• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

电感耦合等离子体质谱-X射线衍射法研究云南玉溪和美国内华达地区黏土型锂资源矿物学特征

Mineralogical Characteristics of Two Clay-type Lithium Resources in Yuxi, China, and Nevada, the United States of America

  • 摘要: 中国云南玉溪和美国内华达均已发现大量黏土型锂资源,目前关于两地区样品矿物学特征的研究相对不足,而对黏土型锂资源进行充分的矿物学特征研究是锂提取工作开展的重要前提。本文采用X射线荧光光谱、电感耦合等离子体质谱、X射线粉晶衍射、扫描电镜等分析技术,从化学组成、矿物组成、微观形貌等角度对云南玉溪的两个黏土型锂资源样品(YM-1和YM-2)和美国内华达的两个黏土型锂资源样品(Ame-1和Ame-2)进行对比分析。结果表明:玉溪地区和内华达地区样品的锂含量均高于1000μg/g,具有一定的开发利用价值,但这两个地区的黏土型锂资源样品在主要化学成分、矿物组成、微观形貌和锂赋存状态四个方面均存在较大差异。具体来说,①主要化学成分差异:玉溪地区样品的主要化学成分为SiO2和Al2O3(硅、铝氧化物总量超过80%),而内华达地区样品的主要化学成分为SiO2(60.39%)或CaO(42.30%)。②矿物组成差异:玉溪地区样品的主要矿物为高岭石和蒙脱石,而内华达地区样品的主要矿物为石英、绿脱石、斯皂石或方解石。③微观形貌差异:玉溪地区样品是由表面平坦、边缘圆滑且大小相对均一的片层状结构堆叠而成,而内华达地区样品主要表现为大小不一的块状矿物聚集体。④锂赋存状态差异:玉溪地区样品中的锂主要赋存于蒙脱石中,而内华达地区样品中的锂主要赋存于蒙皂石族矿物中。本研究结果基本明确了云南玉溪地区和美国内华达地区黏土型锂资源的矿物学特征,可为这两个地区黏土型锂资源后期的开发利用提供科学依据。

     

    Abstract:
    BACKGROUNDSufficient mineralogical research on clay-type lithium resources is an important prerequisite for lithium extraction and leaching. Numerous clay-type lithium resources have been discovered in both Yuxi City of Yunnan Province in China and the state of Nevada in the USA; however, existing research on their mineralogical characteristics is relatively insufficient.
    OBJECTIVESTo explore the main chemical composition, phase composition, microscopic morphology, Li occurrence and other characteristics of clay-type lithium resource samples from Yuxi and Nevada and to provide theoretical support for the extraction and leaching of clay-type lithium resources in these two areas.
    METHODSX-ray fluorescence spectroscopy, inductively coupled plasma emission spectroscopy, inductively coupled plasma mass spectrometry, powder crystal X-ray diffraction analysis, and scanning electron microscopy were used to analyze the mineral and chemical differences in the clay-type lithium resources between the two samples (YM-1 and YM-2) collected from Yuxi City, Yunnan Province, and the two samples (Ame-1 and Ame-2) from Nevada, USA.
    RESULTSThe lithium contents of YM-1 and YM-2 and Ame-1 and Ame-2 were higher than 1000μg/g, which exhibited a certain development and utilization value. However, the clay-type lithium resource samples from the two investigated regions showed large differences in chemical composition, mineral composition, microscopic morphology, and lithium occurrences. (1) YM-1 and YM-2 had similar SiO2 and Al2O3 content, with the total amount of silicon and aluminum oxides exceeding 80%, whereas Ame-1 contained 60.39% SiO2 and Ame-2 comprised 42.30% CaO. (2) YM-1 and YM-2 were composed of kaolinite and montmorillonite, whereas Ame-1 and Ame-2 were composed of quartz, nontronite, stevensite, or calcite. (3) YM-1 and YM-2 were stacked in a layered structure with flat surfaces and had round edges and a relatively uniform size, whereas Ame-1 and Ame-2 were mainly represented by massive mineral aggregates of different sizes. (4) Montmorillonite in YM-1 and YM-2 served as the lithium source, whereas lithium in Ame-1 and Ame-2 originated from smectite minerals or illite.
    CONCLUSIONSThis study elucidated the mineralogical characteristics of clay-type lithium resources in Yuxi (Yunnan, China) and Nevada (USA). It provides a scientific basis for future development and utilization of the clay-type lithium resources in these two regions.

     

/

返回文章
返回