The Control Mode of Extraction Temperature for Water-soluble Fluorine in Soils Measurement by Selective Electrode Method
-
摘要: 采用超声提取法对样品进行预处理,利用离子选择电极法测定土壤中的水溶性氟,超声空化热效应会造成提取液温度升高,检测结果不稳定,不能如实反映土壤中水溶性氟含量,对土壤环境中氟的监测造成困扰。因此,选择有效的控制提取液温度方式至关重要。本文通过记录直接超声、加冰袋、加冰水、冷却循环水四种温度控制方式提取液温度变化确定出最佳温度控制方式;选取具有稳定性和代表性的土壤有效态成分分析标准物质测定土壤水溶性氟含量,以验证最佳温度控制方式的合理性和有效性;同时分析了提取过程中提取液pH值变化,探讨温度对土壤中水溶性氟提取量影响的原因。结果表明:冷却循环水温度控制方式可有效将提取液温度控制在25±2℃内,该方式的相对误差(8.9%)明显小于直接超声(14.1%);提取液pH值无明显变化,测定结果稳定可靠。要点
(1) 超声清洗器外接冷却循环水装置有效控制超声提取液温度。
(2) 选取有证标准物质验证超声提取温度控制的必要性。
(3) 通过分析提取液pH值变化探究温度影响土壤水溶性氟提取量的原因。
HIGHLIGHTS(1) The temperature of ultrasonic extraction liquid was effectively controlled by an ultrasonic cleaner connected to a cooling circulating water device.
(2) Certified standard substances were selected to verify the necessity of the control of ultrasonic extraction temperature.
(3) The reason why temperature affected the extraction amount of water-soluble fluorine in soil was analyzed through the change of pH value of the extraction liquid.
Abstract:BACKGROUNDThe water-soluble fluoride in soil was pretreated by ultrasonic extraction and determined by ion selective electrode. The thermal effect of ultrasonic cavitation can cause the temperature of the extract to rise, and the test result may be unstable, and it cannot truthfully reflect the water-soluble fluorine content in the soil, which causes problems for the monitoring of fluorine in the soil environment. Therefore, how to effectively control the extraction temperature is the focus of this study.OBJECTIVESTo select the optimal temperature control method, verify the accuracy of the results, and preliminarily discuss the inevitability of temperature control.METHODSIn order to select the optimal temperature control method, the temperature change of the extraction liquid during the extraction using four temperature control methods was recorded: direct ultrasound, adding ice pack, adding ice water and cooling circulating water. In order to verify its reasonableness and validity, the applicable and representative soil active state component analysis standard material was selected as the experimental sample to determine the soil water-soluble fluorine content. To investigate the effect of temperature on the amount of water-soluble fluoride extracted from soil, the pH value of the extracted liquid was determined during the extraction process.RESULTSThe results showed that the cooling circulating water temperature control method could effectively control the extraction temperature within 25±2℃. The relative error (8.9%) was significantly less than that of direct ultrasound method (14.1%). The pH value of the extract liquid did not change significantly, and the determination results were stable and reliable.CONCLUSIONSThe temperature control method by cooling circulating water has the advantages of low cost, simple operation, accurate and reliable results, suitable for batch sample treatment, and can be widely used in soil environmental fluorine monitoring. -
铅锌矿石多以硫化矿共生,或与其他金属共生,组成复合多金属硫化矿床。矿物中伴生的钨、钼、锡、锗、硒、碲等有益组分的含量对矿床的综合评价和矿产工业开发及利用具有重要意义[1]。
对于铅锌矿石的分析,在国家标准方法GB/T 14353—2014中,钨和钼采用氢氟酸-硝酸-高氯酸体系进行样品分解,以电感耦合等离子体质谱仪(ICP-MS)测定,当溶液中共存的铜含量>5%或铅含量>10%时,对钨、钼的测定分别产生不同程度的正、负干扰,该方法通过在标准溶液中等量补偿干扰元素的方式扣除测定干扰。各类地质样品中锡的含量常低于10 μg/g,可采用固体粉末发射光谱法测定[2],但铅锌矿的含硫量高,采用电火花激发时易引起样品飞溅跳样;王铁等[3]采用5种混合酸消解锰铁中的痕量锡,但针对铅锌矿中难熔锡石矿物的分解效果难以保证。国家标准方法中,锗和硒分别以氢氟酸-硝酸-硫酸和碳酸钠-氧化锌进行样品分解,均采用原子荧光光谱法测定,此溶液体系中共存的高含量铅(320 mg/L以上)干扰锗的测定,而硒采用半熔法-沸水提取的前处理方法使进入测定体系的主量金属元素大幅度减少,基本消除了干扰。碲元素的丰度低,熔矿后通常需要分离富集,刘正等[4]采用萃取法进行样品预处理,以石墨炉原子吸收光谱法测定碲的含量。国家标准中采用共沉淀分离的方法,当硒含量高于1 μg/g时可能干扰碲的测定。可见现有分析方法中,对铅锌矿有用组分进行综合评价时各元素采用分组或单独溶矿和测定的方式,多元素无法同时分析,操作强度大、效率低,且存在不可避免的主量元素干扰,影响了分析的准确度和精密度。
采用ICP-MS测定铅锌矿中的6种伴生元素,研究人员通常采用混酸分组处理样品。为了确保难熔元素锡完全分解,王佳翰等[5]同时使用硫酸和高氯酸高温冒烟消解,再以硝酸180℃复溶样品同时测定钨、钼、锡,样品处理时间长;非金属硒、碲含量较低,且易受主量元素干扰,陈波等[6]采用乙醇介质提高硒、碲的分析灵敏度。现有的熔矿和测定方法难以兼顾6种元素的同时、准确测定。本研究采用碱熔体系,熔矿后加入阳离子树脂交换分离钠盐,同时将造岩元素钾、铁、铝等及主量元素铅、锌从测定体系中分离,有效减小基体效应和矿石中铅的干扰,建立了以ICP-MS测定铅锌矿中的钨、钼、锡、锗、硒、碲的方法。
1. 实验部分
1.1 仪器及工作参数
iCAP Q型电感耦合等离子体质谱仪(美国ThermoFisher公司),主要工作参数如下:测定模式为KED模式;RF功率1150 W;等离子气流量15.0 L/min;辅助气流量1.0 L/min;雾化气流量1.0 L/min;进样泵流速为30 r/min;进样冲洗时间20 s;扫面方式为跳峰;单元素积分时间为1 s。
1.2 主要试剂
过氧化钠、三乙醇胺、柠檬酸为分析纯,三乙醇胺、柠檬酸作为络合剂使用。
柠檬酸溶液:浓度为0.8%,溶剂为水。
732型阳离子交换树脂:在交联为7%的苯乙烯-二乙烯共聚体上带磺酸基(—SO3H)的阳离子交换树脂。
铑(GSB04-1746-2004)、铼(GSB04-1745-2004)、硼(GSB04-1716-2004)、磷(GSB04-1741-2004)单元素标准储备溶液:浓度为1000 μg/mL,碘(GSB05-1137-1999)单元素标准溶液:浓度为100 μg/g。以上单元素标准储备溶液均由国家有色金属及电子材料分析测试中心定值,逐级稀释后配制成实验用内标液,铼、铑浓度为0.5 μg/mL,硼、磷、碘浓度为1.0 μg/mL。
实验用水为超纯水(电阻率18.0 MΩ·cm)。
1.3 实验方法
1.3.1 实验样品
实验样品为铜铅锌矿石标准物质,与实际样品具有相近的基体组成和主量元素含量。包括:GBW07170为西藏自治区地质矿产勘查开发局中心实验室研制的铜、铅矿石成分分析标准物质;GBW07164和GBW07167为中国地质科学院地球物理地球化学勘查研究所研制的富铜(银)矿石和铅精矿成分分析标准物质;BY0110-1为云南锡业公司研制的锌精矿成分分析标准物质,矿物类型为氧化矿;GBW07234和GBW07235为湖北地质实验研究所研制的铜矿石和铅矿石成分分析标准物质。
1.3.2 样品处理
称取待测矿样0.4000 g于刚玉坩埚中,用塑料勺加入2.0 g过氧化钠,坩埚置于预热至500℃的耐火板上放置5 min,再转移到升温至500℃的马弗炉中,升温至750℃,保温10 min,取出后冷却至约100℃,坩埚放入100 mL聚四氟乙烯烧杯中,加入80 mL热水(约80℃)提取,加入2 mL三乙醇胺,加入0.5 μg/mL铼内标溶液5.00 mL,搅拌均匀,取出坩埚,冷却后定容于100 mL容量瓶中,得待测液。
1.3.3 测定液制备
搅拌过程中移取10.0 mL待测液于50 mL聚四氟乙烯坩埚中,加入0.8%柠檬酸溶液8 mL,摇匀,再加入8~9 g阳离子树脂,摇匀后于回旋振荡器上以振速150~160 r/min振荡15 min,充分离子交换,加入8 mL水,继续于振荡器上振荡20 min后,定容于50 mL容量瓶中,得测定液。
1.3.4 标准工作溶液的配制
在100 mL容量瓶中加入逐级稀释后的钨、钼、锡、锗、硒、碲标准溶液,加入2.0 g过氧化钠、内标溶液5.00 mL(内标元素浓度Re:0.5 μg/mL;B:1.0 μg/mL)和2 mL三乙醇胺,定容,摇匀,配制成钨、钼、锡、锗、硒、碲的混合标准曲线溶液,随同样品待测液(1.3.2节)制备成工作曲线溶液。各元素浓度见表 1。
表 1 钨钼锡锗硒碲标准工作溶液Table 1. Standard working solution of tungsten, molybdenum, tin, germanium, selenium and tellurium混合标准溶液系列 浓度(ng/mL) W Mo Sn Ge Se Te S0 0.0 0.0 0.0 0.0 0.0 0.0 S1 4.0 10.0 4.0 2.0 2.0 1.0 S2 8.0 20.0 8.0 4.0 4.0 2.0 S3 20.0 50.0 20.0 10.0 10.0 5.0 S4 40.0 100.0 40.0 20.0 20.0 10.0 S5 80.0 200.0 80.0 40.0 40.0 20.0 S6 120.0 400.0 120.0 60.0 60.0 30.0 S7 200.0 1000.0 200.0 100.0 100.0 50.0 2. 结果与讨论
2.1 溶矿方式的选择
多元素系统分析中,对熔矿方式的选择要优先考察矿物晶格稳定的难熔元素的熔矿完全程度。6种待测元素中钨、钼、锗[7]、硒、碲[8]可采用高氯酸(硫酸)-硝酸-氢氟酸-(盐酸)以敞开酸溶的方式进行样品分解,样品分解效果好,但采用敞开酸溶法进行锡矿石元素分析时存在矿物分解不完全的风险,且方法适用矿种范围窄[9]。高压封闭酸溶的方式使锡消解完全,但需增压和延长样品消解时间[10],造成溶矿效率低且无法大批量处理样品。
对于含锡石的难溶铅锌矿石,采用过氧化钠熔融可以使样品分解完全。但碱性熔剂引入了大量盐类物质和基体组分,并含有一定量的金属、非金属杂质,造成分析空白偏高。本法通过将熔剂过筛(10目)、混匀、固定熔剂加入量的方式使空白值保持一致。
2.2 测定介质及基体去除
经过氧化钠熔融,样品溶液体系中的总固体溶解量(TDS)较高(大于0.5%),并通过进样系统沉积于采样锥、截取锥和离子透镜,影响ICP-MS测试的稳定性[11]。其中高含量的钠盐将吸收等离子体电离能,降低中心通道的温度,对待测元素产生电离抑制。
在测定液中加入的柠檬酸,通过N或O电负性较强的阴离子作用于钨、钼、锡金属阳离子中心形成稳定的复合物;锗、硒和碲在强碱性溶液中分别以锗酸根(GeO32-)、硒酸根(SeO42-)、碲酸根(H4TeO62-)的形式存在。强酸型阳离子树脂中的H+在溶液中与Na+发生交换,降低了盐类浓度[12],使溶液由强碱性逐渐转化为弱酸性,离子交换后的溶液pH=4~5;同时使造岩元素铁、铝、钙、镁以及基体元素从溶液中分离,减少了基体干扰。三乙醇胺、柠檬酸作为络合剂,有助于铁、铝元素的交换,使溶液澄清。
选取标准物质GBW07170、GBW07167和BY0110-1,考察主量元素铜、铅、锌、铁的去除情况,表 2中的数据表明,按照本实验方法处理各主量元素的去除率均高于96%,这些主量元素在测定介质中的实际浓度为0.192 ng/mL~1.28 μg/mL,对待测元素的干扰可基本忽略。
表 2 主量元素去除试验Table 2. Removal tests of the principal components标准物质编号 Cu Pb Zn Fe 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) GBW07170 12.59 1.28×10-3 99.99 2.24 8×10-5 99.99 1.21 8×10-5 99.99 - 8×10-3 - GBW07167 0.028 9.6×10-4 96.57 57.1 8×10-2 99.86 3.3 1.84×10-3 99.94 12 0.16 98.67 BY0110-1 0.135 2.4×10-5 99.98 0.35 3.44×10-3 99.02 42.98 8.24×10-4 99.99 - 7.2×10-3 - 注:“-”表示该元素无定值或其去除率无法计算。 2.3 质谱分析条件
2.3.1 内标元素的选择和加入
选择铼、铑及离子行为与待测元素相近的硼、磷、碘元素(在碱性溶液中以阴离子形式存在)进行内标试验。这些内标元素与待测元素钨、钼、锡、锗、硒、碲的第一电离电位范围为7.460~10.486 eV与7.099~9.752 eV。按照金属和非金属元素进行分组内标试验,分次考察不同仪器条件和不同时间下钨、钼、锡、锗、硒、碲与内标元素的计数值之比,计算各元素测定值的相对标准偏差(RSD,n≥20),试验结果如表 3。
表 3 内标元素选择试验Table 3. Selection tests of internal standards内标元素 对应待测元素 RSD(%) 各类样品中内标元素含量范围 Re W、Mo、Sn、Ge 0.92~2.20 铅锌矿石:0.24~3.5 μg/g
土壤样品:0.074~0.53 ng/gRh W、Mo、Sn、Ge 1.03~3.55 贵金属矿石:0.017~22 ng/g B Se、Te 1.66~2.43 土壤样品:4.6~155 μg/g P Se、Te 3.68~4.94 土壤样品:140~1490 μg/g I Se、Te 3.93~5.81 土壤样品:0.3~2.9 μg/g 注:各元素大致含量范围参考国家一级标准物质定值。 在各类地质样品中,铼、铑、碘元素的含量普遍低于10 μg/g,而磷的自然丰度均高于100 μg/g。铼与钨钼锡锗、硼与硒碲的多次测定的相对标准偏差均低于2.5%,测试相关性优于铑、磷和碘内标元素。同时考虑到碘的氢化物可能对碲产生质谱干扰,本实验最终以铼和硼分别作为金属和非金属元素的内标元素。
2.3.2 质谱干扰
质谱常见干扰包括同量异位素的干扰和多原子离子复合物(氢、氧、氩复合物等)的干扰[13]。在本方法中,同量异位素干扰如74Se对74Ge的干扰、氩气中的杂质82Kr对82Se的测定干扰;而多原子离子复合物的干扰包括182W受1H181Ta的干扰,95Mo受40Ar55Mn的干扰,118Sn可能受到16O102Ru和12C106Pd的干扰,铁氧化物58Fe16O和镍氧化物58Ni16O干扰74Ge的测定,66Zn16O干扰82Se的测定,128Te可能受到1H127I的干扰。
对同量异位素的干扰在线校正,选择干扰元素的异质同位素进行定量测定,根据干扰元素同位素的丰度比计算干扰系数,采用数学公式校正的方法,仪器自动对干扰进行扣除,干扰校正方程见表 4。多原子离子复合物的干扰较为复杂,且氩复合物的干扰难以避免,在测定时选择动能歧视(KED)模式[14],同时加入强酸型阳离子树脂交换去除溶液中大部分的稀土元素、Fe3+、Ni2+、Mn2+及高含量Cu2+、Pb2+、Zn2+等离子,干扰基本可以消除。
表 4 同位素、相关系数、质谱干扰扣除及方法检出限Table 4. Isotope, correlation coefficient, mass spectrum interference deduction and detection limits元素 同位素 相关系数 干扰校正 方法检出限(μg/g) 树脂处理前 树脂处理后 W 182W 0.9981 0.9995 - 0.50 Mo 95Mo 0.9990 0.9999 - 0.15 Sn 118Sn 0.9954 0.9994 - 0.29 Ge 74Ge 0.9992 0.9997 -0.0407×78Se 0.15 Se 82Se 0.9989 0.9995 -1.0010×83Kr 0.05 Te 128Te 0.9923 0.9995 - 0.03 注:“-”表示元素无干扰或存在的干扰极小,可忽略。 2.4 分析方法技术指标
2.4.1 工作曲线相关性及方法检出限
制备工作曲线溶液时进行基体匹配,因此溶液介质中存在较高浓度的钠盐。本法通过阳离子树脂处理工作曲线溶液,所得工作曲线的相关性优于不加阳离子树脂处理的方法,与同类酸溶研究相比,硒、碲工作曲线的相关性较优[8]。由于加入大量碱性熔剂进行样品熔融,受试剂空白影响,钨、钼、锡元素的检出限高于混合酸酸溶的前处理方法[5],碲的检出限优于国家标准方法和萃取分离-石墨炉原子吸收光谱法检出限0.20 μg/g和0.055 μg/g[4],曲线相关系数及方法检出限见表 4。考虑实际样品中各元素的含量,本方法满足铅锌矿石中多元素的分析测试要求。
2.4.2 方法准确度和精密度
选取标准物质GBW07234、GBW07164及GBW07235按照1.3节实验方法进行准确度试验,计算相对误差和加标回收率;对样品进行平行分析(n=8),计算相对标准偏差(RSD),分析结果列于表 5。标准物质测定的相对误差范围为-8.33%~7.00%,加标回收率为94.9%~107.5%,多次测定相对标准偏差(RSD)均小于8%,方法准确度满足地质矿产实验室测试质量管理规范(DZ/T 0130—2006)的要求(按照样品中各元素含量计算可允许最小相对偏差为16.98%)。与混合酸酸溶的方法相比,钨、钼和锡的相对标准偏差(RSD)略高于ICP-MS法(钨、钼和锡分别为2.9%~3.6%、2.4%~2.9%和2.7%~3.9%)[5],其中钼和锗的相对标准偏差(RSD)略低于孟时贤等测定铅锌矿采用的电感耦合等离子体发射光谱法1.5%~5.4%和1.4%~5.7%[15]。
表 5 准确度和精密度试验Table 5. Accuracy and precision tests of the method标准物质编号 元素 参考值(μg/g) 测定值(μg/g) 相对误差(%) 加标量(μg/g) 测定值(μg/g) 回收率(%) RSD(%) GBW07234 W 3.9 3.88 -0.51 5.0 8.69 95.8 4.7 Mo 2.4 2.32 -3.33 2.0 4.51 105.5 2.2 Sn 3.8 4.05 6.58 5.0 8.93 102.6 3.5 Ge 0.93 0.94 1.08 1.0 1.91 98.0 2.7 Se 0.89 0.86 -3.37 1.0 1.84 95.0 6.1 Te 0.13 0.12 -7.69 0.2 0.34 105.0 7.6 GBW07164 W 56 54.5 -2.68 50.0 105.5 99.5 2.2 Mo 137 137.6 0.44 150.0 282.3 98.3 1.5 Sn 9.7 9.2 -5.15 10.0 18.7 94.9 4.6 Ge 3.3 3.1 -6.06 5.0 8.90 107.2 2.6 Se 24 25.1 4.58 30.0 55.3 102.4 1.8 Te 1.8 1.65 -8.33 2.0 3.71 95.0 5.7 GBW07235 W 17.6 18.35 4.26 20.0 38.22 103.1 3.2 Mo 1.6 1.65 3.12 2.0 3.63 101.5 4.8 Sn 3.0 3.21 7.00 5.0 7.97 99.4 5.6 Ge 0.90 0.88 -2.22 1.0 1.91 101.0 3.1 Se 1.7 1.66 -2.35 2.0 3.85 107.5 5.3 Te 3.9 4.09 4.87 5.0 8.88 99.6 2.2 3. 结论
采用铅锌矿石国家标准方法和传统分析方法,无法同时测定钨、钼、锡、锗、硒、碲,其中低含量元素需要分离富集,分析效率低、流程长且存在不可避免的主量元素干扰。本方法采用过氧化钠碱熔体系,在样品前处理环节通过阳离子树脂交换分离高含量钠盐和可能产生干扰的高含量铅,实现了在一个溶液体系中快速、准确、同时测定多种元素。本研究在降低方法检出限等方面可加强探索以扩大方法适用范围。本方法应用树脂分离富集技术去除干扰,优化了测定介质,为低含量难熔元素的准确测定提供了思路,同时可考虑应用于地质样品中硼、碘等元素的分析测试。
-
表 1 直接超声土壤中水溶性氟的测定
Table 1 Determination of water-soluble fluorine in soil by direct ultrasound method
样品 水溶性氟的分次测定值(mg/kg) 水溶性氟平均值(mg/kg) 相对误差(%) 1# 2# 3# 4# 5# 6# GBW07460 (陕西黄绵土) 9.4 9.9 8.9 9.0 9.5 10.0 9.4 14.1 样品一 14.6 13.6 12.5 13.1 11.2 9.6 12.4 - 样品二 5.7 6.3 4.7 6.8 4.3 5.2 5.5 - 表 2 循环冷却水温度控制方式土壤水溶性氟的测定
Table 2 Determination of water-soluble fluorine in soils by temperature control of cooling circulating water
样品 水溶性氟含量(mg/kg) 相对误差(%) 分次测定值 平均值 GBW07460 (陕西黄绵土) 7.7 7.9 7.9 8.3 7.8 7.6 7.9 8.9 样品一 8.4 8.6 8.1 8.9 8.3 9.1 8.6 - 样品二 4.0 3.5 3.8 3.7 4.1 3.6 3.8 - -
Zhang H M, Su B Y, Liu P H, et al. Experimental study of fluorine transport rules in unsaturated stratified soil[J]. Journal of China University of Mining & Technology, 2007, 17(3): 382-386. http://www.cnki.com.cn/Article/CJFDTotal-ZHKD200703019.htm
Li Y Y, Wang S L, Sun H L, et al. Immobilization of fluoride in the sediment of mine drainage stream using loess, northwest China[J]. Environmental Science and Pollution Research, 2020, 27: 6950-6959. doi: 10.1007/s11356-019-07433-8
崔俊学. 广东某地潮土和水稻土中氟形态转化及吸附研究[D]. 成都: 成都理工大学, 2010. Cui J X. Study on species transformation and adsorption of fluorine in fluro-aquic soil and paddy soil of the Guangdong[D]. Chengdu: Chengdu University of Technology, 2010.
王凌霞. 茶园土壤氟的形态分布特征及降低水溶态氟措施研究[D]. 武汉: 华中农业大学, 2011. Wang L X. Species of fluorine in tea garden soils and methodology of reducing soil water soluble fluorine content[D]. Wuhan: Huazhong Agricultural University, 2011.
桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010 Gui J Y, Han Z T, Zhang X Y, et al. Speciation analysis of fluorine in soil samples[J]. Rock and Mineral Analysis, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010
袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm Yuan L Z, Wang J N, Ma C Y, et al. Fluorine speciation in soil and the remediation of fluorine contaminate soil[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm
李静, 谢正苗, 徐建明, 等. 我国氟的土壤健康质量指标及评价方法的初步探讨[J]. 浙江大学学报, 2005, 31(5): 593-597. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY200505015.htm Li J, Xie Z M, Xu J M, et al. Preliminary study on guideline on soil health quality index of fluorine and method of its evaluation in China[J]. Journal of Zhejiang University, 2005, 31(5): 593-597. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY200505015.htm
Li Y P, Wang S L, Nan Z R, et al. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China[J]. Science of the Total Environment, 2019, 663: 307-314. doi: 10.1016/j.scitotenv.2019.01.257
梁秀娟, 方樟, 季超, 等. 高氟湖库底泥中氟的存在形态分析[J]. 吉林大学学报(地球科学版), 2010, 40(3): 651-656. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003026.htm Liang X J, Fang Z, Ji C, et al. Analysis on the existing forms of fluorine in the bottom mud of high-fluorine lakes and reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3): 651-656. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003026.htm
王恒, 石慧, 徐师, 等. 超声提取-离子色谱法测定银精矿中水溶性氟[J]. 冶金分析, 2019, 39(4): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201904010.htm Wang H, Shi H, Xu S, et al. Determination of water-soluble fluoride in silver concentrate by ion chromatography with ultrasonic extraction[J]. Metallurgical Analysis, 2019, 39(4): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201904010.htm
胡松青, 李琳, 陈玲, 等. 功率超声作用下溶液温度变化的数学模拟[J]. 华南理工大学学报(自然科学版), 2007, 35(4): 58-61. doi: 10.3321/j.issn:1000-565X.2007.04.013 Hu S Q, Li L, Chen L, et al. Mathematical simulation of temperature variation of solution irradiated by power ultrasound[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(4): 58-61. doi: 10.3321/j.issn:1000-565X.2007.04.013
Mohamed E G, Jamal F. Thermodynamic properties and solubility of potassium fluoride in aqueous solutions at various temperatures[J]. Journal of Fluorine Chemistry, 2020, 235: 1-5. http://www.sciencedirect.com/science/article/pii/S0022113920301093
Lippert F, Martinez-Mier E A, Soto-Rojas A E. Effects of fluoride concentration and temperature of milk on caries lesion rehardening[J]. Journal of Dentistry, 2012, 40: 810-813. doi: 10.1016/j.jdent.2012.06.001
周艺, 陈新, 李程, 等. 去离子水浸提土壤中水溶性氟最佳条件的研究[J]. 中国卫生检验杂志, 2010, 20(8): 2073-2074, 2083. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201008104.htm Zhou Y, Chen X, Li C, et al. Study on optimized extracting conditions of water-soluble fluorine in soil by water[J]. Chinese Journal of Health Laboratory Technology, 2010, 20(8): 2073-2074, 2083. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201008104.htm
许建林. 利用超声波测量土壤团聚体稳定性的关键技术研究[D]. 杨凌: 西北农林科技大学, 2015. Xu J L. Key technological study on measuring soil aggregate stability using ultrasonic systems[D]. Yangling: Northwest A & F University, 2015.
刘妹, 顾铁新, 程志中, 等. 10个土壤有效态成分分析标准物质研制[J]. 岩矿测试, 2011, 30(5): 536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004 Liu M, Gu T X, Cheng Z Z, et al. The reference materials for available nutrients of agricultural soils[J]. Rock and Mineral Analysis, 2011, 30(5): 536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004
蒋倩, 韩勇, 孙晓丽, 等. 酸性土壤水溶性氟浸提方法的研究[J]. 土壤, 2012, 44(1): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201201023.htm Jiang Q, Han Y, Sun X L, et al. Study on the extraction method for water-extracted fluorine in acid soils[J]. Soils, 2012, 44(1): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201201023.htm
查立新, 马玲, 刘文长, 等. 振荡提取和超声提取用于土壤样品中元素形态分析[J]. 岩矿测试, 2011, 30(4): 393-399. doi: 10.3969/j.issn.0254-5357.2011.04.003 Zha L X, Ma L, Liu W Z, et al. Morphological analysis of elements in soils using mechanical shaking extraction and ultrasonic vibration extraction[J]. Rock and Mineral Analysis, 2011, 30(4): 393-399. doi: 10.3969/j.issn.0254-5357.2011.04.003
杜肖, 罗长艳, 王成会. 超声波作用下温度变化对电导率测量的影响[J]. 声学技术, 2017, 36(5): 85-86. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSM201709001045.htm Du X, Luo C Y, Wang C H. Influence of temperature variation on conductivity measurement under ultrasonic irradiation[J]. Technical Acoustics, 2017, 36(5): 85-86. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSM201709001045.htm
张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系——以河南省永城矿区为例[J]. 地质与资源, 2004, 13(2): 109-111. doi: 10.3969/j.issn.1671-1947.2004.02.007 Zhang W, Fu X F, Zhang F R. The relationship between the high fluorine content of groundwater and the pH value, water temperature and the ratio of (Na++K+)/Ca2+[J]. Geology and Resources, 2004, 13(2): 109-111. doi: 10.3969/j.issn.1671-1947.2004.02.007
高永慧, 耿小丕. 超声波清洗液温度变化规律的研究[J]. 承德石油高等专科学校学报, 2005, 7(3): 39-41. doi: 10.3969/j.issn.1008-9446.2005.03.010 Gao Y H, Geng X P. Temperature change of ultrasonic wave cleaning fluid[J]. Journal of Chengde Petroleum College, 2005, 7(3): 39-41. doi: 10.3969/j.issn.1008-9446.2005.03.010
孙娟, 徐荣, 窦艳艳, 等. 超声浸取-离子选择电极法测定土壤中水溶性氟[J]. 环境监控与预警, 2015, 7(5): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201506007.htm Sun J, Xu L, Dou Y Y, et al. Determination of water-soluble fluoride in soil by ion selective electrode method with ultrasonic extraction[J]. Environmental Monitoring and Forewarning, 2015, 7(5): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201506007.htm
徐荣, 孙娟, 胡晓乐. 铁和铝离子对土壤水溶性氟化物检测的干扰研究[J]. 环境监控与预警, 2018, 10(3): 21-24. doi: 10.3969/j.issn.1674-6732.2018.03.005 Xu R, Sun J, Hu X L. Research on the interference of iron and aluminum ions to the detection of water soluble fluoride in soil[J]. Environmental Monitoring and Forewarning, 2018, 10(3): 21-24. doi: 10.3969/j.issn.1674-6732.2018.03.005
洪秀萍, 张引, 梁汉东, 等. 酸性水动态淋滤与静态浸泡土壤中氟的实验研究[J]. 地球与环境, 2015, 43(3): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201503014.htm Hong X P, Zhang Y, Liang H D, et al. Characteristics of fluorine in soil in both dynamic leaching and static immersion experiments[J]. Earth and Environment, 2015, 43(3): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201503014.htm
Li Y P, Wang S L, Daniel P, et al. Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China[J]. Science of the Total Environment, 2017, 595: 344-351. doi: 10.1016/j.scitotenv.2017.03.288
李永华, 王五一, 杨林生, 等. 陕南土壤中水溶态硒、氟的含量及其在生态环境的表征[J]. 环境化学, 2005, 24(3): 279-283. doi: 10.3321/j.issn:0254-6108.2005.03.012 Li Y H, Wang W Y, Yang L S, et al. Concentration and environmental significance of water soluble-Se and water soluble-F in soils of South Shaanxi Province[J]. Environmental Chemistry, 2005, 24(3): 279-283. doi: 10.3321/j.issn:0254-6108.2005.03.012
朱亚鹏, 苏春利, 梁川, 等. 沉积物岩性及水化学性质对水土界面氟迁移行为的影响[J]. 地质科技情报, 2015, 34(5): 160-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505025.htm Zhu Y P, Su C L, Liang C, et al. Effects of sediment lithology and groundwater hydrochemical characteristics on fluorine transport at water-soil interface[J]. Geological Science and Technology Information, 2015, 34(5): 160-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505025.htm
刘庆, 杨军耀, 王亚琴, 等. 氟在库水与库底沉积物之间的作用过程及机理[J]. 水电能源科学, 2019, 37(1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901015.htm Liu Q, Yang J Y, Wang Y Q, et al. Study on action process and mechanism of fluorine between reservoir water and bottom sediments[J]. Water Resources and Power, 2019, 37(1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901015.htm
Shi M J, Gao Z J, Feng J G, et al. Characteristics and effects of fluorine release from shallow high-fluoride soils[J]. Environmental Earth Sciences, 2019, 78: 604. doi: 10.1007/s12665-019-8618-0
王渊. 粤东某地氟病区氟的来源与迁移转化途径研究[J]. 安全与环境工程, 2019, 26(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201906001.htm Wang Y. Preliminary study on the origin, migration and transformation of fluorine in a fluorine disease area in eastern Guangdong Province[J]. Safety and Environmental Engineering, 2019, 26(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201906001.htm
-
期刊类型引用(15)
1. 苏立城,陈晓珊,罗志忠,胡英,陈煜佳,吴道铭,曾曙才. 氮添加对森林土壤有机碳库固存及CO_2排放的影响研究进展. 生态学报. 2024(07): 2717-2733 . 百度学术
2. 易志远,罗霄,王玉霞,苏丽,乔成龙,薛斌,杜灵通. 贺兰山东麓典型葡萄园土壤有机碳库组成及其活跃度. 水土保持通报. 2024(03): 390-398 . 百度学术
3. 李朝英,郑路,郑之卓,李华,王亚南,明安刚. 自动滴定仪测定土壤有机碳及其组分的方法优化. 岩矿测试. 2024(04): 632-640 . 本站查看
4. 高放,洪煜,孙燕,宓文海,陈硕桐. 秸秆还田对盐碱地土壤有机碳库及其组分影响的研究进展. 华北农学报. 2024(S1): 143-149 . 百度学术
5. 卢伟伟,胡嘉欣,陈思桦,陈玮铃,冯思宇. 苏北滨海土壤无机碳含量的测定方法比较. 南京林业大学学报(自然科学版). 2023(01): 76-82 . 百度学术
6. 吴紫琪,何语堂,羊妍珂,陶玉林,吴骏男,蒋振楠,严小军,廖智,刘雪珠,何建瑜. 厚壳贻贝(Mytilus coruscus)养殖区沉积物微生物多样性及固碳潜力研究. 海洋与湖沼. 2023(02): 502-513 . 百度学术
7. 陈宗定,许春雪,刘贵磊,王岚,孙慧中,安子怡. 元素分析仪和燃烧—红外吸收光谱法测定土壤和沉积物中总碳含量的比对. 理化检验-化学分册. 2023(07): 771-775 . 百度学术
8. 袁冬梅,严令斌,武亚楠,张丽敏,杨熳,喻理飞. 喀斯特高原区植被恢复过程土壤有机碳的变化. 山地农业生物学报. 2022(02): 20-25 . 百度学术
9. 张延,高燕,张旸,Gregorich Edward,李秀军,陈学文,张士秀,梁爱珍. Rock-Eval热分解法及其在土壤有机碳研究中的应用. 土壤与作物. 2022(03): 282-289 . 百度学术
10. 严洁,于小娟,唐明,段文艳,李鑫,郝一鸣,盛敏. 造林对乌海露天煤矿复垦地土壤养分和碳库的影响. 林业科学研究. 2021(04): 66-73 . 百度学术
11. 王尧,田衎,封跃鹏,王伟. 土壤中总有机碳环境标准样品研制. 岩矿测试. 2021(04): 593-602 . 本站查看
12. 岑言霸,苏斌,冯泽波,史正涛. 滇池入湖河流pH时空分异特征及其变化机理. 科学技术与工程. 2021(26): 11432-11442 . 百度学术
13. 安帅,陈鉴惠,赵任远,宋丽华. 东北黑土地中碳赋存形态分析方法研究. 地质与资源. 2021(06): 716-721+709 . 百度学术
14. 殷陶刚,窦向丽,张旺强,和振云. 应用高频红外碳硫仪测定农用地土壤样品中有机质含量. 岩矿测试. 2020(04): 631-638 . 本站查看
15. 曹彬彬,朱熠辉,姜禹含,师江澜,田霄鸿. 添加石灰和秸秆对土有机碳固持的影响. 中国农业科学. 2020(20): 4215-4225 . 百度学术
其他类型引用(13)