Research Progress of Cadmium Stable Isotopes
-
摘要: Cd具有挥发性和亲硫性,在海洋环境中Cd为微量营养元素,而在生态环境及农业土壤环境中Cd为有毒元素。因此,镉同位素被应用于海洋科学、地球科学、环境科学及农业科学研究,并展现出巨大的应用潜力。本文总结了近年来富含有机质的环境样品、植物样品和生物样品的消解方法,以及Cd分离纯化及双稀释剂校正方法的研究进展。采用微波、高压灰化和高氯酸消解等样品前处理方法均可消除有机质对镉同位素测定的影响;基于AG MP-1(M)树脂-盐酸淋洗体系可有效分离基体及干扰元素,不会导致镉同位素分馏;111Cd-113Cd同位素双稀释剂校正体系的测试精度高,可达0.1εCd/amu。同时,本文阐述了镉同位素在海洋科学、地球科学、环境科学及农业科学领域研究的最新进展和认识。镉同位素已成功应用于构建海洋生物地球化学Cd循环体系、反演古海洋环境及初级生产力变化,硫化物矿床成矿流体演化、成矿物质来源示踪及不同成因矿床类型判别研究,环境体系Cd污染源的源区判别、农田面源Cd来源及其运移、循环及储存机制研究。本文提出需要进一步开展镉同位素分馏机制及分馏模型的研究,构建Cd稳定同位素地球化学体系。要点
(1) 总结了近年来富含有机质样品的消解、分离纯化方法及双稀释剂校正的镉同位素分析技术研究进展。
(2) 归纳了镉同位素在海洋科学、地球科学、环境科学和农业科学领域研究的最新进展和认识。
(3) 深入探讨镉同位素分馏机制及镉同位素分馏效应影响因素,有助于构建镉同位素生物分馏地球化学示踪体系。
HIGHLIGHTS(1) Recent advances in digestion, chemical separation of organic matter-rich samples and high-precision analytical technique with double spikes were reviewed.
(2) The application of Cd isotopes in marine science, geoscience, environmental science and agricultural science were summarized.
(3) Investigationof the Cd isotope fractionation mechanism and its controlling factors, which will be conducive to establishing the tracer system of Cd isotope biogeochemistry fractionation.
Abstract:BACKGROUNDCadmium is a volatile element with chalcophile affinity. In the marine environment, Cd is a micronutrient element, while in the ecological environment and agricultural soil environment, Cd is a toxic element. Therefore, Cd isotopes have been used in marine science, earth science, environmental science, and agricultural scientific research, and show great application potential.OBJECTIVESTo summarize the high-precision analytical technology and applications of Cd isotopes in different research fields.METHODSThe recent research progress in digestion methods, separation and purification of Cd, and double-spikes calibration methods for organic matter-rich environmental samples, plant samples and biological samples were summarized.RESULTSFor organic matter-rich samples including environmental, plant and biological samples, microwave digestion, high-pressure ashing and perchloric acid digestion can eliminate the influence of organic matter in Cd isotope analysis. Combined AG MP-1(M) resin with hydrochloric acid leaching system can effectively separate the matrix and interfering elements, which will not result in Cd isotope fractionation. The precision of Cd isotope with 111Cd-113Cd isotope double-spike correction was around 0.1εCd/amu. The application of Cd isotopes in marine science, geoscience, environmental science, and agricultural science were also summarized in this paper. Cadmium isotopes were used successfully for building marine biological geochemistry cycles, inversion of ancient marine environments and primary productivity change. In sulfide deposits, Cd isotopes were used to trace the evolution of ore fluids and the source of ore metals, and to discriminate different deposit types. In environmental systems, Cd isotopes were applied to distinguish Cd pollution sources, and to investigate Cd sources, migration, circulation and storage mechanisms in agricultural sciences.CONCLUSIONSThe research of the high-precision Cd isotope analytical method and Cd isotope fractionation mechanism and model, will promote to establishment the tracer system of Cd isotope biogeochemistry fractionation and innovative development of non-traditional stable isotope geochemistry. -
铅锌矿石多以硫化矿共生,或与其他金属共生,组成复合多金属硫化矿床。矿物中伴生的钨、钼、锡、锗、硒、碲等有益组分的含量对矿床的综合评价和矿产工业开发及利用具有重要意义[1]。
对于铅锌矿石的分析,在国家标准方法GB/T 14353—2014中,钨和钼采用氢氟酸-硝酸-高氯酸体系进行样品分解,以电感耦合等离子体质谱仪(ICP-MS)测定,当溶液中共存的铜含量>5%或铅含量>10%时,对钨、钼的测定分别产生不同程度的正、负干扰,该方法通过在标准溶液中等量补偿干扰元素的方式扣除测定干扰。各类地质样品中锡的含量常低于10 μg/g,可采用固体粉末发射光谱法测定[2],但铅锌矿的含硫量高,采用电火花激发时易引起样品飞溅跳样;王铁等[3]采用5种混合酸消解锰铁中的痕量锡,但针对铅锌矿中难熔锡石矿物的分解效果难以保证。国家标准方法中,锗和硒分别以氢氟酸-硝酸-硫酸和碳酸钠-氧化锌进行样品分解,均采用原子荧光光谱法测定,此溶液体系中共存的高含量铅(320 mg/L以上)干扰锗的测定,而硒采用半熔法-沸水提取的前处理方法使进入测定体系的主量金属元素大幅度减少,基本消除了干扰。碲元素的丰度低,熔矿后通常需要分离富集,刘正等[4]采用萃取法进行样品预处理,以石墨炉原子吸收光谱法测定碲的含量。国家标准中采用共沉淀分离的方法,当硒含量高于1 μg/g时可能干扰碲的测定。可见现有分析方法中,对铅锌矿有用组分进行综合评价时各元素采用分组或单独溶矿和测定的方式,多元素无法同时分析,操作强度大、效率低,且存在不可避免的主量元素干扰,影响了分析的准确度和精密度。
采用ICP-MS测定铅锌矿中的6种伴生元素,研究人员通常采用混酸分组处理样品。为了确保难熔元素锡完全分解,王佳翰等[5]同时使用硫酸和高氯酸高温冒烟消解,再以硝酸180℃复溶样品同时测定钨、钼、锡,样品处理时间长;非金属硒、碲含量较低,且易受主量元素干扰,陈波等[6]采用乙醇介质提高硒、碲的分析灵敏度。现有的熔矿和测定方法难以兼顾6种元素的同时、准确测定。本研究采用碱熔体系,熔矿后加入阳离子树脂交换分离钠盐,同时将造岩元素钾、铁、铝等及主量元素铅、锌从测定体系中分离,有效减小基体效应和矿石中铅的干扰,建立了以ICP-MS测定铅锌矿中的钨、钼、锡、锗、硒、碲的方法。
1. 实验部分
1.1 仪器及工作参数
iCAP Q型电感耦合等离子体质谱仪(美国ThermoFisher公司),主要工作参数如下:测定模式为KED模式;RF功率1150 W;等离子气流量15.0 L/min;辅助气流量1.0 L/min;雾化气流量1.0 L/min;进样泵流速为30 r/min;进样冲洗时间20 s;扫面方式为跳峰;单元素积分时间为1 s。
1.2 主要试剂
过氧化钠、三乙醇胺、柠檬酸为分析纯,三乙醇胺、柠檬酸作为络合剂使用。
柠檬酸溶液:浓度为0.8%,溶剂为水。
732型阳离子交换树脂:在交联为7%的苯乙烯-二乙烯共聚体上带磺酸基(—SO3H)的阳离子交换树脂。
铑(GSB04-1746-2004)、铼(GSB04-1745-2004)、硼(GSB04-1716-2004)、磷(GSB04-1741-2004)单元素标准储备溶液:浓度为1000 μg/mL,碘(GSB05-1137-1999)单元素标准溶液:浓度为100 μg/g。以上单元素标准储备溶液均由国家有色金属及电子材料分析测试中心定值,逐级稀释后配制成实验用内标液,铼、铑浓度为0.5 μg/mL,硼、磷、碘浓度为1.0 μg/mL。
实验用水为超纯水(电阻率18.0 MΩ·cm)。
1.3 实验方法
1.3.1 实验样品
实验样品为铜铅锌矿石标准物质,与实际样品具有相近的基体组成和主量元素含量。包括:GBW07170为西藏自治区地质矿产勘查开发局中心实验室研制的铜、铅矿石成分分析标准物质;GBW07164和GBW07167为中国地质科学院地球物理地球化学勘查研究所研制的富铜(银)矿石和铅精矿成分分析标准物质;BY0110-1为云南锡业公司研制的锌精矿成分分析标准物质,矿物类型为氧化矿;GBW07234和GBW07235为湖北地质实验研究所研制的铜矿石和铅矿石成分分析标准物质。
1.3.2 样品处理
称取待测矿样0.4000 g于刚玉坩埚中,用塑料勺加入2.0 g过氧化钠,坩埚置于预热至500℃的耐火板上放置5 min,再转移到升温至500℃的马弗炉中,升温至750℃,保温10 min,取出后冷却至约100℃,坩埚放入100 mL聚四氟乙烯烧杯中,加入80 mL热水(约80℃)提取,加入2 mL三乙醇胺,加入0.5 μg/mL铼内标溶液5.00 mL,搅拌均匀,取出坩埚,冷却后定容于100 mL容量瓶中,得待测液。
1.3.3 测定液制备
搅拌过程中移取10.0 mL待测液于50 mL聚四氟乙烯坩埚中,加入0.8%柠檬酸溶液8 mL,摇匀,再加入8~9 g阳离子树脂,摇匀后于回旋振荡器上以振速150~160 r/min振荡15 min,充分离子交换,加入8 mL水,继续于振荡器上振荡20 min后,定容于50 mL容量瓶中,得测定液。
1.3.4 标准工作溶液的配制
在100 mL容量瓶中加入逐级稀释后的钨、钼、锡、锗、硒、碲标准溶液,加入2.0 g过氧化钠、内标溶液5.00 mL(内标元素浓度Re:0.5 μg/mL;B:1.0 μg/mL)和2 mL三乙醇胺,定容,摇匀,配制成钨、钼、锡、锗、硒、碲的混合标准曲线溶液,随同样品待测液(1.3.2节)制备成工作曲线溶液。各元素浓度见表 1。
表 1 钨钼锡锗硒碲标准工作溶液Table 1. Standard working solution of tungsten, molybdenum, tin, germanium, selenium and tellurium混合标准溶液系列 浓度(ng/mL) W Mo Sn Ge Se Te S0 0.0 0.0 0.0 0.0 0.0 0.0 S1 4.0 10.0 4.0 2.0 2.0 1.0 S2 8.0 20.0 8.0 4.0 4.0 2.0 S3 20.0 50.0 20.0 10.0 10.0 5.0 S4 40.0 100.0 40.0 20.0 20.0 10.0 S5 80.0 200.0 80.0 40.0 40.0 20.0 S6 120.0 400.0 120.0 60.0 60.0 30.0 S7 200.0 1000.0 200.0 100.0 100.0 50.0 2. 结果与讨论
2.1 溶矿方式的选择
多元素系统分析中,对熔矿方式的选择要优先考察矿物晶格稳定的难熔元素的熔矿完全程度。6种待测元素中钨、钼、锗[7]、硒、碲[8]可采用高氯酸(硫酸)-硝酸-氢氟酸-(盐酸)以敞开酸溶的方式进行样品分解,样品分解效果好,但采用敞开酸溶法进行锡矿石元素分析时存在矿物分解不完全的风险,且方法适用矿种范围窄[9]。高压封闭酸溶的方式使锡消解完全,但需增压和延长样品消解时间[10],造成溶矿效率低且无法大批量处理样品。
对于含锡石的难溶铅锌矿石,采用过氧化钠熔融可以使样品分解完全。但碱性熔剂引入了大量盐类物质和基体组分,并含有一定量的金属、非金属杂质,造成分析空白偏高。本法通过将熔剂过筛(10目)、混匀、固定熔剂加入量的方式使空白值保持一致。
2.2 测定介质及基体去除
经过氧化钠熔融,样品溶液体系中的总固体溶解量(TDS)较高(大于0.5%),并通过进样系统沉积于采样锥、截取锥和离子透镜,影响ICP-MS测试的稳定性[11]。其中高含量的钠盐将吸收等离子体电离能,降低中心通道的温度,对待测元素产生电离抑制。
在测定液中加入的柠檬酸,通过N或O电负性较强的阴离子作用于钨、钼、锡金属阳离子中心形成稳定的复合物;锗、硒和碲在强碱性溶液中分别以锗酸根(GeO32-)、硒酸根(SeO42-)、碲酸根(H4TeO62-)的形式存在。强酸型阳离子树脂中的H+在溶液中与Na+发生交换,降低了盐类浓度[12],使溶液由强碱性逐渐转化为弱酸性,离子交换后的溶液pH=4~5;同时使造岩元素铁、铝、钙、镁以及基体元素从溶液中分离,减少了基体干扰。三乙醇胺、柠檬酸作为络合剂,有助于铁、铝元素的交换,使溶液澄清。
选取标准物质GBW07170、GBW07167和BY0110-1,考察主量元素铜、铅、锌、铁的去除情况,表 2中的数据表明,按照本实验方法处理各主量元素的去除率均高于96%,这些主量元素在测定介质中的实际浓度为0.192 ng/mL~1.28 μg/mL,对待测元素的干扰可基本忽略。
表 2 主量元素去除试验Table 2. Removal tests of the principal components标准物质编号 Cu Pb Zn Fe 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) GBW07170 12.59 1.28×10-3 99.99 2.24 8×10-5 99.99 1.21 8×10-5 99.99 - 8×10-3 - GBW07167 0.028 9.6×10-4 96.57 57.1 8×10-2 99.86 3.3 1.84×10-3 99.94 12 0.16 98.67 BY0110-1 0.135 2.4×10-5 99.98 0.35 3.44×10-3 99.02 42.98 8.24×10-4 99.99 - 7.2×10-3 - 注:“-”表示该元素无定值或其去除率无法计算。 2.3 质谱分析条件
2.3.1 内标元素的选择和加入
选择铼、铑及离子行为与待测元素相近的硼、磷、碘元素(在碱性溶液中以阴离子形式存在)进行内标试验。这些内标元素与待测元素钨、钼、锡、锗、硒、碲的第一电离电位范围为7.460~10.486 eV与7.099~9.752 eV。按照金属和非金属元素进行分组内标试验,分次考察不同仪器条件和不同时间下钨、钼、锡、锗、硒、碲与内标元素的计数值之比,计算各元素测定值的相对标准偏差(RSD,n≥20),试验结果如表 3。
表 3 内标元素选择试验Table 3. Selection tests of internal standards内标元素 对应待测元素 RSD(%) 各类样品中内标元素含量范围 Re W、Mo、Sn、Ge 0.92~2.20 铅锌矿石:0.24~3.5 μg/g
土壤样品:0.074~0.53 ng/gRh W、Mo、Sn、Ge 1.03~3.55 贵金属矿石:0.017~22 ng/g B Se、Te 1.66~2.43 土壤样品:4.6~155 μg/g P Se、Te 3.68~4.94 土壤样品:140~1490 μg/g I Se、Te 3.93~5.81 土壤样品:0.3~2.9 μg/g 注:各元素大致含量范围参考国家一级标准物质定值。 在各类地质样品中,铼、铑、碘元素的含量普遍低于10 μg/g,而磷的自然丰度均高于100 μg/g。铼与钨钼锡锗、硼与硒碲的多次测定的相对标准偏差均低于2.5%,测试相关性优于铑、磷和碘内标元素。同时考虑到碘的氢化物可能对碲产生质谱干扰,本实验最终以铼和硼分别作为金属和非金属元素的内标元素。
2.3.2 质谱干扰
质谱常见干扰包括同量异位素的干扰和多原子离子复合物(氢、氧、氩复合物等)的干扰[13]。在本方法中,同量异位素干扰如74Se对74Ge的干扰、氩气中的杂质82Kr对82Se的测定干扰;而多原子离子复合物的干扰包括182W受1H181Ta的干扰,95Mo受40Ar55Mn的干扰,118Sn可能受到16O102Ru和12C106Pd的干扰,铁氧化物58Fe16O和镍氧化物58Ni16O干扰74Ge的测定,66Zn16O干扰82Se的测定,128Te可能受到1H127I的干扰。
对同量异位素的干扰在线校正,选择干扰元素的异质同位素进行定量测定,根据干扰元素同位素的丰度比计算干扰系数,采用数学公式校正的方法,仪器自动对干扰进行扣除,干扰校正方程见表 4。多原子离子复合物的干扰较为复杂,且氩复合物的干扰难以避免,在测定时选择动能歧视(KED)模式[14],同时加入强酸型阳离子树脂交换去除溶液中大部分的稀土元素、Fe3+、Ni2+、Mn2+及高含量Cu2+、Pb2+、Zn2+等离子,干扰基本可以消除。
表 4 同位素、相关系数、质谱干扰扣除及方法检出限Table 4. Isotope, correlation coefficient, mass spectrum interference deduction and detection limits元素 同位素 相关系数 干扰校正 方法检出限(μg/g) 树脂处理前 树脂处理后 W 182W 0.9981 0.9995 - 0.50 Mo 95Mo 0.9990 0.9999 - 0.15 Sn 118Sn 0.9954 0.9994 - 0.29 Ge 74Ge 0.9992 0.9997 -0.0407×78Se 0.15 Se 82Se 0.9989 0.9995 -1.0010×83Kr 0.05 Te 128Te 0.9923 0.9995 - 0.03 注:“-”表示元素无干扰或存在的干扰极小,可忽略。 2.4 分析方法技术指标
2.4.1 工作曲线相关性及方法检出限
制备工作曲线溶液时进行基体匹配,因此溶液介质中存在较高浓度的钠盐。本法通过阳离子树脂处理工作曲线溶液,所得工作曲线的相关性优于不加阳离子树脂处理的方法,与同类酸溶研究相比,硒、碲工作曲线的相关性较优[8]。由于加入大量碱性熔剂进行样品熔融,受试剂空白影响,钨、钼、锡元素的检出限高于混合酸酸溶的前处理方法[5],碲的检出限优于国家标准方法和萃取分离-石墨炉原子吸收光谱法检出限0.20 μg/g和0.055 μg/g[4],曲线相关系数及方法检出限见表 4。考虑实际样品中各元素的含量,本方法满足铅锌矿石中多元素的分析测试要求。
2.4.2 方法准确度和精密度
选取标准物质GBW07234、GBW07164及GBW07235按照1.3节实验方法进行准确度试验,计算相对误差和加标回收率;对样品进行平行分析(n=8),计算相对标准偏差(RSD),分析结果列于表 5。标准物质测定的相对误差范围为-8.33%~7.00%,加标回收率为94.9%~107.5%,多次测定相对标准偏差(RSD)均小于8%,方法准确度满足地质矿产实验室测试质量管理规范(DZ/T 0130—2006)的要求(按照样品中各元素含量计算可允许最小相对偏差为16.98%)。与混合酸酸溶的方法相比,钨、钼和锡的相对标准偏差(RSD)略高于ICP-MS法(钨、钼和锡分别为2.9%~3.6%、2.4%~2.9%和2.7%~3.9%)[5],其中钼和锗的相对标准偏差(RSD)略低于孟时贤等测定铅锌矿采用的电感耦合等离子体发射光谱法1.5%~5.4%和1.4%~5.7%[15]。
表 5 准确度和精密度试验Table 5. Accuracy and precision tests of the method标准物质编号 元素 参考值(μg/g) 测定值(μg/g) 相对误差(%) 加标量(μg/g) 测定值(μg/g) 回收率(%) RSD(%) GBW07234 W 3.9 3.88 -0.51 5.0 8.69 95.8 4.7 Mo 2.4 2.32 -3.33 2.0 4.51 105.5 2.2 Sn 3.8 4.05 6.58 5.0 8.93 102.6 3.5 Ge 0.93 0.94 1.08 1.0 1.91 98.0 2.7 Se 0.89 0.86 -3.37 1.0 1.84 95.0 6.1 Te 0.13 0.12 -7.69 0.2 0.34 105.0 7.6 GBW07164 W 56 54.5 -2.68 50.0 105.5 99.5 2.2 Mo 137 137.6 0.44 150.0 282.3 98.3 1.5 Sn 9.7 9.2 -5.15 10.0 18.7 94.9 4.6 Ge 3.3 3.1 -6.06 5.0 8.90 107.2 2.6 Se 24 25.1 4.58 30.0 55.3 102.4 1.8 Te 1.8 1.65 -8.33 2.0 3.71 95.0 5.7 GBW07235 W 17.6 18.35 4.26 20.0 38.22 103.1 3.2 Mo 1.6 1.65 3.12 2.0 3.63 101.5 4.8 Sn 3.0 3.21 7.00 5.0 7.97 99.4 5.6 Ge 0.90 0.88 -2.22 1.0 1.91 101.0 3.1 Se 1.7 1.66 -2.35 2.0 3.85 107.5 5.3 Te 3.9 4.09 4.87 5.0 8.88 99.6 2.2 3. 结论
采用铅锌矿石国家标准方法和传统分析方法,无法同时测定钨、钼、锡、锗、硒、碲,其中低含量元素需要分离富集,分析效率低、流程长且存在不可避免的主量元素干扰。本方法采用过氧化钠碱熔体系,在样品前处理环节通过阳离子树脂交换分离高含量钠盐和可能产生干扰的高含量铅,实现了在一个溶液体系中快速、准确、同时测定多种元素。本研究在降低方法检出限等方面可加强探索以扩大方法适用范围。本方法应用树脂分离富集技术去除干扰,优化了测定介质,为低含量难熔元素的准确测定提供了思路,同时可考虑应用于地质样品中硼、碘等元素的分析测试。
-
表 1 Cd分离纯化方法
Table 1 Separation and purification methods of Cd
样品类型 树脂类型 依次加入的淋滤酸种类 流程空白(pg) Cd回收率(%) 文献来源 陆地矿物 Dowex AG 50-X8 - 3000 50 DeLaeter等(1975)[43] 陨石、地球样品和矿物 AG 1-X8 3/0.5/1/2/8mol/L盐酸, 0.5mol/L硝酸-0.1mol/L氢溴酸-2mol/L硝酸 20 98 Wombacher等(2003)[44] 土壤、锰结核、工厂煅烧产物 AG MP-1 1.2/0.3/0.06/0.012/0.0012 mol/L盐酸 <20 <95 Cloquet等(2005) [45] 水系沉积物 AG MP-1 1.2/0.3/0.06/0.012/ 0.0012mol/L盐酸 <200 >90 Gao等(2005)[46] 硫化物、植物 AG MP-1M 2/0.3/0.06/0.012/0.0012 mol/L盐酸 <100 99.82 Zhu等(2013)[47] Wei等(2016)[28] 富有机质环境样品 AG MP-1M 2/0.3/0.012/0.0012 mol/L盐酸 50~230 - Pallavicini等(2014)[39] 土壤、水系沉积物 AG MP-1M 2/0.3/0.06/0.012/ 0.0012mol/L盐酸 <100 - Li等(2018)[27] 土壤、水系沉积物 AG MP-1 2/0.3/0.06/0.012 /0.0012mol/L盐酸 - 94.8~99.3 Park等(2020)[42] 基体复杂的低Cd含量地质样品 AG MP-1M 2/1/0.3/0.06/0.012/0.0012 mol/L盐酸, 两次 90~140 >90 Tan等(2020)[26] 注:“-”表示文献中未给出数据。 表 2 镉同位素研究分析测试技术及精度
Table 2 Measurement methods of Cd isotope analysis and their accuracy
文献来源 校正方法 仪器 ±2SD(εCd/amu) Wombacher等(2003)[44] Ag-, Sb-normalization MC-ICP-MS 0.2~0.8 Wombacher等(2004)[17] SSB MC-ICP-MS 1.0~1.5 Cloquet等(2005)[45] SSB MC-ICP-MS 0.1~0.5 Schediwy等(2006)[53] 106Cd-111Cd DS TIMS 2.0 Lacan等(2006)[54] Ag normalization MC-ICP-MS 0.8 Ripperger and Ripperger(2007)[49] 110Cd-111Cd DS MC-ICP-MS 0.2~0.3 Gao等(2008)[46] SSB MC-ICP-MS 0.2~0.3 Schimitt等(2009)[55] 106Cd-108Cd DS TIMS 0.07 Shiel等(2009)[56] Ag normalization MC-ICP-MS 0.2~0.8 Horner等(2010)[24] 111Cd-113Cd DS MC-ICP-MS 0.2~0.3 Xue等(2012)[50] 111Cd-113Cd DS MC-ICP-MS 0.13~0.2 Pallavicini等(2014)[39] Ag normalization MC-ICP-MS 0.2~1 Wen等(2015)[57] SSB MC-ICP-MS 0.2 Chrastný等(2015)[52] 106Cd-116Cd DS MC-ICP-MS 0.05~0.2 Martinkova等(2016)[51] 111Cd-113Cd DS MC-ICP-MS 0.15 Zhang等(2018)[48] 111Cd-113Cd DS MC-ICP-MS 0.1 Tan等(2020)[26] 111Cd-113Cd DS MC-ICP-MS 0.1 注:Ag-、Sb-normalization为Ag或Sb外标法;SSB为样品标准交叉法;DS为双稀释剂法;2SD为多次测试得到重现性两倍的相对误差,统一换算成εCd/amu表示方式。 表 3 铅锌矿床镉同位素数据
Table 3 Cd isotope data of lead-zinc deposits
铅锌矿床名称 成因类型 样品类型 ε114/110Cd 文献来源 会泽矿床 类SEDEX型 闪锌矿方铅矿 -1.9~+2-16.4~-6.9 Zhu等(2013)[47] 杉树林矿床 类SEDEX型 闪锌矿 -4.5~+0.1 Zhu等(2013)[47] 富乐矿床 MVT型 闪锌矿 -4.1~+5.9 Zhu等(2013)[47];Zhu等(2016)[33];Wen等(2016)[21] 牛角塘矿床 MVT型 闪锌矿 -7~+0.7 Zhu等(2013)[47] 金顶矿床 MVT型 闪锌矿 -6.3~+5.7 Zhu等(2013)[47];Li等(2019)[29] 天宝山矿床 MVT型 闪锌矿 -1.0~+4.6 Zhu等(2016)[79];Wen等(2016)[21] 大硐喇矿床 MVT 闪锌矿 +1.6~+3.8 Wen等(2016)[21] 白音诺尔矿床 矽卡岩型 闪锌矿 -2.5~0 Wen等(2016)[21] 呷村矿床 VMS型 闪锌矿 -1.1~+0.5 Wen等(2016)[21] 沙沟矿床 岩浆热液型 闪锌矿 -0.5~0 Wen等(2016)[21] 大宝山矿床 斑岩型 闪锌矿 -0.7 Wen等(2016)[21] 狼山矿床 SEDEX型 闪锌矿 -2.9~+2.2 Wen等(2016)[21] 海洋硫化物 - 闪锌矿+黄铁矿 -4.9~+3.5 Wen等(2016)[21] -
唐波, 王景腾, 付勇. 不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素[J]. 岩矿测试, 2020, 39(2): 162-173. doi: 10.15898/j.cnki.11-2131/td.201809090102 Tang B, Wang J T, Fu Y. Magnesium isotope composition of different geological reservoirs and controlling factors of magnesium isotope fractionation in the formation of carbonate minerals[J]. Rock and Mineral Analysis, 2020, 39(2): 162-173. doi: 10.15898/j.cnki.11-2131/td.201809090102
王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm Wang Y, Zhu X Q. Fe isotope systematics and its implications in ore deposit geology[J]. Acta Petrologica Sinica, 2012, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm
Wang D, Sun X, Zheng Y, et al. Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Constraints from Fe-Zn isotopes[J]. Ore Geology Reviews, 2017, 84: 347-363. doi: 10.1016/j.oregeorev.2016.12.030
Ding X, Ripley E M, Wang W, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261: 327-341. doi: 10.1016/j.gca.2019.07.015
秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151-161. doi: 10.15898/j.cnki.11-2131/td.201809090102 Qin Y, Xu Y M, Hou K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161. doi: 10.15898/j.cnki.11-2131/td.201809090102
Wu S, Zheng Y, Wang D, et al. Variation of copper isotopes in chalcopyrite from Dabu porphyry Cu-Mo deposit in Tibet and implications for mineral exploration[J]. Ore Geology Reviews, 2017, 90: 14-24. doi: 10.1016/j.oregeorev.2017.10.001
张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201809090102 Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201809090102
何承真, 肖朝益, 温汉捷, 等. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源[J]. 岩石学报, 2016, 32(11): 3394-3406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611012.htm He C Z, Xiao C Y, Wen H J, et al. Zb-S isotopic compositions of the Tianbaoshan carbonatehosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components[J]. Acta Petrologica Sinica, 2016, 32(11): 3394-3406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611012.htm
王中伟, 袁玮, 陈玖斌. 锌稳定同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505009.htm Wang Z W, Yuan W, Chen J B. Zn stable isotope geochemistry: A review[J]. Earth Science Frontiers, 2015, 22(5): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505009.htm
王悦, 朱祥坤. 锌同位素在矿床学中的应用: 认识与进展[J]. 矿床地质, 2010, 29(5): 843-852. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201005008.htm Wang Y, Zhu X K. Application of Zn isotopes to study of mineral deposits: A review[J]. Mineral Deposits, 2010, 29(5): 843-852. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201005008.htm
王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. doi: 10.15898/j.cnki.11-2131/td.201809090102 Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. doi: 10.15898/j.cnki.11-2131/td.201809090102
Zhong Q H, Zhou Y C, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 1-9. http://www.sciencedirect.com/science/article/pii/S0048969720331028
朱传威, 温汉捷, 张羽旭, 等. Cd稳定同位素测试技术进展及其应用[J]. 地学前缘, 2015, 22(5): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505012.htm Zhu C W, Wen H J, Zhang Y X, et al. Analytical technique for cadmium stable isotopes and its applications[J]. Earth Science Frontiers, 2015, 22(5): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505012.htm
刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmental tracing[J]. Earth and Environment, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm
魏荣菲, 郭庆军, 杨俊兴, 等. 镉同位素技术在环境科学研究中的应用进展[J]. 生态学杂志, 2014, 33(2): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201402038.htm Wei R F, Guo Q J, Yang J X, et al. Application and progress of Cd isotope technology in environmental science[J]. Chinese Journal of Ecology, 2014, 33(2): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201402038.htm
Fouskas F, Ma L, Engle M A, et al. Cadmium isotope fractionation during coal combustion: Insights from two U. S. coal-fired power plants[J]. Applied Geochemistry, 2018, 96: 100-112. doi: 10.1016/j.apgeochem.2018.06.007
Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractionation during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013
魏荣菲. 植物镉同位素分析测试方法的优化及其分馏特征研究[D]. 北京: 中国科学院大学, 2015. Wei R F.Study on the method of Cd isotope analysis and the characteristics of Cd isotope fractionation in plants[D].Beijing: University of Chinese Academy of Sciences, 2015.
Abouchami W, Galer S J G, de Baar H J W, et al. Bio-geochemical cycling of cadmium isotopes in the southern ocean along the Zero Meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022
Ripperger S, Rehkäemper M, Porcelli D, et al. Cadmium isotope fractionation in seawater-A signature of biological activity[J]. Earth and Planetary Science Letters, 2007, 261(3): 670-684. http://www.sciencedirect.com/science/article/pii/S0012821X07004906
Wen H, Zhu C, Zhang Y, et al. Zn/Cd ratios and cad-mium isotope evidence for the classification of lead-zinc deposits[J]. Scientific Reports, 2016, 6(1): 25273. doi: 10.1038/srep25273
Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029
Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1-2): 243-253. doi: 10.1016/j.epsl.2011.10.004
Horner T J, Schönbächler M, Rehkämper M, et al. Ferro-manganese crusts as archives of deep water Cd isotope compositions[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4), doi: 10.3390/geosciences10010036.
Schmitt A D, Galer S J G, Abouchami W. Mass-depen-dent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 262-272. doi: 10.1016/j.epsl.2008.10.025
Tan D, Zhu J M, Wang X L, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020: 1-33. http://pubs.rsc.org/en/content/articlelanding/2020/ja/c9ja00397e/unauth
Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236
Wei R, Guo Q, Wen H, et al. Fractionation of stable cad-mium isotopes in the cadmium Tolerant Ricinus communis and hyperaccumulator Solanum nigrum[J]. Scientific Reports, 2016, 6(1): 24309. doi: 10.1038/srep24309
Li M L, Liu S A, Xue C J, et al. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 2019, 265: 1-18. doi: 10.1016/j.gca.2019.08.018
Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. The Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127
Barraza F, Moore R E T, Rehkäemper M, et al. Cadmium isotope fractionation in the soil-cacao systems of Ecuador a pilot field study[J]. The Royal Society of Chemistry, 2019, 9: 34011-34022. http://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra05516a
Moore R E T, Ullah I, de Oliveira V H, et al. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters[J]. Horticulture Research, 2020, 7(71): 1-11. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_horticulture-research_thesis/040006211928.html
Zhu C, Wen H, Zhang Y, et al. Cadmium isotope fractionation in the fule Mississippi Valley-type deposit, Southwest China[J]. Mineralium Deposita, 2016, 52(5): 675-686. doi: 10.1007/s00126-016-0691-7
Wang D, Zheng Y Y, Mathur R, et al. Fractionation of cadmium isotope caused by vapour-liquid partitioning in hydrothermal ore-forming system: A case study of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet[J]. Ore Geology Reviews, 2020, 119: 1-14.
Xu C, Zhong H, Hu R Z, et al. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in southwest China: Implications of Pb-Zn-S-Cd isotopic compositions[J]. Mineralium Deposita, 2020, 55(3): 491-513. doi: 10.1007/s00126-019-00893-5
Zhang Y, Wen H, Zhu C, et al. Cadmium isotopic evidence for the evolution of marine primary productivity and the biological extinction event during the Permian-Triassic crisis from the Meishan Section, South China[J]. Chemical Geology, 2018, 481: 110-118. doi: 10.1016/j.chemgeo.2018.02.005
Sweere T C, Dickson A J, Jenkyns H C, et al. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during oceanic Anoxic Event 2(Late Cretaceous)[J]. Earth and Planetary Science Letters, 2020, 546: 1-11.
Sweere T C, Dickson A J, Jenkyns H C, et al. Controls on the Cd-isotope composition of Upper Cretaceous (Cenomanian-Turonian) organic-rich mudrocks from South Texas (Eagle Ford Group)[J]. Geochemical at Cosmochimica Acta, 2020, 287: 251-262. doi: 10.1016/j.gca.2020.02.019
Pallavicini N, Engstrom E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G
Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D
Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2020, doi: 10.1111/ggr.12357.
Park J, Kim J, Lee K, et al. Comparison of acid extraction and total digestion methods for measuring Cd isotope Ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2020, 192, doi: 10.1007/s10661-019-8017-8.
Rosman K J R, de Laeter J R. The isotopic composition of cadmium in terrestrial minerals[J]. International Journal of Mass Spectrometry and Ion Physics, 1975, 16: 385-394. doi: 10.1016/0020-7381(75)85027-3
Wombacher F, Rehkämper M, Mezger K, et al. Stable iso-tope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2
Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x
Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020
Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4
Zhang L, Li J, Xu Y G, et al. The influence of the double spike proportion effect on stable isotope (Zn, Mo, Cd, and Sn) measurements by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(4): 555-562. doi: 10.1039/C8JA00016F
Ripperger S, Rehkämper M. Precise determination of cad-mium isotope fractionation in seawater by double spike MC-ICPMS[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 631-642. doi: 10.1016/j.gca.2006.10.005
Xue Z, Rehkämper M, Schoenbaechler M, et al. A new methodology for precise cadmium isotope analyses of seawater[J]. Analytical and Bioanalytical Chemistry, 2012, 402(2): 883-893. doi: 10.1007/s00216-011-5487-0
Martinkova E, Chrastný V, Francova M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039
Chrastný V, Čadková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002
Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335. http://www.sciencedirect.com/science/article/pii/S0012821X06000343
Lacan F, Francois R, Ji Y, et al. Cadmium isotopic composition in the ocean[J]. Geochimica et Cosmochimica Acta, 2006, 70(20): 5104-5118. doi: 10.1016/j.gca.2006.07.036
Schmitt A D, Galer S J G, Abouchami W. High-pre-cision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1079-1088. doi: 10.1039/b821576f
Shiel A E, Barling J, Orians K J, et al. Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios[J]. Analytica Chimica Acta, 2009, 633(1): 29-37. doi: 10.1016/j.aca.2008.11.026
Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025
Xie R C, Rehkämper M, Grasse P, et al. Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific[J]. Earth and Planetary Science Letters, 2019, 512: 134-146. doi: 10.1016/j.epsl.2019.02.001
Sieber M, Conway T M, de Souza G F, et al. High-resolution Cd isotope systematics in multiple zones of the southern ocean from the Antarctic circumnavigation expedition[J]. Earth and Planetary Science Letters, 2019, 527, doi: 10.1016/j.epsl.2019.115799.
Janssen D J, Abouchami W, Galer S J G, et al. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific[J]. Earth and Planetary Science Letters, 2017, 472: 241-252. doi: 10.1016/j.epsl.2017.04.048
Yang S C, Lee D C, Ho T Y, et al. The isotopic composition of dissolved cadmium in the water column of the West Philippine Sea[J]. Frontiers in Marine Science, 2014, 1(61), doi: 10.3389/fmars.2014.00061.
Yang S C, Zhang J, Sohrin Y, et al. Cadmium cycling in the water column of the Kuroshio-Oyashio Extension Region: Insights from dissolved and particulate isotopic composition[J]. Geochimica et Cosmochimica Acta, 2018, 233: 66-80. doi: 10.1016/j.gca.2018.05.001
Xie R C, Galer S J G, Abouchami W, et al. Non-rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic[J]. Earth and Planetary Science Letters, 2017, 471: 94-103. doi: 10.1016/j.epsl.2017.04.024
Lambelet M, Rehkämper M, de Flierdt T V, et al. Iso-topic analysis of Cd in the mixing zone of Siberian rivers with the arctic ocean-new constraints on marine Cd cycling and the isotope composition of riverine Cd[J]. Earth and Planetary Science Letters, 2013, 361: 64-73. doi: 10.1016/j.epsl.2012.11.034
Bridgestock L, Rehkämper M, van de Flierdt T, et al. The Cd isotope composition of atmospheric aerosols from the Tropical Atlantic Ocean[J]. Geophysical Research Letters, 2017, 44(6): 2932-2940. doi: 10.1002/2017GL072748
Yang S C, Lee D C, Ho T Y. The isotopic composition of cadmium in the water column of the South China Sea[J]. Geochimica et Cosmochimica Acta, 2012, 98: 66-77. doi: 10.1016/j.gca.2012.09.022
Janssen D J, Conway T M, John S G, et al. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 6888-6893. doi: 10.1073/pnas.1402388111
Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039
Janssen D J, Abouchami W, Galer S J G, et al. Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink[J]. Earth and Planetary Science Letters, 2019, 515: 67-78. doi: 10.1016/j.epsl.2019.03.006
George E, Stirling C H, Gault-Ringold M, et al. Determi-nation of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2019, 514: 84-95. doi: 10.1016/j.epsl.2019.02.031
John S G, Kunzmann M, Townsend E J, et al. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 466: 202-208. doi: 10.1016/j.palaeo.2016.11.003
Hohl S V, Galer S J G, Gamper A, et al. Cadmium isotope variations in Neoproterozoic carbonates-A tracer of biologic production?[J]. Geochemical Perspectives Letters, 2017, 3: 32-44. http://www.researchgate.net/publication/307994560_Cadmium_isotope_variations_in_Neoproterozoic_carbonates_-_A_tracer_of_biologic_production
Viehmann S, Hohl S V, Kraemer D, et al. Metal cycling in Mesoproterozoic microbial habitats: Insights from trace elements and stable Cd isotopes in stromatolites[J]. Gondwana Research, 2019, 67: 101-114. doi: 10.1016/j.gr.2018.10.014
Hohl S V, Jiang S Y, Viehmann S, et al. Trace metal and Cd isotope systematics of the Basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (Bio)geochemical metal cycling in cryogenian seawater[J]. Geoscience, 2020, doi:10.3390/geosciences 10010036.
Dickson A J, Idiz E, Porcelli D, et al. The influence of thermal maturity on the stable isotope compositions and concentrations of molybdenum, zinc and cadmium in organic-rich marine mudrocks[J]. Geochimica et Cosmochimica Acta, 2020, 287: 205-220. doi: 10.1016/j.gca.2019.11.001
Georgiev S V, Horner T J, Stein H J, et al. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event[J]. Earth and Planetary Science Letters, 2015, 410: 84-96. doi: 10.1016/j.epsl.2014.11.010
Hohl S V, Jiang S Y, Wei H Z, et al. Cd isotopes trace periodic (bio)geochemical metal cycling at the verge of the Cambrian animal evolution[J]. Geochimica et Cosmochimica Acta, 2019, 263: 195-214. doi: 10.1016/j.gca.2019.07.036
王伟中, 张朝晖, 温汉捷, 等. 镉同位素在古环境重建中的应用: 以晚泥盆世弗拉期-法门期生物灭绝事件为例[J]. 矿物岩石地球化学通报, 2020, 39(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001015.htm Wang W Z, Zhang C H, Wen H J, et al. The application of Cd isotopes in the paleo-environment reconstruction: A case study of the Frasnian-Famennian mass extinction event in the Late Devonian[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001015.htm
Zhu C, Wen H, Zhang Y, et al. Cadmium and sulfur iso-topic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China[J]. Ore Geology Reviews, 2016, 76: 152-162. doi: 10.1016/j.oregeorev.2016.01.010
Deng L, Bi C J, Jia J P, et al. Effects of heating activities in winter on characteristics of PM2.5-bound Pb, Cd and lead isotopes in cities of China[J]. Journal of Cleaner Production, 2020, 265: 1-10. http://www.sciencedirect.com/science/article/pii/S0959652620318734
Yang W J, Ding K B, Zhang P, et al. Cadmium stable iso-tope variation in a mountain area impacted by acid mine drainage[J]. The Science of the Total Environment, 2019, 646: 696-703. doi: 10.1016/j.scitotenv.2018.07.210
Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060
Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science and Technology, 2017, 51(13): 7369-7377. doi: 10.1021/acs.est.7b00858
Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science and Technology, 2018, 52(4): 1919-1928. doi: 10.1021/acs.est.7b05439
Wiggenhauser M B, Moritz I M, Müller M, et al. Cad-mium isotope fractionation in soil-wheat systems[J]. Environmental Science and Technology, 2016, 50(17): 1-32. doi: 10.1021/acs.est.6b01568
-
期刊类型引用(15)
1. 苏立城,陈晓珊,罗志忠,胡英,陈煜佳,吴道铭,曾曙才. 氮添加对森林土壤有机碳库固存及CO_2排放的影响研究进展. 生态学报. 2024(07): 2717-2733 . 百度学术
2. 易志远,罗霄,王玉霞,苏丽,乔成龙,薛斌,杜灵通. 贺兰山东麓典型葡萄园土壤有机碳库组成及其活跃度. 水土保持通报. 2024(03): 390-398 . 百度学术
3. 李朝英,郑路,郑之卓,李华,王亚南,明安刚. 自动滴定仪测定土壤有机碳及其组分的方法优化. 岩矿测试. 2024(04): 632-640 . 本站查看
4. 高放,洪煜,孙燕,宓文海,陈硕桐. 秸秆还田对盐碱地土壤有机碳库及其组分影响的研究进展. 华北农学报. 2024(S1): 143-149 . 百度学术
5. 卢伟伟,胡嘉欣,陈思桦,陈玮铃,冯思宇. 苏北滨海土壤无机碳含量的测定方法比较. 南京林业大学学报(自然科学版). 2023(01): 76-82 . 百度学术
6. 吴紫琪,何语堂,羊妍珂,陶玉林,吴骏男,蒋振楠,严小军,廖智,刘雪珠,何建瑜. 厚壳贻贝(Mytilus coruscus)养殖区沉积物微生物多样性及固碳潜力研究. 海洋与湖沼. 2023(02): 502-513 . 百度学术
7. 陈宗定,许春雪,刘贵磊,王岚,孙慧中,安子怡. 元素分析仪和燃烧—红外吸收光谱法测定土壤和沉积物中总碳含量的比对. 理化检验-化学分册. 2023(07): 771-775 . 百度学术
8. 袁冬梅,严令斌,武亚楠,张丽敏,杨熳,喻理飞. 喀斯特高原区植被恢复过程土壤有机碳的变化. 山地农业生物学报. 2022(02): 20-25 . 百度学术
9. 张延,高燕,张旸,Gregorich Edward,李秀军,陈学文,张士秀,梁爱珍. Rock-Eval热分解法及其在土壤有机碳研究中的应用. 土壤与作物. 2022(03): 282-289 . 百度学术
10. 严洁,于小娟,唐明,段文艳,李鑫,郝一鸣,盛敏. 造林对乌海露天煤矿复垦地土壤养分和碳库的影响. 林业科学研究. 2021(04): 66-73 . 百度学术
11. 王尧,田衎,封跃鹏,王伟. 土壤中总有机碳环境标准样品研制. 岩矿测试. 2021(04): 593-602 . 本站查看
12. 岑言霸,苏斌,冯泽波,史正涛. 滇池入湖河流pH时空分异特征及其变化机理. 科学技术与工程. 2021(26): 11432-11442 . 百度学术
13. 安帅,陈鉴惠,赵任远,宋丽华. 东北黑土地中碳赋存形态分析方法研究. 地质与资源. 2021(06): 716-721+709 . 百度学术
14. 殷陶刚,窦向丽,张旺强,和振云. 应用高频红外碳硫仪测定农用地土壤样品中有机质含量. 岩矿测试. 2020(04): 631-638 . 本站查看
15. 曹彬彬,朱熠辉,姜禹含,师江澜,田霄鸿. 添加石灰和秸秆对土有机碳固持的影响. 中国农业科学. 2020(20): 4215-4225 . 百度学术
其他类型引用(13)