• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物

李忠煜, 李艳广, 黎卫亮, 汪双双, 赵江华

李忠煜, 李艳广, 黎卫亮, 汪双双, 赵江华. 衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239-249. DOI: 10.15898/j.cnki.11-2131/td.202007080101
引用本文: 李忠煜, 李艳广, 黎卫亮, 汪双双, 赵江华. 衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239-249. DOI: 10.15898/j.cnki.11-2131/td.202007080101
LI Zhong-yu, LI Yan-guang, LI Wei-liang, WANG Shuang-shuang, ZHAO Jiang-hua. Determination of 19 Phenolic Pollutants in Reclaimed Land Samples by Derivation Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239-249. DOI: 10.15898/j.cnki.11-2131/td.202007080101
Citation: LI Zhong-yu, LI Yan-guang, LI Wei-liang, WANG Shuang-shuang, ZHAO Jiang-hua. Determination of 19 Phenolic Pollutants in Reclaimed Land Samples by Derivation Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239-249. DOI: 10.15898/j.cnki.11-2131/td.202007080101

衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物

基金项目: 

国家重点研发计划项目“土地生态恢复评价检验检测及质量控制标准研究”(2017YFF0206804-25)

国家重点研发计划项目“土地生态恢复评价检验检测及质量控制标准研究” 2017YFF0206804-25

详细信息
    作者简介:

    李忠煜, 高级工程师, 主要从事地质有机分析科研工作。E-mail: 147331515@qq.com

    通讯作者:

    赵江华, 高级工程师, 主要从事地质有机分析科研工作。E-mail: 676410267@qq.com

  • 中图分类号: O625.311;O659.63

Determination of 19 Phenolic Pollutants in Reclaimed Land Samples by Derivation Gas Chromatography-Mass Spectrometry

  • 摘要: 近年来国家对自然环境的保护愈加重视,更多被破坏或污染的土地需要进行复垦整治。在评价效果时,需要检测酚类等多项污染物指标。采用气相色谱与气相色谱-质谱联用等方法对酚类化合物直接测定时,存在色谱响应值低、稳定性差、检出限高等问题。本文针对复垦土地样品基质复杂、干扰因素多、前处理困难等特点,对该类样品的提取与净化方法进行筛选优化。根据酚类污染物检测中浓度范围大、重现性差等问题,对衍生化与非衍生化效果进行对比确定了提取和净化方法,结合衍生化条件的优化、实际样品测定结果等方面的综合研究,建立了复垦土地样品19种酚类污染物(其中2,4,6-三氯苯酚和2,4,5-三氯苯酚,以及2,3,4,5-四氯酚和2,3,5,6-四氯酚,因无法分离而合并计算)的衍生化气相色谱-质谱检测方法。该方法采用加速溶剂萃取仪,以正己烷-丙酮(体积比1:1)提取样品,提取液经浓缩、净化后,由五氟苄基溴衍生化,气相色谱-质谱联用仪测定。该方法基质加标回收率为73.3%~107.0%,检出限为0.67~3.95μg/kg,相比非衍生化方法的检出限(10~80μg/kg)显著降低;并且衍生物的稳定性更好,色谱响应值更高,各组分表现在色谱图上的峰高(峰面积)更均衡,对于低浓度样品的测定结果更加准确。该方法能有效去除基质干扰,可为复杂基质土壤样品中的酚类污染物痕量检测提供参考。
    要点

    (1) 复垦土地样品中酚类化合物直接检测时色谱响应值低,检出限高。

    (2) 加速溶剂萃取法处理复垦土地样品效果更好,检出限低,回收率高。

    (3) 五氟苄基溴衍生化方法可以显著降低复垦土地样品酚类污染物的方法检出限。

    HIGHLIGHTS

    (1) When phenolic compounds in reclaimed land were directly detected, the chromatographic response value was low and the detection limit was high.

    (2) The ASE method was more effective in treating reclaimed land samples, with lower detection limit and higher recovery.

    (3) The pentafluorobenzyl bromide derivative method can significantly reduce the detection limit of phenolic pollutants in reclaimed land samples.

  • 激光拉曼光谱分析作为一种非破坏性的分析方法,可以快速方便地对单个包裹体进行定性、半定量分析,现已成为流体包裹体研究的基本工具之一[1, 2]。近年来随着仪器精度的提高以及科研的需要,激光拉曼针对包裹体的定量分析的研究发展迅速。定量分析主要涉及包裹体的气[3, 4, 5, 6, 7]、液相[8, 9, 10, 11, 12, 13, 14, 15]以及同位素[16, 17, 18, 19, 20]等化学组成分析以及包裹体的内压[21, 22, 23, 24]、密度[25, 26]、有机质热成熟度[27, 28]等物理参数的获取。而作为包裹体重要成分的各种无机和有机气相组分,由于其一般具有较强的拉曼活性,在拉曼谱图上表现出尖锐而特征的谱峰,因此被认为是进行拉曼定量分析的重要研究对象[29]。国内外学者对包裹体中常见的C-H-O-N-S体系的气相组分开展了比较广泛的定量研究[3, 4, 5, 6, 7],取得了显著的成果。由于气相组分的拉曼定量分析与分子性质、温度、压力、仪器性能等诸多因素有关[3, 4, 29],造成前人结果存在比较明显的差异,难以相互借用,如李维华等[5]与Wopenka等[30]测定的SO2的定量因子有近5倍的差别。因此在进行气相成分的定量分析之前,需要利用一系列混合气体标样对仪器进行标定。前人一般使用商用钢瓶装混合气进行仪器标定[3, 4, 5],虽然上述标样易于购置、配比准确,却存在气体组成单一无法调节、费用高、需要经常更换钢瓶等缺点。如按10%的梯度对10%~90%的两种气体的混合物进行标定,需要购置9瓶钢瓶气轮换使用,并且钢瓶气一定的使用期限,超过期限需要重新购置。针对上述不足,本文提出了一种在线配置不同浓度和压力条件下混合气体标样的方法,以实现快速准确地对激光拉曼探针进行标定及测定气体拉曼定量因子的研究目的。

    为了实现混合气体标样的制备,本次研究搭建了一套在线标样制备装置(图 1)。该装置可以同时接入三路钢瓶气体,每路钢瓶气分别连接一个减压阀用于控制气体的输出压力;利用带有刻度和活塞的体积转移器量取实验所需体积的气体并将量取的气体注入高压容器中进行混合;增压泵用于对高压容器中的混合气体进行增压;真空泵用于对装置进行抽真空;装置的输出端与石英毛细管相连接;管路中安装有真空表以及压力表用于监控系统的真空度以及线路中气体的压力值;线路中还设有两个排气孔用于排气及管路清洗。

    图  1  在线标样制备装置简图
    Figure  1.  Schematic diagram of the gas mixtures system

    实验所用的钢瓶气为高纯气体,浓度≥99.999%;毛细管规格为内径0.1 mm,外径0.3 mm,表面涂有一层聚酰亚胺保护膜,厚度约0.025 mm(美国Polymicro Technologies公司)。激光拉曼分析的仪器为Renishaw Invia型激光拉曼光谱仪(英国Renishaw公司),使用Ar+激光器,波长为514 nm,光谱分辨率为2 cm-1

    在线混合气体标样制备的实验步骤如下。

    (1) 打开阀门1~6、8、10,关闭阀门7、9、11,打开真空泵对管路、体积转移器及高压容器抽真空,待真空表读数≤10Pa时,关闭真空泵。

    (2) 关闭阀门2~4、6、8、10,打开气瓶1的减压阀并调节至实验所需压力值,用体积转移器量取实验所需气体体积。

    (3) 关闭阀门1、5、气瓶1的减压阀,打开阀门6、8,将体积转移器中的气体转移至高压容器中。

    (4) 关闭阀门8,打开阀门1~6、8、10,对系统抽真空,待真空表读数≤10Pa时,关闭真空泵。

    (5) 重复步骤(2)~(4),量取实验所需体积及压力条件下的气体2并注入到高压容器中,使气体1和2充分混合。

    (6) 关闭阀门6,打开阀门8、11,利用高压容器中的混合气体对管路进行清洗。

    (7) 关闭阀门11,打开阀门9,打开电动增压泵,对高压容器中的气体进行增压,待达到实验所需的气体压力时,停止增压并进行激光拉曼分析,然后继续增压至下一个压力点并进行拉曼分析。

    为了验证制样方法的准确性及重复性,将本研究制备的70% N2+30% CO2的在线标样与购置于大连大特气体公司生产的同等浓度的商用标样,在10 MPa条件下分别进行了激光拉曼分析。结果表明,本次研究制备的混合气体与商用钢瓶装标样具有相似的峰形(图 2)。利用英国Renishaw公司出品的Wire3.0软件对上述拉曼谱图进行了分析,结果表明本方法制备的混合气体与商用标样具有相似的CO2与N2的相对峰高以及相对峰面积值,其相对误差小于4%,并具有较好的重现性,能够满足实验要求。

    图  2  商用标样与在线样品拉曼谱图
    Figure  2.  The Raman spectra of commercial standard sample and on-line mixing sample

    在测定单个包裹体气体组成方面,国内外多沿用“相对拉曼定量因子”的方法,即通常将N2的定量因子定为1.00,其他气体与N2进行比较,得到相对拉曼定量因子[3, 4]。本次研究分别对拉曼峰面积及峰高计算了相对拉曼定量因子,具体公式如下:

    式中,Ag为气体g的拉曼峰面积;AN2为N2的拉曼峰面积;Cg为气体g的摩尔分数;CN2为N2的摩尔分数;Hg为气体g的拉曼峰高;HN2为N2的拉曼峰高;Fgr代表以峰面积为参考值时气体g相对于N2的拉曼定量因子;Ggr代表以峰高为参考值时气体g相对于N2的拉曼定量因子。

    为了测定CO2以及CH4的相对拉曼定量因子,在室温、5 MPa和10 MPa压力条件下,分别制备了N2摩尔分数为30%、50%和70%的N2-CO2混合气体标样以及N2-CH4混合气体标样。

    在上述标样的激光拉曼谱图(图 3)中能清晰地辨识出N2、CO2以及CH4的拉曼特征峰。气体的拉曼峰强度随浓度以及压力的增加而增加,信噪比随着压力由5 MPa增加到10 MPa增大约一倍。

    图  3  N2-CO2以及N2-CH4在线混合气体拉曼谱图
    Figure  3.  The Raman spectra of N2-CO2 and N2-CH4 on-line gas mixtures

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  4  CH4-N2拉曼参数相关图解
    Figure  4.  Relationship between CCH4/CN2 and ACH4/AN2

    虽然CO2在1286 cm-1附近以及1386 cm-1附近出现两个峰值,但是由于1286 cm-1附近的峰强度要小于1386 cm-1附近峰强度。因此本文仅针对CO2在1386 cm-1附近的峰计算了相对拉曼定量因子。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  5  CO2-N2拉曼参数相关图解
    Figure  5.  Relationship between CCO2/CN2 and ACO2/AN2

    求得CH4和CO2相对拉曼定量因子之后,便可以对包裹体中CH4和CO2的相对含量进行计算,具体计算公式如下:

    选取四川金沙岩孔剖面,震旦系的藻云岩样品进行应用研究。该样品溶洞发育,被后期亮晶白云石充填。溶洞充填的亮晶白云石中发育气液两相盐水包裹体。选取个体较大并且靠近样品表面的包裹体,对其气泡进行激光拉曼分析,结果表明包裹体的气泡主要由CH4和CO2组成(图 6)。

    图  6  包裹体拉曼光谱分析结果
    Figure  6.  The Raman spectra of gas bubble in fluid inclusions

    利用wire3.0对图 6中两个包裹体的拉曼相关参数进行求解,并分别利用公式(3) 和(4) 对包裹体a和b中的CH4和CO2摩尔浓度进行了计算,得到包裹体中CH4的摩尔分数为27.60%~31.63%,CO2的摩尔分数为68.37%~72.40%(表 1)。上述结果表明,利用本文所求得的拉曼定量因子FG所得到计算的结果基本一致(两者的绝对偏差在2.5%以内);包裹体a和b气相组成较接近,可能为同期捕获的产物。

    表  1  包裹体样品分析结果
    Table  1.  The analytical composition of gas in fluid inclusions
    包裹体 ACO2 HCO2 ACH4 HCH4 CCH4(%) CCO2(%)
    据公式(3) 据公式(4) 据公式(3) 据公式(4)
    包裹体a 3461.54 594.541 17891.2 4115.24 31.63 31.25 68.37 68.75
    包裹体b 3137.87 732.481 14694.8 4251.27 29.54 27.60 70.46 72.40
    下载: 导出CSV 
    | 显示表格

    本文利用自主搭建的在线标样制备装置,对N2-CH4以及N2-CO2进行在线混合增压,制备了N2摩尔浓度为30%、50%和70%,压力为5 MPa和10 MPa的N2-CH4以及N2-CO2混合气体在线标样。通过与商用混合钢瓶气体标样对比表明,该方法所使用的装置操作简单,制备的混合气体具有较高的准确性及重现性,能够方便、准确地对拉曼光谱仪进行标定,实现了不同压力和浓度条件下气体的相对拉曼定量因子的测定。通过对CH4及CO2的相对定量因子测定表明,气体压力在5~10 MPa的范围时,定量因子不受压力变化的影响,为固定值。地质样品应用表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,弥补了商用钢瓶装混合气体标样费用高、气体组成单一固定等不足。

    由于本次研究仅在5 MPa和10 MPa两个压力点进行了分析,因此对于相对定量因子在 < 5 MPa及 > 10 MPa压力条件下的变化规律还有待于进一步研究。另外由于缺乏已知气体组成的人工合成包裹体标样,对于本方法在包裹体应用中的误差范围还有待于进一步研究。

  • 图  1   酚类化合物衍生物总离子流图

    出峰顺序:1—2-氟苯酚(替1);2—苯酚;3—苊-d10(16.83);4—间-甲酚;5—邻-甲酚;6—对-甲酚;7—2-氯苯酚;2, 4-二甲酚;8—2, 6-二氯酚;9—4-氯-3-甲基苯酚;10—2, 4-二氯酚;11—2-硝基酚;12—2, 4, 6-三氯苯酚和2, 4, 5-三氯苯酚;13—2, 4-二硝基酚;14—4-硝基酚;15—2, 3, 4, 6-四氯酚和2, 3, 4, 5-四氯酚;16—2, 3, 5, 6-四氯酚;17—2-甲基-4, 6-二硝基酚;18—2, 4, 6-三溴苯酚(替2);19—五氯苯酚。

    Figure  1.   Total particle flow diagram of phenolic compounds derivatives

    图  2   不同温度下衍生化的替代物回收率变化

    Figure  2.   Changes in the recovery of substitutes derived at different temperature

    图  3   衍生化时间对替代物回收率的影响

    Figure  3.   Effect of derivation time on the recovery of substitutes

    表  1   各组分保留时间、定量离子与辅助离子

    Table  1   Retention time, quantitative ions and auxiliary ions of each component

    序号 化合物 保留时间(min) 定量离子/辅助离子
    1 2-氟苯酚-PFB(替代物) 16.19 181/292
    2 苯酚-PFB 16.61 181/274
    3 苊-d10(内标) 16.83 162/164
    4 间-甲酚-PFB 17.89 181/288
    5 邻-甲酚-PFB 18.35 181/288
    6 对-甲酚-PFB 18.50 181/288
    7 2-氯苯酚-PFB 19.65 308
    8 2, 4-二甲酚-PFB 19.65 121
    9 2, 6-二氯酚-PFB 21.57 181/342
    10 4-氯-3-甲基苯酚-PFB 21.98 181/322
    11 2, 4-二氯酚-PFB 22.62 181/342
    12 2-硝基酚-PFB 23.64 181/319
    13 2, 4, 6-三氯苯酚-PFB/2, 4, 5-三氯苯酚-PFB 23.79 181/376
    14 2, 4-二硝基酚-PFB 25.19 181/161
    15 4-硝基酚-PFB 25.61 181/319
    16 2, 3, 4, 6-四氯酚-PFB 26.76 181/412
    17 2, 3, 4, 5-四氯酚-PFB/2, 3, 5, 6-四氯酚-PFB 26.91 181/412
    18 2, 3, 5, 6-四氯酚-PFB 28.34 181/161
    19 2, 4, 6-三溴苯酚-PFB(替代物) 28.47 181/431
    20 五氯苯酚-PFB 29.70 181/446
    下载: 导出CSV

    表  2   酚类化合物标准曲线

    Table  2   Calibration curves of phenolic compounds

    化合物 衍生后化合物 标准曲线 相关系数(r2)
    2-氟苯酚(替1) 2-氟苯酚-PFB y=-0.0144696+0.00229139x 0.9972
    苯酚 苯酚-PFB y=-0.0378798+0.00276533x 0.9981
    间-甲酚 间-甲酚-PFB y=-0.0360363+0.00218262x 0.9989
    邻-甲酚 邻-甲酚-PFB y=-0.0670299+0.00232614x 0.9977
    对-甲酚 对-甲酚-PFB y=-0.0572942+0.0022358x 0.9974
    2-氯苯酚 2-氯苯酚-PFB y=-0.102385+0.00450636x 0.9954
    2, 4-二甲酚 2, 4-二甲酚-PFB y=-0.105425+0.00450302x 0.9962
    2, 6-二氯酚 2, 6-二氯酚-PFB y=-0.0143943+0.00231734x 0.9977
    4-氯-3-甲基苯酚 4-氯-3-甲基苯酚-PFB y=-0.10396+0.00239979x 0.9969
    2, 4-二氯酚 2, 4-二氯酚-PFB y=-0.138599+0.00289315x 0.9970
    2-硝基酚 2-硝基酚-PFB y=-0.0677484+0.00135676x 0.9961
    2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 2, 4, 6-三氯苯酚-PFB/2, 4, 5-三氯苯酚-PFB y=-0.147103+0.0029088x 0.9966
    2, 4-二硝基酚 2, 4-二硝基酚-PFB y=-0.0550873+0.00259657x 0.9984
    4-硝基酚 4-硝基酚-PFB y=-0.0800387+0.00145206x 0.9956
    2, 3, 4, 6-四氯酚 2, 3, 4, 6-四氯酚-PFB y=-0.141921+0.00277173x 0.9957
    2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 2, 3, 4, 5-四氯酚-PFB/2, 3, 5, 6-四氯酚-PFB y=-0.127976+0.00369817x 0.9954
    2-甲基-4, 6-二硝基酚 2-甲基-4, 6-二硝基酚-PFB y=-0.160452+0.00301742x 0.9945
    2, 4, 6-三溴苯酚(替2) 2, 4, 6-三溴苯酚-PFB y=-0.144911+0.00221011x 0.9982
    五氯苯酚 五氯苯酚-PFB y=-0.145926+0.00302867x 0.9981
    下载: 导出CSV

    表  3   三种提取方法的检出限、测定下限与精密度与回收率情况

    Table  3   Detection limit, determination lower limit, precision and recovery of the three extraction methods

    提取方式 方法检出限(μg/kg) 测定下限(μg/kg) 加标回收率(%) 回收率平均值(%) 相对标准偏差平均值(%)
    索氏提取 0.97~4.36 3.88~17.4 73.3~102.0 88.9 4.9
    超声波提取 0.78~5.06 3.11~20.2 71.4~97.3 82.4 5.4
    加速溶剂萃取 0.67~3.95 2.68~15.8 75.4~107.0 91.0 4.4
    下载: 导出CSV

    表  4   酚类化合物衍生化方法检出限

    Table  4   Detection limits of phenolic compounds by derivativation method

    化合物 测定值(μg/kg) 相对标准偏差(%) 检出限(μg/kg) 测定下限(μg/kg)
    1 2 3 4 5 6 7
    2-氟苯酚(替1) 7.05 7.44 9.32 9.40 8.39 9.33 7.68 1.0 3.13 12.5
    苯酚 8.02 7.76 9.27 9.44 9.05 9.89 8.40 0.8 2.47 9.88
    间-甲酚 8.38 8.41 7.45 8.14 7.88 7.91 8.27 0.3 1.08 4.32
    邻-甲酚 9.44 7.74 9.32 8.98 9.66 8.40 9.01 0.7 2.09 8.35
    对-甲酚 8.17 8.37 9.04 8.55 9.15 8.80 9.39 0.4 1.39 5.56
    2-氯苯酚 8.75 8.47 8.80 8.82 8.87 8.99 9.16 0.2 0.67 2.68
    2, 4-二甲酚 8.72 8.64 8.35 8.11 8.40 8.19 7.85 0.3 0.96 3.83
    2, 6-二氯酚 8.63 8.86 7.93 8.08 8.43 7.85 8.70 0.4 1.25 5.02
    4-氯-3-甲基苯酚 9.43 10.3 8.86 10.5 9.21 9.63 9.96 0.6 1.85 7.42
    2, 4-二氯酚 8.62 9.13 9.73 9.98 8.83 8.51 8.74 0.6 1.80 7.19
    2-硝基酚 9.89 9.80 9.03 9.28 8.87 10.0 9.96 0.5 1.50 5.99
    2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 16.1 16.3 16.0 16.3 16.1 15.4 15.1 0.5 1.46 5.85
    2, 4-二硝基酚 11.0 10.6 10.3 10.5 11.2 9.97 11.1 0.5 1.47 5.89
    4-硝基酚 10.3 10.3 7.72 10.6 8.11 9.11 10.9 1.3 3.95 15.8
    2, 3, 4, 6-四氯酚 8.58 9.24 8.51 8.12 8.71 8.31 9.26 0.4 1.37 5.47
    2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 16.9 16.0 16.3 16.6 18.1 16.5 16.5 0.7 2.12 8.49
    2-甲基-4, 6-二硝基酚 8.93 8.25 7.73 7.65 8.04 8.78 9.02 0.6 1.78 7.13
    2, 4, 6-三溴苯酚(替2) 7.99 8.08 8.64 7.33 7.21 7.87 7.77 0.5 1.50 6.01
    五氯苯酚 10.5 10.9 10.3 9.65 11.1 10.8 10.9 0.5 1.54 6.16
    下载: 导出CSV

    表  5   酚类化合物加标回收率和精密度

    Table  5   Spiked recovery and precision tests of phenolic compounds

    酚类化合物 加标浓度40μg/kg 加标浓度100μg/kg 加标浓度200μg/kg
    RSD(%) 回收率(%) RSD(%) 回收率(%) RSD(%) 回收率(%)
    2-氟苯酚(替1) 6.6 89.2 9.5 80.8 5.9 86.3
    苯酚 6.1 94.4 3.6 85.3 8.1 75.3
    间-甲酚 6.7 86.8 2.1 73.3 8.1 74.2
    邻-甲酚 5.9 87.5 3.3 79.5 4.5 87.1
    对-甲酚 5.5 104.0 4.8 82.1 9.6 83.6
    2-氯苯酚 5.9 103.0 5.3 81.2 6.3 83.4
    2, 4-二甲酚 5.9 84.5 2.9 82.6 7.0 79.9
    2, 6-二氯酚 6.2 86.1 6.7 80.8 7.2 88.6
    4-氯-3-甲基苯酚 5.0 107.0 1.8 85.0 9.1 92.6
    2, 4-二氯酚 5.4 90.7 8.6 77.4 3.5 86.2
    2-硝基酚 5.5 106.0 4.5 88.5 4.6 83.5
    2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 3.8 75.4 6.0 74.7 7.0 81.1
    2, 4-二硝基酚 6.2 91.2 8.3 76.7 3.9 80.3
    4-硝基酚 5.1 101.0 1.7 83.1 5.5 102.0
    2, 3, 4, 6-四氯酚 3.7 103.0 5.3 83.2 5.8 82.1
    2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 5.9 78.3 8.2 83.5 8.0 103.0
    2-甲基-4, 6-二硝基酚 5.5 82.1 6.4 80.8 2.1 73.6
    2, 4, 6-三溴苯酚(替2) 4.6 81.7 6.2 73.3 8.2 82.8
    五氯苯酚 4.1 105.0 2.4 82.8 8.7 78.4
    下载: 导出CSV

    表  6   金属矿区复垦土地样品酚类化合物检测结果

    Table  6   Analytical results of phenolic compounds in dreclaimed land samples from metal mining areas

    酚类化合物 含量(μg/kg) 重复样相对偏差(%) 检出限(μg/kg)
    重复样1 重复样2
    2-氟苯酚(替1) 109 96.2 6.2 3.13
    苯酚 - - - 2.47
    间-甲酚 - - - 1.08
    邻-甲酚 < LOD < LOD - 2.09
    对-甲酚 25.6 31.6 10 1.39
    2-氯苯酚 < LOD < LOD - 0.67
    2, 4-二甲酚 < LOD < LOD - 0.96
    2, 6-二氯酚 - - - 1.25
    4-氯-3-甲基苯酚 - - - 1.85
    2, 4-二氯酚 2.43 2.32 2.3 1.80
    2-硝基酚 122 138 6.2 1.50
    2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 31.0 27.5 6.0 0.74
    2, 4-二硝基酚 7.84 6.87 6.6 1.47
    4-硝基酚 - - - 3.95
    2, 3, 4, 6-四氯酚 - - - 1.37
    2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 - - - 1.76
    2-甲基-4, 6-二硝基酚 - - - 1.78
    2, 4, 6-三溴苯酚(替2) 87.6 93.7 3.4 1.50
    五氯苯酚 83.1 78.9 2.6 1.54
    注:“-”表示未检出;LOD表示检出限。
    下载: 导出CSV
  • 胡振琪. 中国土地复垦与生态重建20年: 回顾与展望[J]. 科技导报, 2009, 27(17): 25-29. doi: 10.3321/j.issn:1000-7857.2009.17.007

    Hu Z Q. Land reclamation and ecological reconstruction in China in 20 years: Review and prospect[J]. Science and Technology Herald, 2009, 27(17): 25-29. doi: 10.3321/j.issn:1000-7857.2009.17.007

    彭建, 蒋一军, 吴健生, 等. 我国矿山开采的生态环境效应及土地复垦典型技术[J]. 地理科学进展, 2005(2): 38-48. doi: 10.3969/j.issn.1007-6301.2005.02.005

    Peng J, Jiang Y J, Wu J S, et al. Ecological environmental effects of mining in China and typical land reclamation technologies[J]. Advances in Geographical Sciences, 2005(2): 38-48. doi: 10.3969/j.issn.1007-6301.2005.02.005

    卞正富. 我国煤矿区土地复垦与生态重建研究[J]. 资源与产业, 2005, 7(2): 18-24. doi: 10.3969/j.issn.1673-2464.2005.02.006

    Bian Z F. Research on land reclamation and ecological reconstruction in coal mine areas of China[J]. Resources and Industry, 2005, 7(2): 18-24. doi: 10.3969/j.issn.1673-2464.2005.02.006

    Gospodarek J, Petryszak P, Kooczek H, et al. The effect of soil pollution with petroleum-derived substances on Porcellio Scaber Latr. (Crustacea, Isopoda)[J]. Environmental Monitoring and Assessment, 2019, 191(1): 38.1-38.10. http://www.ncbi.nlm.nih.gov/pubmed/30593601

    张兆彤, 王金满, 张佳瑞. 矿区复垦土壤与植被交互影响的研究进展[J]. 土壤, 2018, 50(2): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201802003.htm

    Zhang Z T, Wang J M, Zhang J R. Research progress on the interaction between reclaimed soil and vegetation in mining areas[J]. Soil, 2018, 50(2): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201802003.htm

    蓝楠, 杨朝琦. 美国矿山土地复垦制度对我国的启示[J]. 安全与环境工程, 2010(4): 101-104. doi: 10.3969/j.issn.1671-1556.2010.04.026

    Lan N, Yang C Q. Enlightenment of American mine land reclamation system to China[J]. Safety and Environmental Engineering, 2010(4): 101-104. doi: 10.3969/j.issn.1671-1556.2010.04.026

    赵庆令, 李清彩, 谢江坤, 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015, 34(1): 129-137. doi: 10.15898/j.cnki.11-2131/td.2015.01.017

    Zhao Q L, Li Q C, Xie J K, et al. Characteristics of soil heavy metal pollution and its ecological risk assessment in South Jining District[J]. Rock and Mineral Analysis, 2015, 34(1): 129-137. doi: 10.15898/j.cnki.11-2131/td.2015.01.017

    徐维并, 李新纪, 佟柏龄. 衍生化预处理-气相色谱法测定水中酚类污染物[J]. 岩矿测试, 1994, 13(4): 293-297. http://www.ykcs.ac.cn/article/id/ykcs_19940488

    Xu W B, Li X J, Tong B L. Derivatization pretreatment-gas chromatography for the determination of phenolic pollutants in water[J]. Rock and Mineral Analysis, 1994, 13(4): 293-297. http://www.ykcs.ac.cn/article/id/ykcs_19940488

    何梦琦, 花磊, 李庆运, 等. 甲苯增强高气压光电离-飞行时间质谱高灵敏快速测量酚类化合物[J]. 分析化学, 2019, 47(3): 447-454. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903019.htm

    He M Q, Hua L, Li Q Y, et al. Toluene enhanced-high pressure photoionization-time-of-flight mass spectrometry for highly sensitive and rapid detection of phenolic compounds[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 447-454. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903019.htm

    堵锡华, 王超. 醇和酚类污染物对欧洲林蛙蝌蚪及梨形四膜虫毒性的定量结构-活性模型[J]. 生态毒理学报, 2018, 13(6): 250-258. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201806025.htm

    Du X H, Wang C. Quantitative structure-activity model of toxicity of alcohol and phenolic pollutants to Rana temporaria tadpoles and Tetrahymena pyriformis[J]. Asian Journal of Ecotoxicology, 2018, 13(6): 250-258. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201806025.htm

    Erchao L, Bolser D G, Kroll K J, et al. Comparative toxicity of three phenolic compounds on the embryo of fathead minnow, pimephales promelas[J]. Aquatic Toxicology, 2018, 201: 66. doi: 10.1016/j.aquatox.2018.05.024

    Santhi V S, Salame L, Muklada H, et al. Toxicity of phenolic compounds to entomopathogenic nematodes: A case study with Heterorhabditis bacteriophora exposed to lentisk (Pistacia lentiscus) extracts and their chemical components[J]. Journal of Invertebrate Pathology, 2019, 160: 43-53. doi: 10.1016/j.jip.2018.12.003

    王选瑞, 张立娟, 王玉田, 等. 三维荧光结合二阶校正快速测定水中酚类[J]. 光谱学与光谱分析, 2020, 40(1): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202001022.htm

    Wang X R, Zhang L J, Wang Y T, et al. Rapid determination of phenol in water by three-dimensional fluorescence combined with second-order calibration[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202001022.htm

    曹雨. 含酚废水处理技术的研究进展[J]. 辽宁化工, 2019, 48(5): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG201905008.htm

    Cao Y. Research progress of treatment technology of phenolic waste water[J]. Liaoning Chemical Industry, 2019, 48(5): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG201905008.htm

    刘万鹏. 酚类化合物降解新方法研究[D]. 杭州: 浙江工业大学, 2011.

    Liu W P.New degradation methods of phenolic compounds[D].Hangzhou: Zhejiang University of Technology, 2011.

    周艳玲. 酚类化合物检测方法研究进展[J]. 环境监测管理与技术, 2011(B12): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS2011S1015.htm

    Zhou Y L. Progress in detection methods of phenolic compounds[J]. Environmental Monitoring Management and Technology, 2011(B12): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS2011S1015.htm

    Fuad A R, Imad O. Development and validation of an HPLC-UV method for determination of eight phenolic compounds in date palms[J]. Journal of AOAC International, 2015, 98(5): 1335-1339. doi: 10.5740/jaoacint.15-010

    Wu Y L, Li Y Y, Peng Y T. Determination of seven phenolic compounds in mainstream cigarette smoke by gas chromatography-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 376-384. http://en.cnki.com.cn/Article_en/CJFDTotal-ZPXB201803015.htm

    Yamaguchi Y, Hayashi C. Determination of urinary total phenolic compounds with use of 4-aminoantipyrine: Suggested screening test for hyperthyroidism and for catecholamine-producing tumor[J]. Clinical Chemistry, 1977, 23(11): 2151-2154. doi: 10.1093/clinchem/23.11.2151

    杨丽莉, 王美飞, 胡恩宇, 等. 超声波提取-气相色谱法测定土壤中21种酚类化合物[J]. 色谱, 2013, 31(11): 1081-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201311009.htm

    Yang L L, Wang M F, Hu E Y, et al. Ultrasonic extract-gas chromatography for the determination of 21 phenolic compounds in soil[J]. Chromatography, 2013, 31(11): 1081-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201311009.htm

    张永兵, 杨文武, 张钧. 土壤中6种酚类化合物的索氏提取-气相色谱测定法[J]. 环境与健康杂志, 2014, 31(4): 334-336. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404018.htm

    Zhang Y B, Yang W W, Zhang J. Soxhlet extraction and gas chromatography determination of 6 phenolic compounds in soil[J]. Journal of Environment and Health, 2014, 31(4): 334-336. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404018.htm

    张永兵, 杨文武, 丁金美, 等. 固相萃取-液相色谱法测定土壤中酚类化合物[J]. 环境科学与技术, 2015, 38(2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201502022.htm

    Zhang Y B, Yang W W, Ding J M, et al. Determination of phenolic compounds in soil by solid phase extraction and liquid chromatography[J]. Environmental Science and Technology, 2015, 38(2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201502022.htm

    黄毅, 何淼, 饶竹, 等. GDX-502树脂富集高效液相色谱法测定地表水中酚类化合物[J]. 岩矿测试, 2007, 26(2): 101-104. doi: 10.3969/j.issn.0254-5357.2007.02.005

    Huang Y, He M, Rao Z, et al. Determination of phenolic compounds in surface water by high performance liquid chromatography with GDX-502 resin enrichment[J]. Rock and Mineral Analysis, 2007, 26(2): 101-104. doi: 10.3969/j.issn.0254-5357.2007.02.005

    胡祖国, 曹攽, 李紫艺. 超声波萃取-气相色谱-质谱法测定土壤中7种酚类化合物[J]. 冶金分析, 2016(36): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201602005.htm

    Hu Z G, Cao B, Li Z Y. Ultrasonic extraction of 7 phenolic compounds in soil by gas chromatography-mass spectrometry[J]. Metallurgical Analysis, 2016(36): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201602005.htm

    桂建业, 张莉, 陈宗宇, 等. 加速溶剂萃取-气相色谱-质谱法测定固体废物中酚类化合物[J]. 理化检验(化学分册), 2012, 48(4): 423-426. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201204016.htm

    Gui J Y, Zhang L, Chen Z Y, et al. Determination of phenolic compounds in solid waste by accelerated solvent extraction-gas chromatography-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(4): 423-426. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201204016.htm

    钟颖, 于赤灵, 彭平安. 固相萃取-离子色谱/气相色谱-质谱法联合检测油田水中的有机酸和酚类化合物[J]. 色谱, 2010, 28(10): 923-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201010004.htm

    Zhong Y, Yu C L, Peng P A. Determination of organic acids and phenolic compounds in oilfield water by SPE/GC-MS[J]. Chromatography, 2010, 28(10): 923-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201010004.htm

    滕宝祺, 李欣昕, 冯芳. 衍生化技术在酚类化合物分析中的研究进展[J]. 北方药学, 2012, 9(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYX201205029.htm

    Teng B Q, Li X X, Feng F. Research progress of derivatization technology in the analysis of henolic compounds[J]. Northern Pharmacy, 2012, 9(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYX201205029.htm

    韩超, 沈浩, 李舟, 等. 气相色谱-质谱法测定纺织品中17种酚类化合物[J]. 纺织学报, 2012, 33(11): 91-96. doi: 10.3969/j.issn.0253-9721.2012.11.019

    Han C, Shen H, Li Z, et al. Determination of 17 phenolic compounds in textiles by gas chromatography-mass spectrometry[J]. Chinese Journal of Textiles, 2012, 33(11): 91-96. doi: 10.3969/j.issn.0253-9721.2012.11.019

    顾娟红, 潘葵, 黄丽娟, 等. 气相色谱/质谱联用测定纺织品中5种苯酚类化合物[J]. 印染助剂, 2014, 31(9): 46-48. doi: 10.3969/j.issn.1004-0439.2014.09.013

    Gu J H, Pan K, Huang L J, et al. Determination of 5 phenols in textiles by GC-MS[J]. Printing and Dyeing Assistant, 2014, 31(9): 46-48. doi: 10.3969/j.issn.1004-0439.2014.09.013

    李娟, 王荟. 水中多种酚类化合物衍生化方法研究[J]. 环境监控与预警, 2014, 6(5): 23-25. doi: 10.3969/j.issn.1674-6732.2014.05.008

    Li J, Wang H. Study on derivatives of phenolic compounds in water[J]. Environmental Monitoring and Early Warning, 2014, 6(5): 23-25. doi: 10.3969/j.issn.1674-6732.2014.05.008

    张莉, 桂建业, 张永涛, 等. 改性聚合物萃取-五氟苄基衍生化-气相色谱-质谱法测定水中酚类化合物[J]. 理化检验(化学分册), 2013, 49(10): 1155-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201310003.htm

    Zhang L, Gui J Y, Zhang Y T, et al. Determination of phenolic compounds in water by modified polymer extract-pentafluoro-benzyl derivation-gas chromatography-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(10): 1155-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201310003.htm

    周浩, 张瑶琴, 刘中, 等. 衍生化气相色谱-质谱联用法测定土壤中多种酚类化合物[J]. 环境监测管理与技术, 2017, 32(4): 53-56. doi: 10.3969/j.issn.1006-2009.2017.04.013

    Zhou H, Zhang Y Q, Liu Z, et al. Derivated gas chromatography-mass spectrometry for the determination of phenolic compounds in soil[J]. Environmental Monitoring Management and Technology, 2017, 32(4): 53-56. doi: 10.3969/j.issn.1006-2009.2017.04.013

    王加忠, 刘剑, 罗熹, 等. 硅烷化-GC/MS联用测定卷烟主流烟气中7种酚类化合物[J]. 烟草科技, 2017, 50(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YCKJ201706009.htm

    Wang J Z, Liu J, Luo X, et al. Determination of 7 phenolic compounds in mainstream cigarette smoke by silanization-GC/MS[J]. Tobacco Science and Technology, 2017, 50(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YCKJ201706009.htm

    方志青, 李秋华, 贺华中, 等. 衍生气相色谱法测定饮用水中4种酚类污染物[J]. 四川师范大学学报(自然科学版), 2013, 36(1): 111-114. doi: 10.3969/j.issn.1001-8395.2013.01.024

    Fang Z Q, Li Q H, He H Z, et al. Determination of 4 phenolic pollutants in drinking water by derived gas chromatography[J]. Journal of Sichuan Normal University (Natural Science), 2013, 36(1): 111-114. doi: 10.3969/j.issn.1001-8395.2013.01.024

    乔宁强, 薛志伟, 王刚峰, 等. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷[J]. 岩矿测试, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128

    Qiao N Q, Xue Z W, Wang G F, et al. Determination of mercury and arsenic in oil-bearing core by Soxhelt extraction-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128

    周立军, 张玲金, 苏建茹, 等. 固体模拟样品中多环芳烃有机污染物提取方法研究[J]. 岩矿测试, 2003, 22(2): 113-116. doi: 10.3969/j.issn.0254-5357.2003.02.007

    Zhou L J, Zhang L J, Su J R, et al. Study on extraction techniques of polynuclear aromatic hydrocarbons in spiked solid samples[J]. Rock and Mineral Analysis, 2003, 22(2): 113-116. doi: 10.3969/j.issn.0254-5357.2003.02.007

    王馨蕾, 崔兆杰. 超声波提取-气相色谱氢火焰测定土壤中六溴环十二烷[J]. 环境科学研究, 2019, 32(3): 493-499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201903016.htm

    Wang X L, Cui Z J. Ultrasonic extraction and determination of hexabromocyclododecane in soil by gas chromatography with hydrogen flame[J]. Environmental Science Research, 2019, 32(3): 493-499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201903016.htm

    胡德新, 马德起, 安鹏升, 等. 超声提取-离子色谱法测定铁矿石中水溶性氟氯溴及硝酸根[J]. 岩矿测试, 2012, 31(2): 287-290. doi: 10.3969/j.issn.0254-5357.2012.02.017

    Hu D X, Ma D Q, An P S, et al. Determination of water soluble fluoride, chloride, bromide and nitrate in iron ores by supersonic extraction-ion chromatography[J]. Rock and Mineral Analysis, 2012, 31(2): 287-290. doi: 10.3969/j.issn.0254-5357.2012.02.017

    Barros F, Dykes L, Awika J M, et al. Accelerated solvent extraction of phenolic compounds from sorghum brans[J]. Journal of Cereal Science, 2013, 58(2): 305-312. doi: 10.1016/j.jcs.2013.05.011

    石丽明, 刘美美, 王晓华, 等. 加速溶剂萃取提取土壤中正构烷烃的方法研究[J]. 岩矿测试, 2010, 29(2): 104-108. doi: 10.3969/j.issn.0254-5357.2010.02.003

    Shi L M, Liu M M, Wang X H, et al. Study on accelerated solvent extraction of n-alkanes in soil samples[J]. Rock and Mineral Analysis, 2010, 29(2): 104-108. doi: 10.3969/j.issn.0254-5357.2010.02.003

    龚迎莉, 孙玮琳, 汪双清, 等. 生油岩中有机质加速溶剂萃取和索氏萃取方法对比[J]. 岩矿测试, 2009, 28(5): 416-422. doi: 10.3969/j.issn.0254-5357.2009.05.004

    Gong Y L, Sun W L, Wang S Q, et al. A comparative study on extraction of organic matters in source rocks by accelerated solvent extraction and Soxhlet extraction[J]. Rock and Mineral Analysis, 2009, 28(5): 416-422. doi: 10.3969/j.issn.0254-5357.2009.05.004

    吴宇峰, 李利荣, 时庭锐, 等. 土壤和沉积物中17种有机氯农药残留量的测定[J]. 环境科学与技术, 2007, 30(1): 43-44, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200701015.htm

    Wu Y F, Li L R, Shi T R, et al. Determination of 17 organochlorine pesticide residues in soil and sediments[J]. Environmental Science and Technology, 2007, 30(1): 43-44, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200701015.htm

    鲁炳闻, 刘海萍, 徐鹏, 等. 土壤标准样品中有机氯农药的加速溶剂萃取/净化方法优化[J]. 中国测试, 2015, 41(3): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503013.htm

    Lu B W, Liu H P, Xu P, et al. Optimization of accelerated solvent extraction/purification method for organochlorine pesticides in soil standard samples[J]. China Measurement & Test, 2015, 41(3): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503013.htm

    Helaleh M I H, Tanaka K, Fujii S I, et al. GC/MS determination of phenolic compounds in soil samples using Soxhlet extraction and derivatization techniques[J]. Analytical Sciences, 2001, 17(10): 1225-1227. http://www.ncbi.nlm.nih.gov/pubmed/11990602

  • 期刊类型引用(14)

    1. 林德举,何淼,周胜璇,许明标,周长铖. 基于微米CT的钻井液浸泡复兴陆相页岩裂缝扩展演化. 钻井液与完井液. 2024(06): 755-763 . 百度学术
    2. 王登科,庞晓非,魏建平,张宏图,姚邦华,位乐,郭玉杰,袁明羽,唐家豪. 气体性质和孔隙压力对煤体微裂隙扩展的影响. 煤炭科学技术. 2023(02): 183-192 . 百度学术
    3. 邵国勇,熊伟,沈瑞,杨懿,尚祯浩,王国栋,余昊. CT扫描技术在页岩油气储层微观结构表征中的应用进展. 应用化工. 2023(06): 1785-1789+1799 . 百度学术
    4. 张聪,韩慧萍,王艳红,方镕慧,陈维堃,李志伟,董虎,田迎春,罗军,张云波. 基于数据共享的油气钻井岩心数字分析系统. 东北石油大学学报. 2022(06): 88-99+150-151 . 百度学术
    5. 杨琦,毛峥,邵明仁. 页岩气储层纳米孔隙结构的研究方法及展望. 能源化工. 2021(02): 7-13 . 百度学术
    6. 张熙,王绶玙,孔艳,何小亮,蒋志龙,刘诚. 透射式K空间变换数字全息三维成像技术研究. 中国激光. 2021(21): 143-150 . 百度学术
    7. 曹茜,王兴志,戚明辉,黄毅,张烨毓,刘虎,王代富. 页岩油地质评价实验测试技术研究进展. 岩矿测试. 2020(03): 337-349 . 本站查看
    8. 李磊,郝景宇,肖继林,李平平,张正辰,邹华耀. 微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征. 岩矿测试. 2020(03): 362-372 . 本站查看
    9. 程荣,钱生平,孙添力,周怀阳. 基于计算机断层扫描的火山岩气孔含量及大小分布特征无损快速分析. 岩矿测试. 2020(03): 398-407 . 本站查看
    10. 王羽,汪丽华,王建强,王彦飞. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征. 岩矿测试. 2020(04): 566-577 . 本站查看
    11. 马超,秦颦,周尚文,孙莎莎,王红岩,施振生,武瑾,昌燕,梁峰,张琴,李宁. 含气页岩实验评价指标与测试方法综述. 地质科技情报. 2019(02): 161-169 . 百度学术
    12. 张平,王登科,于充,曾凡超. 基于工业CT扫描的数字煤心构建过程及裂缝形态表征. 河南理工大学学报(自然科学版). 2019(06): 10-16 . 百度学术
    13. 马真乾,王英滨,于炳松. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究. 岩矿测试. 2018(03): 244-255 . 本站查看
    14. 王羽,汪丽华,王建强,姜政,金婵,王彦飞. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构. 岩矿测试. 2018(03): 235-243 . 本站查看

    其他类型引用(13)

图(3)  /  表(6)
计量
  • 文章访问数:  4871
  • HTML全文浏览量:  1062
  • PDF下载量:  38
  • 被引次数: 27
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-10-09
  • 录用日期:  2020-12-17
  • 发布日期:  2021-03-27

目录

/

返回文章
返回