WX-F3 7.13 93.28 100.41 3. 结论
通过配制人工标准样品,解决了现有国家标准物质不能满足稀土矿样品等复杂类型样品中主量元素和稀土元素的定量问题。通过加入高纯氧化镧、氧化铈和氧化钇与碳酸盐标准样品混合,配制人工标准样品扩大了La、Ce和Y的定量范围。对稀土标准物质、人工标准样品和未知稀土样品进行反测,测定结果未采用归一化处理,元素的精密度和全分析加和结果都比较理想。本方法有效地扩大了XRF方法的适用范围。
致谢: 桂林理工大学研究生黄文斌、何旺、李帅、曹宁在野外样品采集过程中付出了辛勤的劳动,河南省岩石矿物测试中心承担了样品分析测试任务,在此一并致谢! -
表 1 各指标分析测试检出限
Table 1 Detection limit of analyzed indicators
分析项目 检出限 单位 分析项目 检出限 单位 As 0.3 mg/kg Ni 1 mg/kg Cd 0.03 mg/kg Pb 2 mg/kg Cr 3 mg/kg Zn 2 mg/kg Cu 0.5 mg/kg pH 0.1 / Hg 0.0005 mg/kg 表 2 不同地质背景区土壤重金属元素含量统计
Table 2 Heavy metals content in soil of different background
背景区 统计值 As Cd Cr Cu Hg Ni Pb Zn pH 玄武岩分布区
(n=521)最小值 1.10 0.10 42.4 21.9 0.017 26.0 9.30 54 4.70 最大值 15.9 0.55 134 325 0.237 78.6 50.2 228 6.30 算术平均值 6.10 0.27 85.4 158 0.109 50.8 27.4 139 5.40 中位数 5.30 0.26 85.2 158 0.103 50.5 26.6 141 5.30 标准离差 3.40 0.09 16.3 58.2 0.048 9.50 7.80 29 0.30 变异系数 0.56 0.34 0.19 0.37 0.44 0.19 0.28 0.21 0.05 非玄武岩分布区
(n=807)最小值 1.70 0.04 41.5 14.9 0.020 17.0 13.9 38 4.30 最大值 32.3 0.40 127 65.3 0.190 60.9 48.6 128 6.60 算术平均值 12.2 0.22 83.5 35.2 0.084 36.8 32.4 83 5.40 中位数 10.8 0.21 82.6 32.2 0.081 35.6 32.8 83 5.30 标准离差 6.90 0.06 14.7 10.5 0.033 8.40 6.30 15 0.40 变异系数 0.56 0.27 0.18 0.30 0.39 0.23 0.19 0.18 0.07 四川[29] 算术平均值 10.4 0.08 79 31.1 0.06 32.6 30.9 86.5 6.6 全国[29] 算术平均值 11 0.10 61 23 0.07 27 26 74 / 注:表中8种重金属元素含量单位为mg/kg,pH无量纲。“/”表示文献中未提供数据。 表 3 研究区不同地质背景区土壤重金属元素地累积指数等级比例
Table 3 Geoaccumulation index of soil heavy metals in area of different background
背景区 重金属元素 各元素不同地累积指数级别的样品数占该区域样品总数的百分比(%) Igeo≤0 0 < Igeo ≤1 1 < Igeo≤ 2 2 < Igeo ≤ 3 3 < Igeo ≤ 4 4 < Igeo ≤ 5 Igeo>5 玄武岩分布区
(n=521)As 98.3 1.7 0 0 0 0 0 Cd 1.2 37.8 51.2 7.9 1.1 0.8 0 Cr 92.9 6.7 0.4 0 0 0 0 Cu 3.45 8.6 56.6 29.7 1.0 0.6 0 Hg 40.9 50.5 8.6 0 0 0 0 Ni 42.2 56.8 1.0 0 0 0 0 Pb 97.3 2.7 0 0 0 0 0 Zn 34.5 65.5 0 0 0 0 0 碳酸盐岩分布区
(n=807)As 74.6 23.9 1.5 0 0 0 0 Cd 2.5 63.1 33.8 0.6 0 0 0 Cr 90.5 6.9 2.6 0 0 0 0 Cu 69.9 19.2 8.4 2.4 0.1 0 0 Hg 58.6 39.8 1.6 0 0 0 0 Ni 87.2 12.8 0 0 0 0 0 Pb 98.3 1.7 0 0 0 0 0 Zn 94.1 5.9 0 0 0 0 0 表 4 调查区内不同背景区土壤重金属元素潜在生态危害系数(Eri)
Table 4 Potential ecological risk coefficient of soil heavy metals in different background
背景区 重金属元素 各元素不同生态危害程度的样品数占该区域样品总数的百分比(%) 危害程度
轻微
(Eri<40)危害程度
中等
(40≤Eri<80)危害程度
强
(80≤Eri<160)危害程度
很强
(160≤Eri<320)危害程度
极强
(Eri≥320)玄武岩区
(n=521)As 100 0 0 0 0 Cd 0.6 26.7 58.9 11.3 2.5 Cr 100 0 0 0 0 Cu 92.1 6.7 1.0 0.2 0 Hg 17.3 41.7 40.9 0.2 0 Ni 100 0 0 0 0 Pb 100 0 0 0 0 Zn 100 0 0 0 0 碳酸盐岩区
(n=807)As 100 0 0 0 0 Cd 1.4 48.3 48.7 1.6 0 Cr 100 0 0 0 0 Cu 99.3 0.7 0 0 0 Hg 26.3 58.6 15.0 0.1 0 Ni 100 0 0 0 0 Pb 100 0 0 0 0 Zn 100 0 0 0 0 注:表格中的“0”,以As元素为例,即玄武岩区所有样品As的生态危害程度均为“轻微”级别,所占比例为100%;其他级别的样品数为0,占样品总数的比例也为0,以此类推。 -
[1] 中国地质调查局. 中国耕地质量调查报告(2015年)[DB/OL]. http://zrzy.jiangsu.gov.cn/upfile/File/201512/10/10431190.pdf (2015). China Geological Survey. Investigation report on cultivated land quality in China (2015)[DB/OL]. http://zrzy.jiangsu.gov.cn/upfile/File/201512/10/10431190.pdf (2015).
[2] Wang C Y, Sun X F, Wang M, et al. Chinese cropland quality and its temporal and spatial changes due to urbanization in 2000-2015[J]. Journal of Resources and Ecology, 2019, 10(2): 174-183. doi: 10.5814/j.issn.1674-764x.2019.02.008
[3] 朱瑕, 张立亭, 靳焕焕. 基于因素法和SVM模型的耕地质量评价方法研究[J]. 土壤通报, 2020, 51(3): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003008.htm Zhu X, Zhang L T, Jin H H. Cultivated land quality assessment methodology based on factor method and SVM model[J]. Chinese Journal of Soil Science, 2020, 51(3): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003008.htm
[4] 向梦杰, 胡晓亮. 溧阳市耕地质量空间分布特征与保护分区研究[J]. 土壤通报, 2020, 51(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202001004.htm Xiang M J, Hu X L. Spatial distribution and protection zoning of cultivated land in Liyang[J]. Chinese Journal of Soil Science, 2020, 51(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202001004.htm
[5] 侯磊, 段建南, 李萍, 等. 国内耕地质量研究知识图谱分析[J]. 湖北农业科学, 2019, 58(11): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201911034.htm Hou L, Duan J N, Li P, et al. Analysis of knowledge graph of cultivated land quality research in China[J]. Hubei Agricultural Sciences, 2019, 58(11): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201911034.htm
[6] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006041.htm Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6): 2822-2833. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006041.htm
[7] 成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm Chen H X, Peng M, Zhao C D, et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, southwest China[J]. Earth Science Frontiers, 2019, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm
[8] 唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm Tang R L, Wang H Y, Lv X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China[J]. Geoscience, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm
[9] 李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm
[10] 陈满怀. 环境土壤学[M]. 北京: 科学出版社, 2005. Chen M H. Environmental pedology[M]. Beijing: Science Press, 2005.
[11] Jiao W T, Chen W P, Chang A C, et al. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review[J]. Environmental Pollution, 2012, 168: 44-53. doi: 10.1016/j.envpol.2012.03.052
[12] 罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805032.htm Luo H, Liu X M, Wang S J, et al. Pollution characteristics and sources of cadmium in soils of the Karst Area in South China[J]. Chinese Journal of Ecology, 2018, 37(5): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805032.htm
[13] 和淑娟, 李丽娜, 杨牧青, 等. 云南某冰川侵蚀区域土壤高背景值成因及农作物重金属累积规律探究[J]. 环境科学导刊, 2020, 40(2): 68-75. He S J, Li L N, Yang M Q, et al. Research on the causes of high soil background value and the accumulation of heavy metals in crops in a glacier eroded area in Yunnan[J]. Environmental Science Survey, 2020, 40(2): 68-75.
[14] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9): 4197-4209. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009038.htm Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, southwestern, China[J]. Environmental Science, 2020, 41(9): 4197-4209. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009038.htm
[15] 刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, southwestern China[J]. Environmental Science, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm
[16] 韩伟, 王成文, 彭敏, 等. 川南山区土壤与农作物重金属特征及成因[J]. 环境科学, https://doi.org/10.13227/j.hjkx.202008257. Han W, Wang C W, Peng M, et al. Characteristics and origin of heavy metals in soil and crops in mountain area of southern Sichuan[J]. Environmental Science. https://doi.org/10.13227/j.hjkx.202008257.
[17] Thompson G M, Ali J R, Song X Y, et al. Emeishan basalts, SW China: Reappraisal of the formation's type area stratigraphy and a discussion of its significance as a large igneous province[J]. Journal of the Geological Society, 2001, 158: 593-599. doi: 10.1144/jgs.158.4.593
[18] Courtillot V E, Renne P R. On the ages of flood basalt events Surlȃge des trapps basaltiques[J]. Comptes Rendus-Geoscience, 2003, 335: 113-140.
[19] Hanski E, Richard J, Walker H H, et al. Origin of the Permian-Triassic komatiites, northwestern Vietnam[J]. Contributions to Mineralogy and Petrology, 2004, 147: 453-469. doi: 10.1007/s00410-004-0567-1
[20] Xu Y G, He B. Thick, high-velocity crust in the Emeishan large igneous province, southwestern China: Evidence for crustal growth by magmatic underplating or intraplating[J]. Article in Special Paper of the Geological Society of America, 2007, DOI: 10.1130/2007.2430(39).
[21] 刘成英, 朱日祥. 试论峨眉山玄武岩的地球动力学意义[J]. 地学前缘, 2009, 16(2): 52-69. doi: 10.3321/j.issn:1005-2321.2009.02.003 Liu C Y, Zhu R X. Discussion on geodynamic significance of the Emeishan basalts[J]. Earth Science Frontiers, 2009, 16(2): 52-69. doi: 10.3321/j.issn:1005-2321.2009.02.003
[22] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201503043.htm Li Y M, Ma J H, Liu D X, et al. Assessment of heavy metal pollution and potential ecological risk of urban soil in Kaifeng City, China[J]. Environmental Science, 2015, 36(3): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201503043.htm
[23] 陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909-916. Chen J L, Li R Y, Xie X J, et al. Distribution characteristics and pollution evaluation of heavy metals in greenbelt soils of Nanjing City[J]. Environmental Science, 2021, 42(2): 909-916.
[24] 胡月琪, 郭建辉, 张超, 等. 北京市道路扬尘重金属污染特征及潜在生态风险[J]. 环境科学, 2019, 40(9): 3924-3934. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909009.htm Hu Y Q, Guo J H, Zhang C, et al. Pollution characteristics and potential ecological risks of heavy metals in road dust in Beijing[J]. Environmental Science, 2019, 40(9): 3924-3934. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909009.htm
[25] 顾涛, 赵信文, 胡雪原, 等. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价[J]. 岩矿测试, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190 Gu T, Zhao X W, Hu X Y, et al. Distribution on characteristics and risk assessment of heavy metals in soil from an agricultural park of Xinma Dun Village, Zhuhai City[J]. Rock and Mineral Analysis, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190
[26] Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geology Journal, 1969, 2(3): 109-118. http://ci.nii.ac.jp/naid/10030367619
[27] Hakanson L. An ecological risk index for aquatic pollution control-A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
[28] Loska K, Wiechulła D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30: 159-165.
[29] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China National Environmental Monitoring Center. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
[30] Wilding L P. Spatial variability: Its documentation, accommodation and implication to soil surveys[J]. Spatial Variations, 1985: 166-194. http://www.researchgate.net/publication/284417458_Spatial_variability_Its_documentation_accommodation_and_implication_to_soil_survey
[31] 吴月照, 潘懋. 中国东部玄武岩地区母岩及土壤元素含量变化规律研究[J]. 环境科学进展, 1993(5): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ199305002.htm Wu Y Z, Pan M. Study on the regularity of changes of contents of the parent rock and soil elements in the basalt regions, eastern China[J]. Advances in Environmental Science, 1993(5): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ199305002.htm
[32] 陈静生, 洪松, 邓宝山, 等. 中国东部花岗岩、玄武岩及石灰岩上土壤微量元素含量的纬向分异[J]. 土壤与环境, 1999, 8(3): 161-167. doi: 10.3969/j.issn.1674-5906.1999.03.001 Chen J S, Hong S, Deng B S, et al. Geographical tendencies of trace element contents in soils derived from granite, basalt and limestone of eastern China[J]. Soil and Environmental Sciences, 1999, 8(3): 161-167. doi: 10.3969/j.issn.1674-5906.1999.03.001
[33] 洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019, 40(10): 4620-4627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htm Hong T, Kong X S, Yue X F. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, southeast of Yunnan Province[J]. Environmental Science, 2019, 40(10): 4620-4627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htm
[34] 宋波, 王佛鹏, 周浪, 等. 广西高镉异常区水田土壤Cd含量特征及生态风险评价[J]. 环境科学, 2019, 40(5): 2443-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201905053.htm Song B, Wang F P, Zhou L, et al. Cd content characteristics and ecological risk assessment of paddy soil in high cadmium anomaly area of Guangxi[J]. Environmental Science, 2019, 40(5): 2443-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201905053.htm
[35] Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58: 145-168. http://www.sciencedirect.com/science/article/pii/S002449370100055X
[36] 胡瑞忠, 陶琰, 钟宏, 等. 地幔柱成矿系统: 以峨眉山地幔柱为例[J]. 地学前缘, 2005, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007 Hu R Z, Tao Y, Zhong H, et al. Mineralization systems of a mantle plume: A case study from the Emeishan igneous province, southwest China[J]. Earth Science Frontiers, 2005, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007
[37] 叶德宪, 李昆. 四川土壤养分及酸碱性变化趋势分析[J]. 西南农业学报, 2003, 16(增刊): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX2003S1024.htm Ye D X, Li K. Analysis of the variation of soil nutrient contents and soil pH in Sichuan Province[J]. Southwest China Journal of Agricultural Sciences, 2003, 16(Supplement): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX2003S1024.htm
[38] 李珊, 肖怡, 李启权, 等. 近30年川中丘陵县域表层土壤pH值时空变化分析——以四川仁寿县为例[J]. 四川农业大学学报, 2015, 33(4): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201504005.htm Li S, Xiao Y, Li Q Q, et al. Temporal and spatial variation of top soil pH value in hilly area of middle Sichuan Basin during 1981-2012: A case study in Renshou County, Sichuan[J]. Journal of Sichuan Agricultural University, 2015, 33(4): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201504005.htm
[39] 王珊, 廖桂堂, 熊鸿焰, 等. 川南地区耕地土壤pH时空变化分析——以宜宾市南溪区长兴镇为例[J]. 内江师范学院学报, 2013, 28(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201302014.htm Wang S, Liao G T, Xiong H Y, et al. Analysis of spatial and temporal change of the farmland soil pH in southern Sichuan Province-A case study of Changxi, Nanxi District of Yibin[J]. Journal of Neijiang Normal University, 2013, 28(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201302014.htm
[40] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm
[41] Jin C W, Zheng S J, He Y F, et al. Lead contamination in tea garden soils and factors affecting its bioavailability[J]. Chemosphere, 2005, 59: 1151-1159.
[42] Mcbride M, Sauvea S, Hendershot W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48: 337-346.
[43] Nordberg G F. Cadmium and health in the 21st Century -Historical remarks and trends for the future[J]. BioMetals, 2004, 17: 485-489.
[44] Bjørklund G, Chirumbolo S, Dadar M, et al. Mercury exposure and its effects on fertility and pregnancy outcome[J]. Basic Clinical Pharmacology Toxicology, 2019, 125: 317-327. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA4MjM5MzlkZjAzOGU2MDg2OGM4Nzg4NDcxNTJkZTJkMBoIeWJzeGs4aGY%3D
[45] 李平, 陈敏, 王波. 中国居民甲基汞暴露的来源和健康风险[J]. 矿物岩石地球化学通报, 2019, 38(4): 725-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201904007.htm Li P, Chen M, Wang B. Sources and health risks of methylmercury exposure in Chinese residents[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(4): 725-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201904007.htm
[46] Bhattacharya P T, Misra S R, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: An extensive review[J]. Scientifica, 2016: 1-12. http://europepmc.org/articles/PMC4940574/
[47] Ameh T, Sayes C M. The potential exposure and hazards of copper nanoparticles: A review[J]. Environmental Toxicology and Pharmacology, 2019, 71: 1-8. http://www.sciencedirect.com/science/article/pii/S1382668919300912
[48] 贺灵, 孙彬彬, 吴超, 等. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价[J]. 岩矿测试, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003 He L, Sun B B, Wu C, et al. Assessment of soil environment quality and ecological risk for kiwifruit orchard in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003
[49] 王立婷, 刘仁志. 土壤污染的健康风险评价研究进展[J]. 中国环境管理, 2020(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201210009.htm Wang L T, Liu R Z. Research progress on soil pollution risk assessment[J]. Chinese Journal of Environmental Management, 2020(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201210009.htm
-
期刊类型引用(6)
1. 孙成阳,陆太进,宋中华,何明跃,邓怡. 津巴布韦金刚石中石墨包裹体及金刚石异常双折射特征分析. 岩矿测试. 2022(02): 199-210 . 本站查看
2. 赵畅,王海阔,刘迎新. 一种高温高压合成钻石原石的宝石学及谱学特征研究. 中国宝玉石. 2022(06): 2-14 . 百度学术
3. 宋中华,陆太进,唐诗,高博,苏隽,柯捷. 高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征. 岩矿测试. 2020(01): 85-91 . 本站查看
4. 罗跃平,陈晶晶. 紫外-可见光谱具480 nm吸收的黄色钻石的宝石学特征. 宝石和宝石学杂志(中英文). 2020(05): 39-43 . 百度学术
5. 周宏,金绪广,黄文清,王磊. 钻石的红外光谱表征及其鉴定意义. 超硬材料工程. 2020(05): 18-25 . 百度学术
6. 唐诗,苏隽,陆太进,马永旺,柯捷,宋中华,张钧,张晓玉,代会茹,李海波,张健,吴旭旭,刘厚祥. 化学气相沉积法再生钻石的实验室检测特征研究. 岩矿测试. 2019(01): 62-70 . 本站查看
其他类型引用(6)