A Review of Pesticide Pollution Analysis Techniques for Environmental Water Samples
-
摘要: 随着农业集约化和城市化的推进,世界上大量水环境中农药残留量已超过规定的限值,水环境中农药污染问题受到社会各界的广泛关注。作为世界上最大的农药生产国和使用国,中国水环境中农药残留量远高于其他发达国家,已有研究表明在我国七个典型流域(长江、太湖、黄河、松花江、黑龙江、大运河和东江)中检测到19种农药,平均浓度范围为0.02~332.75ng/L。农药及其转化产物对生态环境和人体健康具有潜在威胁,水环境中农药残留的研究是水质评估中必不可少的组成部分,而靶向筛查难以检测未知农药及其转化产物。因此,环境中农药残留及其转化产物的非靶向筛查亟需完善。本文依据农药组分非靶向筛查的分析流程,对近五年水质样品中农药残留靶向及非靶向筛查方法进行综述,梳理了近年来国内外食品与水环境中农药残留限量的相关法律法规,对水环境中农药残留分析方法的研究进展进行概述;总结了液液萃取(LLE)、固相萃取(SPE)、固相微萃取(SPME)等样品前处理方法的特点,在这些方法中,固相萃取是农药非靶向筛查的主要前处理方法,具有良好应用前景。本文还探讨了分析仪器从色谱检测到色谱-质谱联用的发展趋势,多种高分辨率质谱的产生为农药非靶向筛查提供了多层次的分析需求;同时通过总结近年来农药筛查确证相关的指导标准、质谱数据库与多种鉴定方法,指出水环境中农药污染分析技术的发展趋势。要点
(1) 基于固相萃取-高效液相色谱串联质谱的靶向筛查方法在环境农药检测领域应用广泛。
(2) 农药非靶向筛查在环境领域尚处于发展阶段,高分辨率质谱与质谱数据库为非靶向筛查技术提供了支持。
(3) 多种前处理技术联用与高效、自动化的数据处理技术是未来环境水样中农药非靶向筛查方法的发展趋势。
HIGHLIGHTS(1) The targeted screening method based on solid phase extraction-high performance liquid chromatography tandem mass spectrometry is widely used in the field of environmental pesticide detection.
(2) Non-targeted screening of pesticides is still in the development stage in the environmental field, and high-resolution mass spectrometry and mass spectrometry databases provide support for non-targeted screening technologies.
(3) The combination of multiple preparation technologies and efficient and automated data processing technologies is the development trend of non-targeted screening methods for pesticides in environmental water samples in the future.
Abstract:BACKGROUNDWith the advancement of agricultural intensification and urbanization, pesticide residues in a large numbers of water environments in the world have exceeded the prescribed limit. The issue of pesticide pollution in the water environment has received extensive attention from all sectors of society. As the largest pesticide producer and user country in the world, the amount of pesticide residues in the water environment in China is much higher than other developed countries. Available studies have detected 19 pesticides in seven typical river basins in China (the Yangtze River, Taihu Lake, Yellow River, Songhua River, Heilongjiang, Grand Canal and Dongjiang), with an average concentration ranging from 0.02 to 332.75ng/L. Pesticides and their transformation products pose potential threats to the ecological environment and human health. Research on pesticide residues in the water environment is an indispensable part of water quality assessment. However, targeted screening is difficult to detect unknown pesticides and their transformation products. Therefore, the non-targeted screening of pesticide residues and their transformation products in the environment needs to be improved.OBJECTIVESTo understand the pesticide pollution analysis techniques for environmental water samples.METHODSAccording to the analysis process of non-targeted screening of pesticide components, the targeted and non-targeted screening methods for pesticide residues in water quality samples in the past 5 years were reviewed, and the regulations and standards for pesticide residue limits and non-targeted screening of pesticides in water quality were summarized. The research progress of pesticide residue analysis methods in water environment in recent years was summarized.RESULTSThe characteristics of liquid-liquid extraction (LLE), solid-phase extraction (SPE), solid-phase microextraction (SPME) and other pre-treatment methods were reviewed. Among them, solid-phase extraction was the main pre-treatment method for non-targeted pesticide screening and had good applications prospects. The development trend of analytical instruments from chromatography to chromatography mass spectrometry was discussed, and the production of a variety of high-resolution mass spectrometry provided multi-level analysis requirements for non-targeted pesticide screening. Finally, the guidelines, mass spectrometry database and various identification methods related to pesticide screening confirmation in recent years were summarized, and the development trend of pesticide pollution analysis technology in the water environment was prospected.CONCLUSIONSHigh resolution mass spectrometry technology poses a challenge to the sample pretreatment and purification process. The combination of multiple technologies in the water sample pretreatment process is the future development trend. Research on non-targeted pesticide screening based on high-resolution mass spectrometry is widely studied in the field of food testing although it has low priority in the environmental field. Relevant organizations at home and abroad have not yet issued relevant standards for screening and confirmation of unknown substances. Currently, the confirmation of unknown screening requires manual data analysis, which cannot be fully automated.-
Keywords:
- high resolution mass spectrometry /
- non-targeted screening /
- pesticide /
- database
-
铅锌矿石多以硫化矿共生,或与其他金属共生,组成复合多金属硫化矿床。矿物中伴生的钨、钼、锡、锗、硒、碲等有益组分的含量对矿床的综合评价和矿产工业开发及利用具有重要意义[1]。
对于铅锌矿石的分析,在国家标准方法GB/T 14353—2014中,钨和钼采用氢氟酸-硝酸-高氯酸体系进行样品分解,以电感耦合等离子体质谱仪(ICP-MS)测定,当溶液中共存的铜含量>5%或铅含量>10%时,对钨、钼的测定分别产生不同程度的正、负干扰,该方法通过在标准溶液中等量补偿干扰元素的方式扣除测定干扰。各类地质样品中锡的含量常低于10 μg/g,可采用固体粉末发射光谱法测定[2],但铅锌矿的含硫量高,采用电火花激发时易引起样品飞溅跳样;王铁等[3]采用5种混合酸消解锰铁中的痕量锡,但针对铅锌矿中难熔锡石矿物的分解效果难以保证。国家标准方法中,锗和硒分别以氢氟酸-硝酸-硫酸和碳酸钠-氧化锌进行样品分解,均采用原子荧光光谱法测定,此溶液体系中共存的高含量铅(320 mg/L以上)干扰锗的测定,而硒采用半熔法-沸水提取的前处理方法使进入测定体系的主量金属元素大幅度减少,基本消除了干扰。碲元素的丰度低,熔矿后通常需要分离富集,刘正等[4]采用萃取法进行样品预处理,以石墨炉原子吸收光谱法测定碲的含量。国家标准中采用共沉淀分离的方法,当硒含量高于1 μg/g时可能干扰碲的测定。可见现有分析方法中,对铅锌矿有用组分进行综合评价时各元素采用分组或单独溶矿和测定的方式,多元素无法同时分析,操作强度大、效率低,且存在不可避免的主量元素干扰,影响了分析的准确度和精密度。
采用ICP-MS测定铅锌矿中的6种伴生元素,研究人员通常采用混酸分组处理样品。为了确保难熔元素锡完全分解,王佳翰等[5]同时使用硫酸和高氯酸高温冒烟消解,再以硝酸180℃复溶样品同时测定钨、钼、锡,样品处理时间长;非金属硒、碲含量较低,且易受主量元素干扰,陈波等[6]采用乙醇介质提高硒、碲的分析灵敏度。现有的熔矿和测定方法难以兼顾6种元素的同时、准确测定。本研究采用碱熔体系,熔矿后加入阳离子树脂交换分离钠盐,同时将造岩元素钾、铁、铝等及主量元素铅、锌从测定体系中分离,有效减小基体效应和矿石中铅的干扰,建立了以ICP-MS测定铅锌矿中的钨、钼、锡、锗、硒、碲的方法。
1. 实验部分
1.1 仪器及工作参数
iCAP Q型电感耦合等离子体质谱仪(美国ThermoFisher公司),主要工作参数如下:测定模式为KED模式;RF功率1150 W;等离子气流量15.0 L/min;辅助气流量1.0 L/min;雾化气流量1.0 L/min;进样泵流速为30 r/min;进样冲洗时间20 s;扫面方式为跳峰;单元素积分时间为1 s。
1.2 主要试剂
过氧化钠、三乙醇胺、柠檬酸为分析纯,三乙醇胺、柠檬酸作为络合剂使用。
柠檬酸溶液:浓度为0.8%,溶剂为水。
732型阳离子交换树脂:在交联为7%的苯乙烯-二乙烯共聚体上带磺酸基(—SO3H)的阳离子交换树脂。
铑(GSB04-1746-2004)、铼(GSB04-1745-2004)、硼(GSB04-1716-2004)、磷(GSB04-1741-2004)单元素标准储备溶液:浓度为1000 μg/mL,碘(GSB05-1137-1999)单元素标准溶液:浓度为100 μg/g。以上单元素标准储备溶液均由国家有色金属及电子材料分析测试中心定值,逐级稀释后配制成实验用内标液,铼、铑浓度为0.5 μg/mL,硼、磷、碘浓度为1.0 μg/mL。
实验用水为超纯水(电阻率18.0 MΩ·cm)。
1.3 实验方法
1.3.1 实验样品
实验样品为铜铅锌矿石标准物质,与实际样品具有相近的基体组成和主量元素含量。包括:GBW07170为西藏自治区地质矿产勘查开发局中心实验室研制的铜、铅矿石成分分析标准物质;GBW07164和GBW07167为中国地质科学院地球物理地球化学勘查研究所研制的富铜(银)矿石和铅精矿成分分析标准物质;BY0110-1为云南锡业公司研制的锌精矿成分分析标准物质,矿物类型为氧化矿;GBW07234和GBW07235为湖北地质实验研究所研制的铜矿石和铅矿石成分分析标准物质。
1.3.2 样品处理
称取待测矿样0.4000 g于刚玉坩埚中,用塑料勺加入2.0 g过氧化钠,坩埚置于预热至500℃的耐火板上放置5 min,再转移到升温至500℃的马弗炉中,升温至750℃,保温10 min,取出后冷却至约100℃,坩埚放入100 mL聚四氟乙烯烧杯中,加入80 mL热水(约80℃)提取,加入2 mL三乙醇胺,加入0.5 μg/mL铼内标溶液5.00 mL,搅拌均匀,取出坩埚,冷却后定容于100 mL容量瓶中,得待测液。
1.3.3 测定液制备
搅拌过程中移取10.0 mL待测液于50 mL聚四氟乙烯坩埚中,加入0.8%柠檬酸溶液8 mL,摇匀,再加入8~9 g阳离子树脂,摇匀后于回旋振荡器上以振速150~160 r/min振荡15 min,充分离子交换,加入8 mL水,继续于振荡器上振荡20 min后,定容于50 mL容量瓶中,得测定液。
1.3.4 标准工作溶液的配制
在100 mL容量瓶中加入逐级稀释后的钨、钼、锡、锗、硒、碲标准溶液,加入2.0 g过氧化钠、内标溶液5.00 mL(内标元素浓度Re:0.5 μg/mL;B:1.0 μg/mL)和2 mL三乙醇胺,定容,摇匀,配制成钨、钼、锡、锗、硒、碲的混合标准曲线溶液,随同样品待测液(1.3.2节)制备成工作曲线溶液。各元素浓度见表 1。
表 1 钨钼锡锗硒碲标准工作溶液Table 1. Standard working solution of tungsten, molybdenum, tin, germanium, selenium and tellurium混合标准溶液系列 浓度(ng/mL) W Mo Sn Ge Se Te S0 0.0 0.0 0.0 0.0 0.0 0.0 S1 4.0 10.0 4.0 2.0 2.0 1.0 S2 8.0 20.0 8.0 4.0 4.0 2.0 S3 20.0 50.0 20.0 10.0 10.0 5.0 S4 40.0 100.0 40.0 20.0 20.0 10.0 S5 80.0 200.0 80.0 40.0 40.0 20.0 S6 120.0 400.0 120.0 60.0 60.0 30.0 S7 200.0 1000.0 200.0 100.0 100.0 50.0 2. 结果与讨论
2.1 溶矿方式的选择
多元素系统分析中,对熔矿方式的选择要优先考察矿物晶格稳定的难熔元素的熔矿完全程度。6种待测元素中钨、钼、锗[7]、硒、碲[8]可采用高氯酸(硫酸)-硝酸-氢氟酸-(盐酸)以敞开酸溶的方式进行样品分解,样品分解效果好,但采用敞开酸溶法进行锡矿石元素分析时存在矿物分解不完全的风险,且方法适用矿种范围窄[9]。高压封闭酸溶的方式使锡消解完全,但需增压和延长样品消解时间[10],造成溶矿效率低且无法大批量处理样品。
对于含锡石的难溶铅锌矿石,采用过氧化钠熔融可以使样品分解完全。但碱性熔剂引入了大量盐类物质和基体组分,并含有一定量的金属、非金属杂质,造成分析空白偏高。本法通过将熔剂过筛(10目)、混匀、固定熔剂加入量的方式使空白值保持一致。
2.2 测定介质及基体去除
经过氧化钠熔融,样品溶液体系中的总固体溶解量(TDS)较高(大于0.5%),并通过进样系统沉积于采样锥、截取锥和离子透镜,影响ICP-MS测试的稳定性[11]。其中高含量的钠盐将吸收等离子体电离能,降低中心通道的温度,对待测元素产生电离抑制。
在测定液中加入的柠檬酸,通过N或O电负性较强的阴离子作用于钨、钼、锡金属阳离子中心形成稳定的复合物;锗、硒和碲在强碱性溶液中分别以锗酸根(GeO32-)、硒酸根(SeO42-)、碲酸根(H4TeO62-)的形式存在。强酸型阳离子树脂中的H+在溶液中与Na+发生交换,降低了盐类浓度[12],使溶液由强碱性逐渐转化为弱酸性,离子交换后的溶液pH=4~5;同时使造岩元素铁、铝、钙、镁以及基体元素从溶液中分离,减少了基体干扰。三乙醇胺、柠檬酸作为络合剂,有助于铁、铝元素的交换,使溶液澄清。
选取标准物质GBW07170、GBW07167和BY0110-1,考察主量元素铜、铅、锌、铁的去除情况,表 2中的数据表明,按照本实验方法处理各主量元素的去除率均高于96%,这些主量元素在测定介质中的实际浓度为0.192 ng/mL~1.28 μg/mL,对待测元素的干扰可基本忽略。
表 2 主量元素去除试验Table 2. Removal tests of the principal components标准物质编号 Cu Pb Zn Fe 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) GBW07170 12.59 1.28×10-3 99.99 2.24 8×10-5 99.99 1.21 8×10-5 99.99 - 8×10-3 - GBW07167 0.028 9.6×10-4 96.57 57.1 8×10-2 99.86 3.3 1.84×10-3 99.94 12 0.16 98.67 BY0110-1 0.135 2.4×10-5 99.98 0.35 3.44×10-3 99.02 42.98 8.24×10-4 99.99 - 7.2×10-3 - 注:“-”表示该元素无定值或其去除率无法计算。 2.3 质谱分析条件
2.3.1 内标元素的选择和加入
选择铼、铑及离子行为与待测元素相近的硼、磷、碘元素(在碱性溶液中以阴离子形式存在)进行内标试验。这些内标元素与待测元素钨、钼、锡、锗、硒、碲的第一电离电位范围为7.460~10.486 eV与7.099~9.752 eV。按照金属和非金属元素进行分组内标试验,分次考察不同仪器条件和不同时间下钨、钼、锡、锗、硒、碲与内标元素的计数值之比,计算各元素测定值的相对标准偏差(RSD,n≥20),试验结果如表 3。
表 3 内标元素选择试验Table 3. Selection tests of internal standards内标元素 对应待测元素 RSD(%) 各类样品中内标元素含量范围 Re W、Mo、Sn、Ge 0.92~2.20 铅锌矿石:0.24~3.5 μg/g
土壤样品:0.074~0.53 ng/gRh W、Mo、Sn、Ge 1.03~3.55 贵金属矿石:0.017~22 ng/g B Se、Te 1.66~2.43 土壤样品:4.6~155 μg/g P Se、Te 3.68~4.94 土壤样品:140~1490 μg/g I Se、Te 3.93~5.81 土壤样品:0.3~2.9 μg/g 注:各元素大致含量范围参考国家一级标准物质定值。 在各类地质样品中,铼、铑、碘元素的含量普遍低于10 μg/g,而磷的自然丰度均高于100 μg/g。铼与钨钼锡锗、硼与硒碲的多次测定的相对标准偏差均低于2.5%,测试相关性优于铑、磷和碘内标元素。同时考虑到碘的氢化物可能对碲产生质谱干扰,本实验最终以铼和硼分别作为金属和非金属元素的内标元素。
2.3.2 质谱干扰
质谱常见干扰包括同量异位素的干扰和多原子离子复合物(氢、氧、氩复合物等)的干扰[13]。在本方法中,同量异位素干扰如74Se对74Ge的干扰、氩气中的杂质82Kr对82Se的测定干扰;而多原子离子复合物的干扰包括182W受1H181Ta的干扰,95Mo受40Ar55Mn的干扰,118Sn可能受到16O102Ru和12C106Pd的干扰,铁氧化物58Fe16O和镍氧化物58Ni16O干扰74Ge的测定,66Zn16O干扰82Se的测定,128Te可能受到1H127I的干扰。
对同量异位素的干扰在线校正,选择干扰元素的异质同位素进行定量测定,根据干扰元素同位素的丰度比计算干扰系数,采用数学公式校正的方法,仪器自动对干扰进行扣除,干扰校正方程见表 4。多原子离子复合物的干扰较为复杂,且氩复合物的干扰难以避免,在测定时选择动能歧视(KED)模式[14],同时加入强酸型阳离子树脂交换去除溶液中大部分的稀土元素、Fe3+、Ni2+、Mn2+及高含量Cu2+、Pb2+、Zn2+等离子,干扰基本可以消除。
表 4 同位素、相关系数、质谱干扰扣除及方法检出限Table 4. Isotope, correlation coefficient, mass spectrum interference deduction and detection limits元素 同位素 相关系数 干扰校正 方法检出限(μg/g) 树脂处理前 树脂处理后 W 182W 0.9981 0.9995 - 0.50 Mo 95Mo 0.9990 0.9999 - 0.15 Sn 118Sn 0.9954 0.9994 - 0.29 Ge 74Ge 0.9992 0.9997 -0.0407×78Se 0.15 Se 82Se 0.9989 0.9995 -1.0010×83Kr 0.05 Te 128Te 0.9923 0.9995 - 0.03 注:“-”表示元素无干扰或存在的干扰极小,可忽略。 2.4 分析方法技术指标
2.4.1 工作曲线相关性及方法检出限
制备工作曲线溶液时进行基体匹配,因此溶液介质中存在较高浓度的钠盐。本法通过阳离子树脂处理工作曲线溶液,所得工作曲线的相关性优于不加阳离子树脂处理的方法,与同类酸溶研究相比,硒、碲工作曲线的相关性较优[8]。由于加入大量碱性熔剂进行样品熔融,受试剂空白影响,钨、钼、锡元素的检出限高于混合酸酸溶的前处理方法[5],碲的检出限优于国家标准方法和萃取分离-石墨炉原子吸收光谱法检出限0.20 μg/g和0.055 μg/g[4],曲线相关系数及方法检出限见表 4。考虑实际样品中各元素的含量,本方法满足铅锌矿石中多元素的分析测试要求。
2.4.2 方法准确度和精密度
选取标准物质GBW07234、GBW07164及GBW07235按照1.3节实验方法进行准确度试验,计算相对误差和加标回收率;对样品进行平行分析(n=8),计算相对标准偏差(RSD),分析结果列于表 5。标准物质测定的相对误差范围为-8.33%~7.00%,加标回收率为94.9%~107.5%,多次测定相对标准偏差(RSD)均小于8%,方法准确度满足地质矿产实验室测试质量管理规范(DZ/T 0130—2006)的要求(按照样品中各元素含量计算可允许最小相对偏差为16.98%)。与混合酸酸溶的方法相比,钨、钼和锡的相对标准偏差(RSD)略高于ICP-MS法(钨、钼和锡分别为2.9%~3.6%、2.4%~2.9%和2.7%~3.9%)[5],其中钼和锗的相对标准偏差(RSD)略低于孟时贤等测定铅锌矿采用的电感耦合等离子体发射光谱法1.5%~5.4%和1.4%~5.7%[15]。
表 5 准确度和精密度试验Table 5. Accuracy and precision tests of the method标准物质编号 元素 参考值(μg/g) 测定值(μg/g) 相对误差(%) 加标量(μg/g) 测定值(μg/g) 回收率(%) RSD(%) GBW07234 W 3.9 3.88 -0.51 5.0 8.69 95.8 4.7 Mo 2.4 2.32 -3.33 2.0 4.51 105.5 2.2 Sn 3.8 4.05 6.58 5.0 8.93 102.6 3.5 Ge 0.93 0.94 1.08 1.0 1.91 98.0 2.7 Se 0.89 0.86 -3.37 1.0 1.84 95.0 6.1 Te 0.13 0.12 -7.69 0.2 0.34 105.0 7.6 GBW07164 W 56 54.5 -2.68 50.0 105.5 99.5 2.2 Mo 137 137.6 0.44 150.0 282.3 98.3 1.5 Sn 9.7 9.2 -5.15 10.0 18.7 94.9 4.6 Ge 3.3 3.1 -6.06 5.0 8.90 107.2 2.6 Se 24 25.1 4.58 30.0 55.3 102.4 1.8 Te 1.8 1.65 -8.33 2.0 3.71 95.0 5.7 GBW07235 W 17.6 18.35 4.26 20.0 38.22 103.1 3.2 Mo 1.6 1.65 3.12 2.0 3.63 101.5 4.8 Sn 3.0 3.21 7.00 5.0 7.97 99.4 5.6 Ge 0.90 0.88 -2.22 1.0 1.91 101.0 3.1 Se 1.7 1.66 -2.35 2.0 3.85 107.5 5.3 Te 3.9 4.09 4.87 5.0 8.88 99.6 2.2 3. 结论
采用铅锌矿石国家标准方法和传统分析方法,无法同时测定钨、钼、锡、锗、硒、碲,其中低含量元素需要分离富集,分析效率低、流程长且存在不可避免的主量元素干扰。本方法采用过氧化钠碱熔体系,在样品前处理环节通过阳离子树脂交换分离高含量钠盐和可能产生干扰的高含量铅,实现了在一个溶液体系中快速、准确、同时测定多种元素。本研究在降低方法检出限等方面可加强探索以扩大方法适用范围。本方法应用树脂分离富集技术去除干扰,优化了测定介质,为低含量难熔元素的准确测定提供了思路,同时可考虑应用于地质样品中硼、碘等元素的分析测试。
-
表 1 基于高分辨率质谱(HRMS)不同分析方法的应用
Table 1 Application of different analysis methods based on high-resolution mass spectrometry (HRMS)
方法应用 发表时间 筛查策略 样品基质 检测物质 样品前处理方法 检测仪器 数据分析软件 数据库 参考文献 非靶向筛查涪陵地区有机污染物 2020 非靶向筛查 表层水、土壤及沉积物 农药、药物及个人护理产品、塑料添加剂 固相萃取(HLB柱) 超高效液相色谱- 四极杆/静电场轨道阱高分辨质谱 Compound Discoverer 3.0 mzCloud数据库 [14] 检测青菜中214种农药残留 2020 靶向筛查 青菜样品 农药 QuEChERS方法 超高效液相色谱- 四极杆飞行时间质谱 - - [29] 婴儿配方食品中兽药和农药的多残留筛选 2020 靶向筛查 婴儿配方奶粉 兽药、农药 分散固相萃取(CleanertLipoNo管) 超高效液相色谱- 四极杆/静电场轨道阱高分辨质谱联用 TraceFinder 4.0、MZvault 2.0 - [30] 非靶向筛查谷物中农药残留 2020 非靶向筛查 谷物 农药 QuEChERS方法 超高效液相色谱串联三重四极杆质谱、液相色谱-四极杆飞行时间质谱 - - [31] 定量检测加工水果中的250种农药 2020 靶向筛查 加工水果 农药 QuEChERS方法 超高效液相色谱- 串联质谱 - - [3] 可疑和非靶向筛查表征普吉特海湾近海海洋环境中新兴污染物 2020 可疑和非靶向筛查 水 除草剂、药物、增塑剂、阻燃剂等 固相萃取(HLB柱) 液相色谱-四极杆飞行时间质谱 MassHunterProfinder (B.08.00)、Profiler Professional (B.13.00,MPP)、MassHunter定性分析(B.08.00)、XCMS Online NORMAN数据库、内部数据库、mzCloud数据库、EU MassBank数据库 [1] 中国淀山湖潜在污染物的非目标和目标分析 2020 靶向和非靶向筛查 水 农药、药物、表面活性剂、塑料添加剂 固相萃取(Oasis WAX,MCX、HLB) 超高效液相色谱- 四极杆/轨道阱质谱 Composite Discoverer 3.0 mzCloud数据库 [2] 水中2316种新兴污染物的综合定量分析方法 2020 靶向筛查 水 农药、药物、工业化学品等 固相萃取(Oasis HLB、Isolute ENV+、Strata-X-AW、Strata-X-CV) 超高效液相色谱- 四极杆飞行时间质谱 - - [6] 食品样品中农药多残留综合筛选和鉴定 2020 靶向和非靶向筛查 食品 农药 QuEChERS方法 气相色谱-串联质谱、超高效液相色谱-四极杆/静电场轨道阱高分辨质谱 Compound Discoverer 在线数据库(ChemSpider、Massbank和mzCloud等) [32] 可疑和非目标筛查评估德涅斯特河流域的化学污染状况 2020 可疑和非靶向筛查 水 农药、药物、兴奋剂等 固相萃取(HLB圆盘) 超高效液相色谱- 四极杆飞行时间质谱 TASQ Client 2.1、DataAnalysis 5.1 内部数据库 [12] 可疑筛查分析废水处理过程中的微量污染物 2019 可疑筛查 水 阻燃剂、农药、抗氧化剂、多环芳烃 固相萃取(Elut-Bond C18滤筒) 气相色谱-四极杆飞行时间质谱 Agilent Unknown Analysis software (B.08.00) NIST 14、大型个人化合物数据库(PCDL) [33] 茶叶中农药的非靶向筛选和靶向测定 2019 靶向和非靶向筛查 茶叶 农药 分散固相萃取 液相色谱-四极杆/静电场轨道阱高分辨质谱仪 - 内部数据库 [24] 可疑筛查表征受污染的地下水和径流中的新兴污染物 2019 可疑筛查 水 杀真菌剂、除草剂、抗生素等 固相膜萃取(SDB-RPS、SDB-XC) 液相色谱-四极杆飞行时间质谱联用 Data AnalysisⓇ4.4、TASQⓇ 1.4 Pesticide Screener 2.1、ToxScreener 2.1 [13] 海洋环境中的新兴有机污染物的靶向和非靶向筛查 2019 靶向和非靶向筛查 水 药物个人护理产品农药 固相萃取 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱 Compound Discoverer 2.1、SIMCA 2.2 ChemSpider数据库 [11] 目标和可疑筛查表征瑞士地下水样中的农药及农药转化产物 2019 靶向和可疑筛查 水 农药及农药转化产物 真空辅助蒸发浓缩 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱 MetFrag ChemSpider数据库 [8] 宽范围筛选地表水及地下水中农药 2019 非靶向筛查 水 农药及农药转化产物 固相萃取(HLB柱) 液相色谱-四极杆飞行时间质谱 MassLynx v4.1 自制数据库 [34] 宽范围筛选和定量分析综合调查巴西地表水中的农药 2019 靶向和非靶向筛查 水 农药及农药转化产物 固相萃取 气相色谱-四极杆飞行时间质谱、液相色谱-四极杆飞行时间质谱 商业软件 气相、液相色谱专用数据库 [35] 目标分析和可疑分析评估农业食品工业废水中农药水平 2019 靶向和可疑筛查 水 农药及农药转化产物 固相萃取(HLB柱) 液相色谱-四极杆线性离子阱串联质谱、液相色谱-四极杆飞行时间质谱 MasterViewTM1.1、PeakViewTM、AnalystTMTF 1.5、PathPred、EAWAG-BBD MassBank数据库 [36] 可疑、非目标和目标筛查评估地中海流域中新兴污染物 2019 靶向、可疑和非靶向筛查 水 农药、药物、个人护理产品及其他毒素 固相萃取(HLB柱) 液相色谱-四极杆飞行时间质谱 Waters UNIFI软件 ChemSpider数据库 [10] 非靶向快速筛查茶饮料中未知农药残留 2019 非靶向筛查 茶饮料 农药 分散液液微萃取 超高效液相色谱-四极杆飞行时间质谱 PeakView2.0、ChemDraw Ultra 14.0 - [37] 利用果蔬中485种农药的精确质量数据库和光谱库直接进行定性鉴定的新方法 2018 非靶向筛查 水果 农药 固相萃取 液相色谱-四极杆飞行时间质谱 Agilent MassHunter PCDL Manager (B.04.00)、Qualitative MassHunter 自制数据库 [17] 圣华金河三角洲的目标化合物和可疑化合物筛查 2017 靶向和可疑筛查 水 药物、阻燃剂、转化产物等 固相萃取(HLB、Strata XAW,Strata XCW、Isolute ENV+) 液相色谱-飞行时间质谱、气相色谱-飞行时间质谱 Agilent MassHunter定性分析B.07、Eawag途径预测系统(EAWAG-PPS25)、安捷伦分子结构关联器(MSC,B.07) Agilent LC/MS农药PCDL、Agilent GC/Q- TOF-农药PCDL [38] 快速筛查和识别地表和饮用水中的化学危害 2017 靶向、可疑和非靶向筛查 水 农药、药品、个人护理产品 直接进样/ 固相萃取(HLB柱) 液相色谱-四极杆飞行时间串联质谱 PeakView、MultiQuant ChemSpider数据库 [39] 综合分析水样中符合LC-MS要求且具有广泛理化性质的有机化学品 2017 靶向筛查 水 农药 固相萃取 液相色谱-飞行时间质谱 - - [40] 非靶向快速筛查进口粮谷中未知的农药残留 2017 非靶向筛查 粮谷 农药 快速提取农药 超高效液相色谱-四极杆飞行时间质谱 Agilent MassHunter定性软件、PCDL (Personal Compound Database & Library) 自制数据库 [41] 废水样品的非目标分析 2016 非靶向筛查 水 农药、药物等 固相萃取(Oasis MAX和Oasis MCX柱) 超高效液相色谱-离子淌度-四极杆串联飞行时间质谱仪、二维液相色谱-离子淌度-四极杆串联飞行时间质谱仪 Agilent IMMS Browser B.07.01 software CCS数据库 [7] 华北地区北京和天津地下水中1300种有机污染物的筛选 2016 靶向筛查 水 农药、多环芳烃、香料等 固相萃膜取(玻璃膜纤维盘、苯乙烯二乙烯基苯圆盘、活性炭圆盘) 液相色谱-飞行时间质谱 - - [42] 非目标筛查方法检测合法和非法药物以及个人护理产品 2016 非靶向筛查 水 药物、农药、多酚等 固相萃取 超高效液相色谱- 四极杆飞行时间二级质谱 Analyst、Peak View 1.0、XICmanager、MultiQuant 2.0 - [43] 水果、蔬菜中208种农药残留筛查确证能力的对比 2015 靶向和非靶向筛查 蔬菜、水果 农药 QuEChERS方法 气相色谱-三重四极杆质谱仪、气相色谱-四极杆飞行时间质谱仪 - NIST数据库 [26] 表 2 质谱数据确认化学残留物的验收标准
Table 2 Acceptance criteria for confirmation of identification of chemical residues using exact mass data
MS模式 MS数据验收标准 MS/MS数据验收标准 MS和MS/MS数据验收标准 信噪比 S/N≥3 S/N≥3 S/N≥3 保留时间 ≤0.2min,或2.5%以内(不超过0.5min),或在建立的误差范围内(不超过0.5min) 具有结构意义的离子数 2 2 2 质量精度 ≤5ppm ≤10ppm MS≤5ppm; MS/MS≤10ppm -
Tian Z, Peter K T, Gipe A D, et al. Suspect and nontarget screening for contaminants of emerging concern in an Urban Estuary[J]. Environmental Science & Technology, 2020, 54(2): 889-901. doi: 10.1021/acs.est.9b06126
Meng D, Fan D L, Gu W, et al. Development of an integral strategy for non-target and target analysis of site-specific potential contaminants in surface water: A case study of Dianshan Lake, China[J]. Chemosphere, 2020, 243: 125367. doi: 10.1016/j.chemosphere.2019.125367
Valera-Tarifa N M, Santiago-Valverde R, Hernandez-Torres E, et al. Development and full validation of a multiresidue method for the analysis of a wide range of pesticides in processed fruit by UHPLC-MS/MS[J]. Food Chemistry, 2020, 315: 126304. doi: 10.1016/j.foodchem.2020.126304
Salvador A, Romain Carrière, Ayciriex S, et al. Scout-multiple reaction monitoring: A liquid chromatography tandem mass spectrometry approach for multi-residue pesticide analysis without time scheduling[J]. Journal of Chromatography A, 2020, 1621: 461046. doi: 10.1016/j.chroma.2020.461046
Zhang H, Watts S, Philix M C, et al. Occurrence and distribution of pesticides in precipitation as revealed by targeted screening through GC-MS/MS[J]. Chemosphere, 2018, 211: 210-217. doi: 10.1016/j.chemosphere.2018.07.151
Gago-Ferrero P, Bletsou A A, Damalas D E, et al. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRIVIS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes[J]. Journal of Hazardous Materials, 2020, 387: 121712. doi: 10.1016/j.jhazmat.2019.121712
Stephan S, Hippler J, Koehler T, et al. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC plus LC-IM-qTOF-MS using a CCS database[J]. Analytical and Bioanalytical Chemistry, 2016, 408(24): 6545-6555. doi: 10.1007/s00216-016-9820-5
Kiefer K, Mueller A, Singer H, et al. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS[J]. Water Research, 2019, 165(15): 114972. http://www.sciencedirect.com/science/article/pii/S0043135419307468
Shao B, Li H, Shen J, et al. Nontargeted detection methods for food safety and integrity[J]. Annual Review of Food Science and Technology, 2019, 10(1): 429-455. doi: 10.1146/annurev-food-032818-121233
Canccapa C A, Pico Y, Ortiz X, et al. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean River Basin[J]. Science of the Total Environment, 2019, 687: 355-368. doi: 10.1016/j.scitotenv.2019.06.057
Vanryckeghem F, Huysman S, van Langenhove H, et al. Multi-residue quantification and screening of emerging organic micropollutants in the Belgian Part of the North Sea by use of speedisk extraction and Q-orbitrap HRMS[J]. Marine Pollution Bulletin, 2019, 142: 350-360. doi: 10.1016/j.marpolbul.2019.03.049
DiarnantiI K S, Alygizakis N A, Nika M C, et al. Assessment of the chemical pollution status of the Dniester River Basin by wide-scope target and suspect screening using mass spectrometric techniques[J]. Analytical and Bioanalytical Chemistry, 2020, 412(20): 4893-4907. doi: 10.1007/s00216-020-02648-y
Pinasseau L, Wiest L, Fildier A, et al. Use of passive sampling and high resolution mass spectrometry using a suspect screening approach to characterise emerging pollutants in contaminated groundwater and runoff[J]. Science of the Total Environment, 2019, 672: 253-263. doi: 10.1016/j.scitotenv.2019.03.489
许惠, 汪贞, 古文, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱技术非靶向筛查涪陵地区有机污染物[J]. 生态与农村环境学报, 2020, 36(3): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202003019.htm Xu H, Wang Z, Gu W. Non-target analysis of organic pollutants based on ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (UPLC-Q Orbitrap HRMS) at Fuling City[J]. Journal of Ecology and Rural Environment, 2020, 36(3): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202003019.htm
简秋, 朱光艳. 欧盟农药残留立法管理的制度简介和启示[J]. 农药科学与管理, 2011, 32(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NYKG201101015.htm Jian Q, Zhu G Y. Introduction and enlightenment of the EU pesticide residue legislation management system[J]. Pesticide Science and Administration, 2011, 32(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NYKG201101015.htm
张志恒, 陈丽萍. 欧盟农药MRL标准及中国的主要差距[J]. 世界农业, 2004(10): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY200410014.htm Zhang Z H, Chen L P. EU pesticide MRL standards and the main gaps in China[J]. World Agriculture, 2004(10): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY200410014.htm
Pang G F, Fan C L, Chang Q Y, et al. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and QTOF spectrum library[J]. Journal of AOAC International, 2018, 101(4): 1156-1182. doi: 10.5740/jaoacint.17-0125
Campo J, Masi A, Blasco C, et al. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River basins[J]. Journal of Hazardous Materials, 2013, 263: 146-157. doi: 10.1016/j.jhazmat.2013.09.061
Koeck S M, Villagrasa M, Alda M L D, et al. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact[J]. Science of the Total Environment, 2013, 458-460: 466-476. doi: 10.1016/j.scitotenv.2013.04.010
Shamsipur M, Yazdanfar N, Ghambarian M. Combination of solid-phase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice[J]. Food Chemistry, 2016, 204: 289-297. doi: 10.1016/j.foodchem.2016.02.090
Caldas S S, Rombaldi C, de Oliveira A J L, et al. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry[J]. Talanta, 2016, 146: 676-688. doi: 10.1016/j.talanta.2015.06.047
吴春英, 谷风, 白鹭, 等. 固相萃取-超高效液相色谱-三重四极杆质谱联用同时测定水中菊酯类农药多残留[J]. 分析科学学报, 2017, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201701012.htm Wu C Y, Gu F, Bai L, et al. Simultaneous determination of pyrethroid pesticides rresidues in water using solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Science, 2017, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201701012.htm
Wu J, Mei M, Huang X. Fabrication of boron-rich multiple monolithic fibers for the solid-phase microextraction of carbamate pesticide residues in complex samples[J]. Journal of Separation Science, 2019, 42(4): 878-887. doi: 10.1002/jssc.201800996
Wang F, Li S, Feng H, et al. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry[J]. Food Chemistry, 2019, 275: 530-538. doi: 10.1016/j.foodchem.2018.09.142
Li J X, Li X Y, Chang Q Y, et al. Screening of 439 pesti-cide residues in fruits and vegetables by gas chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and Q-TOF spectrum library[J]. Journal of AOAC International, 2018, 101(5): 1631-1638. doi: 10.5740/jaoacint.17-0105
曹新悦, 庞国芳, 金铃和, 等. 气相色谱-四极杆-飞行时间质谱和气相色谱-串联质谱对水果、蔬菜中208种农药残留筛查确证能力的对比[J]. 色谱, 2015, 33(4): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201504010.htm Cao X Y, Pang G F, Jin L H, et al. Comparison of the performances of gas chromatography quadrupole time of flight mass spectrometry and gas chromatography-tandem mass spectrometry in rapid screening and confirmation of 208 pesticide residues in fruits and vegetables[J]. Chinese Journal of Chromatography, 2015, 33(4): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201504010.htm
Gago-Ferrero P, Krettek A, Fischer S, et al. Suspect screening and regulatory databases: A powerful combination to identify emerging micropollutants[J]. Environmental Science & Technology, 2018, 52(12): 6881-6894. doi: 10.1021/acs.est.7b06598
Gago-Ferrero P, Schymanski E L, Bletsou A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS[J]. Environmental Science & Technology, 2015, 49(20): 12333-12341. http://europepmc.org/abstract/MED/26418421
朱峰, 于洁, 霍宗利, 等. QuEChERS-超高效液相色谱-四极杆飞行时间质谱法检测青菜中214种农药残留[J]. 中国食品卫生杂志, 2020, 32(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202001007.htm Zhu F, Yu J, Huo Z L, et al. Determination of 214 pesticide residues in green vegetables using QuEChERS-ultrahigh performance liquid chromatography coupled with quadrupole time of fligh tmasss pectrometry[J]. Chinese Journals of Food Hygiene, 2020, 32(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202001007.htm
Zhang L Q, Zhang X M, Zhang H W, et al. Multiclass and multiresidue screening of veterinary drugs and pesticides in infant formula using quadrupole-orbitrap MS with PRM scan mode[J]. Journal of Mass Spectrometry, 2020, 55(3): e4497. doi: 10.1002/jms.4497
Wang T, Liigand J, Frandsen H L, et al. Standard substances free quantification makes LC/ESI/MS non-targeted screening of pesticides in cereals comparable between labs[J]. Food Chemistry, 2020, 318: 126460. doi: 10.1016/j.foodchem.2020.126460
Feng C, Xu Q, Qiu X, et al. Comprehensive strategy for analysis of pesticide multi-residues in food by GC-MS/MS and UPLC-Q-orbitrap[J]. Food Chemistry, 2020, 320: 126576. doi: 10.1016/j.foodchem.2020.126576
Wang Y, Gao W, Wang Y, et al. Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF×MS during wastewater treatment processes[J]. Journal of Hazardous Materials, 2019, 376: 153-159. doi: 10.1016/j.jhazmat.2019.05.031
Fonseca E, Renau P A, Ibanez M, et al. Investigation of pesticides and their transformation products in the Jucar River hydrographical basin (Spain) by wide-scope high-resolution mass spectrometry screening[J]. Environmental Research, 2019, 177: 108570. doi: 10.1016/j.envres.2019.108570
Della F A, Wielens B R, Frederigi B S, et al. Comprehensive investigation of pesticides in Brazilian surface water by high resolution mass spectrometry screening and gas chromatography-mass spectrometry quantitative analysis[J]. Science of the Total Environment, 2019, 669: 248-257. doi: 10.1016/j.scitotenv.2019.02.354
Campos-Mañas M C, Plaza B P, Belen M A, et al. Determination of pesticide levels in wastewater from an agro-food industry: Target, suspect and transformation product analysis[J]. Chemosphere, 2019, 232: 152-163. doi: 10.1016/j.chemosphere.2019.05.147
伍颖仪, 陈中, 张思群, 等. 非靶向快速筛查茶饮料中未知农药残留[J]. 食品工业科技, 2019, 40(15): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915031.htm Wu Y Y, Chen Z, Zhang S Q, et al. Non-target rapid screening of unknown pesticide residues in tea beverage[J]. Science and Technology of Food Industry, 2019, 40(15): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915031.htm
Moschet C, Lew B M, Hasenbein S, et al. LC- and GC-QTOF-MS as complementary tools for a comprehensive micropollutant analysis in aquatic systems[J]. Environmental Science & Technology, 2017, 51(3): 1553-1561. doi: 10.1021/acs.est.6b05352
Kaserzon S L, Heffernan A L, Thompson K, et al. Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter[J]. Chemosphere, 2017, 182: 656-664. doi: 10.1016/j.chemosphere.2017.05.071
Chau H T C, Kadokami K, Ifuku T, et al. Development of a comprehensive screening method for more than 300 organic chemicals in water samples using a combination of solid-phase extraction and liquid chromatography-time-of-flight-mass spectrometry[J]. Environmental Science and Pollution Research, 2017, 24(34): 26396-26409. doi: 10.1007/s11356-017-9929-x
周秀锦, 陈宇, 杨赛军, 等. 超高效液相色谱-四极杆飞行时间质谱法非靶向快速筛查进口粮谷中未知的农药残留[J]. 色谱, 2017, 35(8): 787-793. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201708001.htm Zhou X J, Chen Y, Yang S J, et al. Rapid screening of pesticide residues in imported grains by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(8): 787-793. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201708001.htm
Kong L, Kadokami K, Hanh T D, et al. Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China[J]. Chemosphere, 2016, 165: 221-230. doi: 10.1016/j.chemosphere.2016.08.084
Andr C M J, Carmona E, Pico Y. Universal method to determine acidic licit and illicit drugs and personal care products in water by liquid chromatography quadrupole time-of-flight[J]. Methods, 2016, 3: 307-314. http://pubmedcentralcanada.ca/pmcc/articles/PMC4840423/
Omar T F T, Ahmad A, Aris A Z, et al. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds[J]. Trends in Analytical Chemistry, 2016, 85: 241-259. doi: 10.1016/j.trac.2016.08.004
刘慧杰, 张平允, 姜蕾, 等. 液液萃取气相色谱-ECD法同时测定饮用水中的13种农药[J]. 净水技术, 2018, 37(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201806010.htm Liu H, Zhang P Y, Jiang L, et al. Simultaneous determination of 13 pesticides in drinking water by liquid liquid extraction gas chromatography-ECD method[J]. Water Purification Technology, 2018, 37(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201806010.htm
罗晓飞, 吴凌, 孙成均, 等. 固相膜萃取-气相色谱-串联质谱法测定饮用水中67种农药残留[J]. 卫生研究, 2019, 48(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ201901021.htm Luo X F, Wu L, Sun C J, et al. Determination of 67 pesticides in drinking water by solid phase extration disk extraction-gas chromatography-tandem mass spectrometry[J]. Journal of Hygiene Research, 2019, 48(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ201901021.htm
许小茜. 固相膜萃取-高效液相色谱法对饮用水中农药残留的检测分析[J]. 山东工业技术, 2015(11): 240-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201511207.htm Xu X Q. Detection and analysis of pesticide residues in drinking water by solid phase extration disk extraction-high performance liquid chromatography[J]. Shandong Industrial Technology, 2015(11): 240-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201511207.htm
王雷, 张艳霞. 分散液液微萃取-气相色谱法快速测定水中十五种有机磷类农残[J]. 能源环境保护, 2016, 30(2): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201602016.htm Wang L, Zhang Y X. Ananlysis of fifteen organophosphorus pesticide residues in water samples by dispersive liquid-liquid microextraction coupled with gas chromatography[J]. Energy Environmental Protection, 2016, 30(2): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201602016.htm
Albishri H M, Aldawsari N A M, Abd E D. Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with reversed-phase liquid chromatography for determination of organophosphorus pesticides in water samples[J]. Electrophoresis, 2016, 37(19): 2462-2469. doi: 10.1002/elps.201600107
于佩, 甘志永, 徐蕾. 固相微萃取-气相色谱-三重四极杆质谱法同时测定饮用水中8种有机氯[J]. 环境科技, 2020, 33(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ202001015.htm Yu P, Gan Z Y, Xu L. Simultaneous determination of 8 kinds of OCPs in water by automated solid-phase microextraction coupled with gas chromatography-triple quadrupole mass spectrometry[J]. Environmental Science and Technology, 2020, 33(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ202001015.htm
王国强, 张婷, 孙桂进, 等. 分散固相萃取净化-GPC-GC/MS快速分析鱼塘水中21种农药[J]. 中国刑警学院学报, 2016(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XING201603020.htm Wang G Q, Zhang T, Sun G J, et al. Dispersive solid phase extraction purification-GPC-GC/MS rapid analysis of 21 pesticides in fish pond water[J]. Journal of Criminal Investigation Police University of China, 2016(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XING201603020.htm
Aladaghlo Z, Fakhari A R, Alvaioon S I, et al. A mesoporous nanosorbent composed of silica, graphene, and palladium (Ⅱ) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry[J]. Microchimica Acta, 2020, 187(4): 209. doi: 10.1007/s00604-020-4174-2
Akbarzade S, Chamsaz M, Rounaghi G H, et al. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2018, 410(2): 429-439. doi: 10.1007/s00216-017-0732-9
邵阳, 杨国胜, 韩深, 等. 加速溶剂萃取-硅胶萃取净化-气相色谱/质谱法检测地表水中有机氯农药和多氯联苯[J]. 分析化学, 2016, 44(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605006.htm Shao Y, Yang G S, Han S, et al. Determination of organochlorine pesticides and polychlorinated biphenyls in surface water using accelerate solvent extraction coupling with gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605006.htm
Aparicio I, Martin J, Luis S J, et al. Stir bar sorptive extraction and liquid chromatography-tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters[J]. Journal of Chromatography A, 2017, 1500: 43-52. doi: 10.1016/j.chroma.2017.04.007
陈峰, 张宝锋, 何平, 等. 液液萃取-程序升温大体积进样-气相色谱串联质谱法测定地表水中25种痕量有机氯农药[J]. 分析试验室, 2020, 39(8): 969-973. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202008020.htm Chen F, Zhang B F, He P, et al. Trace analysis of 25 organochlorine pesticides in surface water by liquid liquid extraction-programmed temperature vaponization and large volume injection gas chromatography tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(8): 969-973. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202008020.htm
Murrell K, Dorman F. A suspect screening analysis for contaminants of emerging concern in municipal wastewater and surface water using liquid-liquid extraction and stir bar sorptive extraction[J]. Analytical Methods, 2020, 12(36): 4487-4495. doi: 10.1039/D0AY01179G
白雪媛. 地下水中82种农药测试方法开发与应用[D]. 北京: 中国地质大学(北京), 2017. Bai X Y.Development and application for test method of 82 kinds of pesticides in groundwater[D].Beijing: China University of Geosciences (Beijing), 2017.
Amini N, Shariatgorji M, Crescenzi C, et al. Screening and quantification of pesticides in water using a dual-function graphitized carbon black disk[J]. Analytical Chemistry, 2010, 82(1): 290-296. doi: 10.1021/ac901946b
张洋阳, 邵娟, 杨存满, 等. 顶空-固相微萃取-气相色谱三重四极杆质谱联用测定水中有机氯农药和氯苯类化合物[J]. 四川环境, 2020, 39(2): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202002018.htm Zhang Y Y, Shao J, Yang C M, et al. GC/MS/MS determination of organochlorine pesticides and chlorobenzene in water by headspace solid phase micro-extraction and gas chromatography-triple quadrupole mass spectrometry[J]. Sichuan Environment, 2020, 39(2): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202002018.htm
Bade R, Rousis N I, Bijlsma L, et al. Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(30): 8979-8988. doi: 10.1007/s00216-015-9063-x
Casado J, Brigden K, Santillo D, et al. Screening of pesti-cides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry[J]. Science of the Total Environment, 2019, 670: 1204-1225. doi: 10.1016/j.scitotenv.2019.03.207
Gao L, Qin D, Huang X, et al. Determination of pesticides and pharmaceuticals from fish cultivation water by parallel solid-phase extraction (SPE) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS)[J]. Analytical Letters, 2019, 52(6): 1-15. doi: 10.1080/00032719.2018.1509076
Vikrant K, Tsang D C W, Raza N, et al. Potential utility of metal-organic framework-based platform for sensing pesticides[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8797-8817. http://smartsearch.nstl.gov.cn/paper_detail.html?id=51912f254ec409c6b71705b31c06bbfc
Chun S L, Chun X S, Jia Y T, et al. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety[J]. Biosensors and Bioelectronics, 2017, 91: 804-810. doi: 10.1016/j.bios.2017.01.059
Ma J, Yao Z, Hou L, et al. Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination[J]. Talanta, 2016, 161: 686-692. doi: 10.1016/j.talanta.2016.09.035
Ren J, Ledwaba M, Musyoka N, et al. Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349: 169-197. doi: 10.1016/j.ccr.2017.08.017
Bulgurcuoglu A E, Yilmaz B, Chormey D S, et al. Simul-taneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy[J]. Environmental Monitoring and Assessment, 2018, 190(4): 252. doi: 10.1007/s10661-018-6625-3
Chullasat K, Huang Z, Bunkoed O, et al. Bubble-in-drop microextraction of carbamate pesticides followed by gas chromatography-mass spectrometric analysis[J]. Microchemical Journal, 2020, 155: 104666. doi: 10.1016/j.microc.2020.104666
黄伟华, 胡美华. 全自动固相萃取-气质联用法测定水中14种农药残留[J]. 现代预防医学, 2015, 42(21): 3965-3968. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201521044.htm Hang W H, Hu M H. Simultaneous determination of 14 pesticides in water by automatic solid-phase extraction-gas chromatography-mass spectrometry[J]. Modern Preventive Medicine, 2015, 42(21): 3965-3968. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201521044.htm
Cacho J I, Campillo N, Vinas P, et al. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides[J]. Journal of Chromatography A, 2018, 1559: 95-101. doi: 10.1016/j.chroma.2017.12.059
单晓梅. MS/MS原理及GC/MS/MS技术在农残检测中应用[J]. 安徽预防医学杂志, 2008, 14(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYF200806011.htm Shan X M. MS/MS principle and application of GC/MS/MS technology in pesticide residue detection[J]. Anhui Journal of Preventive Medicine, 2008, 14(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYF200806011.htm
王乙震, 孟宪智, 罗阳, 等. SPE-GC/MS/MS测定地表水中有机磷农药[J]. 环境科学与技术, 2016, 39(8): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201608016.htm Wang Y Z, Meng X Z, Luo Y. Determination of organophosphorous pesticides in surface water by SPE-GC/MS/MS[J]. Environmental Science & Technology, 2016, 39(8): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201608016.htm
Issa M M, Taha S, El M A M, et al. Acetonitrile-ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC-MS/MS[J]. Journal of Chromatography B, 2020, 1145: 122106. doi: 10.1016/j.jchromb.2020.122106
Masi A, Blasco C, Pic Y. Last trends in pesticide residue determination by liquid chromatography-mass spectrometry[J]. Trends in Environmental Analytical Chemistry, 2014, 2: 11-24. doi: 10.1016/j.teac.2014.03.002
杨敏娜, 高翔云, 汤志云. UPLC-串联质谱法快速测定地表水中多种农药残留[J]. 环境监测管理与技术, 2019, 31(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS201901013.htm Yang M N, Gao X Y, Tang Z Y. Rapid determination of pesticide residues in surface water by ultra performance liquid chromatography-tandem mass spectrometry[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS201901013.htm
Hernandez F, Sancho J V, Pozo O, et al. Rapid direct determination of pesticides and metabolites in environmental water samples at sub-μg/L level by on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2001, 939(1): 1-11. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11806539
Hern N F, Pozo Ó J, Sancho J V, et al. Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers[J]. Trends in Analytical Chemistry, 2005, 24(7): 596-612. doi: 10.1016/j.trac.2005.04.007
Richardson S D. Environmental mass spectrometry: Emerging contaminants and current issues[J]. Analytical Chemistry, 2004, 76(12): 3337-3364. doi: 10.1021/ac040060d
Almeid M B, Madeira T B, Watanabe L S, et al. Pesticide determination in water samples from a rural area by multi-target method applying liquid chromatography-tandem mass spectrometry[J]. Journal of the Brazilian Chemical Society, 2019, 30(8): 1657-1666. http://www.researchgate.net/publication/332517324_Pesticide_Determination_in_Water_Samples_from_a_Rural_Area_by_Multi-Target_Method_Applying_Liquid_Chromatography-Tandem_Mass_Spectrometry
Amelin V G, Bolshakov D S, Andoralov A M. Screening and determination of pesticides from various classes in natural water without sample preparation by ultra HPLC-high-resolution quadrupole time-of-flight mass spectrometry[J]. Journal of Analytical Chemistry, 2018, 73(3): 257-265. doi: 10.1134/S1061934818030024
Arsand J B, Hoff R B, Jank L, et al. Wide-scope determination of pharmaceuticals and pesticides in water samples: Qualitative and confirmatory screening method using LC-qTOF-MS[J]. Water Air and Soil Pollution, 2018, 229(12): 1-20. doi: 10.1007/s11270-018-4036-2
Mart P A B, Plaza B P, Garc G E, et al. Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: Target and suspect approaches[J]. Analytica Chimica Acta, 2018, 1030: 115-124. doi: 10.1016/j.aca.2018.05.049
王勇为. 确证定量分析新工具——ThermoScientific Q Exactive台式四极杆-轨道阱高分辨质谱仪[J]. 现代科学仪器, 2011(5): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201105040.htm Wang Y W. Confirmation of a new tool for quantitative analysis-ThermoScientific Q Exactive benchtop quadrupole-orbitrap high resolution mass spectrometer[J]. Modern Scientific Instruments, 2011(5): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201105040.htm
Gosetti F, Mazzucco E, Ggennaro M C, et al. Contam-inants in water: Non-target UHPLC/MS analysis[J]. Environmental Chemistry Letters, 2016, 14(1): 51-65. doi: 10.1007/s10311-015-0527-1
孟志娟, 孙文毅, 赵丽敏, 等. 气相色谱-静电场轨道阱高分辨质谱快速筛查农产品中70种农药残留[J]. 分析化学, 2019, 47(8): 1227-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201908014.htm Meng Z J, Sun W Y, Zhao L M, et al. Gas chromatography-electrostatic field orbitrap high-resolution mass spectrometry for rapid screening of 70 pesticide residues in agricultural products[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1227-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201908014.htm
Cotton J, Leroux F, Broudin S, et al. Development and validation of a multiresidue method for the analysis of more than 500 pesticides and drugs in water based on on-line and liquid chromatography coupled to high resolution mass spectrometry[J]. Water Research, 2016, 104: 20-27. doi: 10.1016/j.watres.2016.07.075
Ieda T, Hashimoto S, Isobe T, et al. Evaluation of a data-processing method for target and non-target screening using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry for environmental samples[J]. Talanta, 2019, 194: 461-468. doi: 10.1016/j.talanta.2018.10.050
郭冬冬, 杨方, 李捷, 等. 气相色谱-四极杆/飞行时间质谱法快速筛查茶叶中350种农药残留[J]. 分析试验室, 2019, 38(10): 1177-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201910009.htm Guo D D, Yang F, Li J, et al. Rapid screening of 350 pesticide residues in tea by gas chromatagraphy coupled with quadrupole time-of-flight mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2019, 38(10): 1177-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201910009.htm
云莉芬. 液相色谱串联高分辨质谱筛查鉴定未知卤代有机物的策略及应用研究[D]. 北京: 中国地质大学(北京), 2018. Yun L F.Strategy for the screening and identification of unknown halogenated organic compounds based on liquid chromatography tandem high resolution mass spectrometry and the application[D].Beijing: China University of Geosciences (Beijing), 2018.
Lu D, Zhang S, Wang D, et al. Identification of flurochloridone metabolites in rat urine using liquid chromatography/high resolution mass spectrometry[J]. Journal of Chromatography A, 2016, 1445: 80-92. doi: 10.1016/j.chroma.2016.03.080
-
期刊类型引用(15)
1. 苏立城,陈晓珊,罗志忠,胡英,陈煜佳,吴道铭,曾曙才. 氮添加对森林土壤有机碳库固存及CO_2排放的影响研究进展. 生态学报. 2024(07): 2717-2733 . 百度学术
2. 易志远,罗霄,王玉霞,苏丽,乔成龙,薛斌,杜灵通. 贺兰山东麓典型葡萄园土壤有机碳库组成及其活跃度. 水土保持通报. 2024(03): 390-398 . 百度学术
3. 李朝英,郑路,郑之卓,李华,王亚南,明安刚. 自动滴定仪测定土壤有机碳及其组分的方法优化. 岩矿测试. 2024(04): 632-640 . 本站查看
4. 高放,洪煜,孙燕,宓文海,陈硕桐. 秸秆还田对盐碱地土壤有机碳库及其组分影响的研究进展. 华北农学报. 2024(S1): 143-149 . 百度学术
5. 卢伟伟,胡嘉欣,陈思桦,陈玮铃,冯思宇. 苏北滨海土壤无机碳含量的测定方法比较. 南京林业大学学报(自然科学版). 2023(01): 76-82 . 百度学术
6. 吴紫琪,何语堂,羊妍珂,陶玉林,吴骏男,蒋振楠,严小军,廖智,刘雪珠,何建瑜. 厚壳贻贝(Mytilus coruscus)养殖区沉积物微生物多样性及固碳潜力研究. 海洋与湖沼. 2023(02): 502-513 . 百度学术
7. 陈宗定,许春雪,刘贵磊,王岚,孙慧中,安子怡. 元素分析仪和燃烧—红外吸收光谱法测定土壤和沉积物中总碳含量的比对. 理化检验-化学分册. 2023(07): 771-775 . 百度学术
8. 袁冬梅,严令斌,武亚楠,张丽敏,杨熳,喻理飞. 喀斯特高原区植被恢复过程土壤有机碳的变化. 山地农业生物学报. 2022(02): 20-25 . 百度学术
9. 张延,高燕,张旸,Gregorich Edward,李秀军,陈学文,张士秀,梁爱珍. Rock-Eval热分解法及其在土壤有机碳研究中的应用. 土壤与作物. 2022(03): 282-289 . 百度学术
10. 严洁,于小娟,唐明,段文艳,李鑫,郝一鸣,盛敏. 造林对乌海露天煤矿复垦地土壤养分和碳库的影响. 林业科学研究. 2021(04): 66-73 . 百度学术
11. 王尧,田衎,封跃鹏,王伟. 土壤中总有机碳环境标准样品研制. 岩矿测试. 2021(04): 593-602 . 本站查看
12. 岑言霸,苏斌,冯泽波,史正涛. 滇池入湖河流pH时空分异特征及其变化机理. 科学技术与工程. 2021(26): 11432-11442 . 百度学术
13. 安帅,陈鉴惠,赵任远,宋丽华. 东北黑土地中碳赋存形态分析方法研究. 地质与资源. 2021(06): 716-721+709 . 百度学术
14. 殷陶刚,窦向丽,张旺强,和振云. 应用高频红外碳硫仪测定农用地土壤样品中有机质含量. 岩矿测试. 2020(04): 631-638 . 本站查看
15. 曹彬彬,朱熠辉,姜禹含,师江澜,田霄鸿. 添加石灰和秸秆对土有机碳固持的影响. 中国农业科学. 2020(20): 4215-4225 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 3967
- HTML全文浏览量: 1283
- PDF下载量: 90
- 被引次数: 28