Implication of in situ Sr Isotope of Scheelite for Tungsten Mineralization: A Case Study of the Nanyangtian Scheelite Deposit, Southeast Yunnan, China
-
摘要: 南秧田钨矿床位于滇东南老君山W-Sn矿集区,地处扬子地块和印支地块的结合部位,地质背景复杂并遭受了多期岩浆活动和区域变质事件,其成矿时代和成因一直存在争议。本文对矽卡岩型和长石-石英脉型白钨矿开展了年代学、原位微量元素、Sr同位素研究,分析了两类白钨矿年龄、成因以及物质来源的差异。结果表明,长石-石英脉内与白钨矿共生辉钼矿的Re-Os同位素等时线年龄为151.0±1.3Ma,明显晚于矽卡岩矿体年龄,属于后期成矿事件。矽卡岩型白钨矿的轻稀土富集、重稀土强烈亏损,Eu呈明显负异常(δEu=0.46),∑REE平均含量为65.60μg/g,Mo平均含量为240.16μg/g,Sr平均含量为883.43μg/g;长石-石英脉型白钨矿稀土呈Eu正异常(δEu=2.8)的平坦型,∑REE平均含量为194.40μg/g,Mo平均含量为16.01μg/g,Sr平均含量为129.26μg/g。以上两者微量、稀土元素含量的差别显示它们具有性质明显不同的流体来源,Eu异常指示矽卡岩型白钨矿形成于氧逸度较高的环境,长石-石英脉型白钨矿形成于还原性环境。矽卡岩白钨矿87Sr/86Sr值相对较低,并且比较均一,介于0.71319~0.71491之间,表明成矿流体主要来自岩浆热液;长石-石英脉型白钨矿87Sr/86Sr值较高且变化范围大,介于0.71537~0.72803之间,平均0.72079,呈现出变质流体特征。两种不同类型白钨矿Sr同位素都具有二元混合的特征,显示长石-石英脉型白钨矿对矽卡岩型白钨矿有叠加改造作用,成矿流体与围岩的强烈交代作用是白钨矿形成的关键。要点
(1) 南秧田长石-石英矿脉型矿体形成时间为151.0±1.3Ma,为晚期又一次成矿事件。
(2) 应用原位微量元素、原位Sr同位素技术区分出两类白钨矿属于不同成矿流体来源和不同成因。
(3) 早期矽卡岩型白钨矿为岩浆热液成因,成矿流体以岩浆热液为主。晚期长石-石英脉型白钨矿为变质热液成因,成矿流体以变质热液为主。
HIGHLIGHTS(1) The ore body of feldspar-quartz vein scheelite in Nanyangtian formed at 151.0±1.3Ma.
(2) in situ trace element and in situ Sr isotopes of scheelite led to the identification of two types of scheelite with different fluid sources and genesis.
(3) The formation of early skarn scheelite was related to magmatic-hydrothermal fluids, whereas metaphorical-hydrothermal fluids were responsible for the formation of later feldspar-quartz mineral veins.
Abstract:BACKGROUNDThe Nanyangtian scheelite deposit is an important skarn scheelite deposit in Yunnan Province, which is located in Laojunshan W-Sn deposit area, Southeast Yunnan. Due to its complex geological background and multi-stage metallogenic characteristics, its mineralization age and genesis remain controversial.OBJECTIVESTo explore the metallogenic age, genesis and material origins of two types of scheelite deposits in order to explore formation patterns.METHODSMolybdenum Re-Os isotope dating was used to constrain the age, whereas in situ trace element and in situ Sr isotopes of scheelite were used to determine the composition of trace elements and Sr isotopes in scheelite.RESULTSThe Re-Os isochron age of molybdenite associated with scheelite in the feldspar-quartz mineral vein of Nanyantian was 151.0±1.3Ma, younger than the age of skarn mineralization, indicating a later mineralization event. The skarn-type scheelite was enriched in light rare earth elements with negative Eu anomaly (δEu=0.46). The average content of ∑REE, Mo and Sr in skarn scheelite were 65.60, 240.16 and 883.43μg/g, respectively. Feldspar-quartz vein-type scheelite showed a flat rare earth pattern with positive Eu anomaly (δEu=2.8) and average content of ∑REE, Mo and Sr were 194.40, 16.01 and 129.26μg/g, respectively. respectively. The skarn scheelite had a relatively low and uniform 87Sr/86Sr value of 0.71319 to 0.71491, indicating that the ore-forming fluids were mainly magmatic-hydrothermal in origin, whereas feldspar-quartz vein type scheelite had a wide 87Sr/86Sr range of 0.71537 to 0.72803, with an average of 0.72079, characteristic of metamorphic fluids.CONCLUSIONSThe differences in trace and rare earth element contents between two types of mineralization indicate that they have different fluid sources. The negative Eu anomaly of the skarn-type scheelite indicates a high oxygen fugacity environment, whereas the feldspar-quartz vein-type scheelite is formed in a reductive environment in terms of positive Eu anomaly. Sr isotopes of two different types of scheelite display a feature of binary mixing, indicating that feldspar-quartz vein-type scheelite has a superimposed transformation effect on skarn-type scheelite, and the strong metasomatism of ore-forming fluids and surrounding rocks is the key to the formation of scheelite.-
Keywords:
- scheelite /
- in situ Sr isotope /
- mineralization epoch /
- source of ore-forming fluid /
- Nanyangtian
-
酚类化合物是芳烃的含羟基衍生物,被广泛应用于生产生活中,常存在于煤气、焦化、石油、化工、制药、油漆等行业排放的废水中[1-2]。酚作为一类被广泛关注的污染物,因其高毒性和致癌性而被认为是造成水污染的因素之一[3]。它们在环境中普遍存在,由于极性较强,且样品基质复杂,对痕量酚类化合物的检测是食品、环境等分析中的难点[4],所以在实际检测中需要结合样品前处理技术对其进行分离、富集。常用的样品前处理方法如索氏提取[5]、液液萃取[6]等往往耗时长,需使用大量的有机溶剂,容易对环境造成二次污染。
固相微萃取(SPME)是一种绿色的样品前处理方法,集分离、富集、进样于一体[7-8],具有操作简便、高效灵敏、无溶剂萃取等优点[9-10],应用于酚类化合物检测中也具有较好的效果[11]。影响SPME萃取性能的主要因素是涂层材料,是近年来研究的热点[12-15]。共价有机骨架(COFs)是一种多孔材料[16-17],它具有稳定的物理化学性质[18]、大的比表面积和易功能化[19]等特点,不仅在催化[20-21]、传感[22-23]、分离[24-25]、储能[26]、环境修复[27]等领域有较大的应用前景,在SPME应用领域也有良好的发展。研究表明在材料中引入官能团可以提高涂层对特定目标分析物的萃取效率。例如,Liu等[28]在室温下合成了材料TPB-DMTP-COF用作SPME涂层萃取水中的酚类化合物,TPB-DMTP-COF中的氧或氮原子和酚类化合物的羟基之间存在较强的氢键相互作用,有效地提高了涂层与酚类化合物的亲和力,进而提高了萃取效率,涂层的富集因子为1741~4265,检出限为0.0048~0.015ng/L。Lv等[29]通过对比UiO-66和UiO-66-NH2对硝基苯酚的吸附性能,证实UiO-66-NH2对硝基苯酚具有更强的吸附能力。这种吸附性能差异主要是由于UiO-66-NH2上的氨基与硝基苯酚形成了氢键,说明在材料上引入氨基,通过与酚羟基形成氢键能有效地增强对酚的亲和性。因此,在COFs中引入氨基官能团有望提高材料对酚类化合物的萃取性能。
传统合成COFs的方法是溶剂热法,但通常需要在高温条件下反应48h以上[30],且需要使用1, 4-二氧六环、三甲苯等有毒的有机溶剂,合成周期长。因此有研究人员开发了机械化学法,该方法是一种通过手动研磨或高速球磨在室温和无溶剂的条件下合成COFs的简便方法,其特点是操作简单、反应快速等。虽然降低了反应温度,加快了反应时间,但是在合成过程中使用到大量的有机溶剂对材料进行清洗[31],仍会对环境造成污染。目前常用的合成氨基功能化COFs的方法是通过多步反应合成来实现的[32-33],主要步骤是先合成硝基功能化COFs,再用还原剂将COFs中的硝基还原成氨基。这种合成反应步骤繁琐、耗时。因此,需要开发一种绿色简单、高效的合成方法。
本研究本着绿色高效的目标,将表面活性剂PF127同时作为模板和还原剂,结合无溶剂法[34]一步合成了氨基功能化的COFs材料(简称TpPa-NH2)。采用扫描电子显微镜、傅里叶变换红外光谱仪、热重分析仪对TpPa-NH2进行了表征。为了探究不同官能团对酚类化合物萃取性能的影响,本文还合成了含有不同官能团的COFs材料TpPa-NO2和TpPa-1,并制成SPME涂层进行性能对比。结合GC-MS对酚类化合物进行分析,旨在为解决环境水样中极性酚类化合物萃取难的问题提供新的思路和途径。
1. 实验部分
1.1 仪器及工作条件
实验中使用的检测仪器是岛津QP2010 PLUS气相色谱-质谱仪(GC-MS),以99.999%的氦气(1.0mL/min)作为载气。
色谱柱采用Rtx-WAX柱(30m×0.25mm×0.25μm),进样口温度为230℃。柱温箱升温程序:100℃保持1min,以5℃/min的速度升至120℃,再以10℃/min的速度升至150℃保持1min,最后以30℃/min的速度升至230℃保持2min。离子源处于电子撞击(EI)模式(70eV),离子源和接口温度均保持在230℃。用选择离子监测模式(SIM)进行质谱检测。所有SPME程序均由多功能进样器(MPS,Gerstel,德国)进行。顶空瓶(20mL)、不锈钢丝[SSW,从Chemical Book(中国上海)获得]。SPME手柄、85μm聚丙烯酸酯涂层(PA)购自Sigma-Aldrich公司(中国上海)。
1.2 材料和主要试剂
三醛基间苯三酚(Tp);2-硝基-对苯二胺(Pa-NO2,分析纯,95%,Macklin公司);对甲基苯磺酸(PTSA,分析纯,Aladdin公司);嵌段共聚物Pluronic F127(分析纯,Macklin公司);对苯二胺(分析纯,97%,Aladdin公司)。
N, N-二甲基乙酰胺(分析纯,国药);丙酮(分析纯,国药);甲醇(色谱级,上海安谱科学仪器有限公司);氯化钠(分析纯,国药);184硅胶A & B(分析纯,国药);甲苯(分析纯,国药)。
酚类标准品:2-硝基苯酚(2-NP);2, 4-二甲基苯酚(2, 4-DMP);2, 6-二甲基苯酚(2, 6-DMP);2, 4-二氯苯酚(2, 4-DCP);2, 4, 6-三氯苯酚(2, 4, 6-TCP)。浓度均为1000μg/mL(Accustandard公司)。
21种酚类混标标准品(适用于国家标准HJ703/711—2014,BWQ8236—2016,北京北方伟业计量技术研究院);甲醇中13种酚类混标(适用国标HJ676—2013,BWQ8341—2016,北京北方伟业计量技术研究院)。
1.3 实验方法
1.3.1 材料的制备
(1) TpPa-NO2的合成
在室温下将Pa-NO2(0.45mmol,68.9mg)、PTSA(2.5mmol,430.5mg)和PF127(0.10g)混匀研磨5min,再加入Tp(0.30mmol,63mg)继续研磨10mim,添加20μL水再研磨5min,在170℃烘箱中反应5min。冷却至室温后,依次用水、N,N-二甲基乙酰胺、水和丙酮离心洗涤几次以除去残留的单体、PTSA和低聚物,60℃真空干燥12h。
(2) TpPa-NH2和TpPa-1的合成
在室温下将Pa-NO2(0.45mmol,68.9mg)、PTSA(2.5mmol,430.5mg)和PF127(0.10g)混匀研磨,再加入Tp(0.30mmol,63mg)继续研磨10min,滴加20μL水研磨5min,在管式炉中煅烧,除去PF127和PTSA。管式炉程序升温:20℃下保持30min,以10℃/min的速度从20℃升至170℃保持10min,再以10℃/min的速度升至360℃保持90min。煅烧后研磨成粉末,制备出TpPa-NH2[34],如图 1所示。按照相同的方法合成不加PF127的TpPa-N和不带氨基的TpPa-1。
1.3.2 SPME涂层的制备
取500μL浓稠状的184硅酮胶A于2mL离心管中,加入1000μL甲苯,混合均匀后再加入50μL液体状的184硅酮胶B,充分摇匀,静置,使其形成硅酮胶。将不锈钢丝浸入硅酮胶中约1.5cm,然后将不锈钢丝从硅酮胶中拉出。将制备的粉末放在称量纸上,均匀铺开。将粘有硅酮胶的不锈钢丝在粉末中滚动,使粉末均匀覆盖到不锈钢丝表面。随后,将沾有粉末的不锈钢丝放置于烘箱中,在150℃下加热10min。重复上述操作三遍使粉末粘附三层在不锈钢丝表面。最后,将涂层置于250℃的氮气氛围老化1h。
1.3.3 SPME过程
在500.0mL超纯水中加入180g氯化钠得到饱和氯化钠溶液,用盐酸和氢氧化钠将饱和氯化钠溶液pH值调至4得到基质溶液。在10.0mL基质溶液中,加入10.0μL 5mg/L酚类化合物标准溶液,配制成10.0mL 5.0μg/L的溶液。将顶空瓶放置于GC-MS上进行顶空萃取。
1.3.4 方法验证
按照1.3.3节的实验方法,采用TpPa-NH2涂层结合GC-MS分析方法对两种5μg/L的酚类标准品(BWQ8341—2016和BWQ8236—2016)进行分析。
2. 结果与讨论
2.1 TpPa-NH2涂层SEM表征
通过扫描电镜(SEM)对TpPa-NH2涂层形貌进行表征。图 2a是洁净的SSW的形貌图,其表面光滑,直径为149μm。图 2b是TpPa-NH2涂层的整体形貌图,可以看出涂层粗细均匀,TpPa-NH2粉末均匀地覆盖在SSW表面。图 2c是TpPa-NH2涂层横截面的形貌图,可见TpPa-NH2粉末与硅酮胶结合紧密,涂层紧密地固定在SSW表面。经过测量,TpPa-NH2涂层横截面直径为239μm,涂层厚度为45μm。通过图 2中a和b计算得到TpPa-NH2涂层厚度与图 2c测量得到的厚度相一致,进一步证明了涂层厚度的均匀性。
2.2 TpPa-NH2粉末的热重分析表征
图 3a是TpPa-NH2粉末的热重分析表征结果。图中100℃以内的轻微失重是由于吸附在材料表面或孔道中的水引起的。升温直至426℃,TpPa-NH2的失重仅为5%;直到温度升至高于426℃,TpPa-NH2质量才开始大幅度下降,说明TpPa-NH2材料在低于426℃范围内具有良好的热稳定性。
2.3 TpPa-NH2的红外光谱表征
通过TpPa-NH2的红外光谱图(图 3b)可以观察到,在波数为1580cm-1左右出现C=C的红外振动吸收峰,在波数为1240cm-1左右出现C—N的红外振动吸收峰[33]。TpPa-NO2的—NO2峰出现在1520cm-1左右,在TpPa-NH2中该峰消失,而在1480cm-1和3400cm-1左右分别出现了N—H的伸缩振动峰[32],表明TpPa-NO2中的—NO2被还原转化为—NH2,说明本实验成功合成了TpPa-NH2。其机理是:在较低温度时,嵌段共聚物PF127可与具有酚羟基结构的有机物进行自组装,并可通过在较高温度煅烧时发生热解而被除去,此过程中裂解产生的甲烷、一氧化碳等还原性气体能原位地将硝基还原成氨基[34]。合成的TpPa-NH2与文献合成的TpPa-NH2[32]的红外光谱相比,主要官能团的红外数据吻合较好。
2.4 TpPa-NH2涂层萃取条件的优化
2.4.1 萃取温度
顶空萃取的过程是目标分析物在顶空部分、溶液和涂层三相的动态平衡过程。萃取过程中的温度会对萃取效率有较大的影响。升高温度,分析物的扩散速度会增加,加快达到平衡的时间。但是因为吸附过程是放热的,温度升高后涂层上的分析物会离开涂层进入顶空相和水相中,使萃取效率降低[35]。所以要对萃取温度进行优化,以选择最佳萃取温度。
如图 4a所示,萃取温度选择在40~80℃之间进行优化,2, 4, 6-TCP和2, 4-DCP在60℃时检测到的信号最强,其他三种酚类化合物响应信号在各温度下比较接近,检测信号受萃取温度的影响较小,所以选择最佳萃取温度为60℃。
2.4.2 萃取时间
萃取时间太短,酚类化合物萃取到涂层的量很少,萃取时间过长又影响分析效率,所以选择在20~60min的范围内进行萃取时间的优化。从图 4b中可以看出,5种酚类化合物在50min时达到平衡,所以选择最佳萃取时间为50min。
2.4.3 解吸温度
温度过低不利于目标物完全解吸;温度过高,可能会对热稳定性不佳的涂层材料带来一定影响。而TpPa-NH2涂层在不高于426℃的情况下仍有良好的热稳定性,所以本实验选择解吸温度在190~230℃之间进行优化,以保证色谱柱不损坏。从图 4c中可以看出,在230℃时检测到的信号最强,所以选择最佳解吸温度为230℃。
2.4.4 解吸时间
对于解吸时间,若时间过短,涂层上的分析物不容易完全解吸; 时间过长,容易使色谱峰拖尾。在本实验中,选择解吸时间在1~5min的范围内进行优化,从图 4d中可以看出,解吸时间在3min信号最佳,所以选择3min为最佳解吸时间。
2.5 TpPa-NH2、TpPa-NO2、TpPa-1和TpPa-N涂层性能评价
在最佳的SPME条件下,将氨基功能化的TpPa-NH2、硝基功能化的TpPa-NO2、未功能化的TpPa-1和未加PF127合成的TpPa-N等涂层进行对比,以探讨不同官能团对酚类化合物萃取性能的影响。
从图 5a中可见,所有涂层均能萃取5种酚类化合物,可能是因为这些涂层材料与酚类化合物均具有苯环结构,其π-π堆积相互作用能促进酚与材料的结合,从而提高了萃取效率。整体上来看,TpPa-NH2涂层萃取的效果最好,TpPa-NO2和TpPa-N的萃取性能甚至比没有引入官能团的TpPa-1的萃取性能更差,说明氨基对材料萃取酚类的性能有促进作用,而硝基对材料萃取酚类的性能有削弱作用。可能是因为TpPa-NH2存在给电子基团,能与酚类化合物中的羟基形成强氢键相互作用。而TpPa-NO2存在得电子基团,会抑制TpPa-NO2与酚类化合物之间形成氢键,且TpPa-NO2比表面积比TpPa-1小[36],不利于材料对酚类的吸附。
2.6 TpPa-NH2涂层的可重复使用性
使用TpPa-NH2涂层反复萃取和解吸5种酚类化合物, 通过比较GC-MS的峰面积来评估涂层的可重复使用性。从图 5b发现,即使在90次循环使用后,TpPa-NH2涂层的萃取效率也没有显著降低,说明TpPa-NH2涂层具有出色的可重复使用性。
2.7 方法的分析性能
在最佳的实验条件下,本文评价了TpPa-NH2涂层结合GC-MS测定酚类化合物方法的性能,列于表 1中,所建立的方法在10~5.0×104ng/L范围内表现出良好的线性,相关系数(R2)介于0.996~0.999。检出限为1.30~5.35ng/L。涂层批内的RSD为4.2%~8.9%,涂层批间的RSD为2.6%~8.2%。如表 2所示,将本实验建立的分析方法与其他涂层测定酚类化合物的方法进行了对比,本实验的方法具有较好的检出限和较宽的线性范围,能满足实际需求。此外,本实验采用在管式炉的高温下PF127裂解产生气体还原的方法较为方便快捷,减少了合成步骤,也避免使用到大量的有机溶剂,符合绿色化学的理念。将本实验的方法与国家标准中测定酚类物质的方法进行对比(表 3),本方法具有较低的检出限,能满足检测的要求。
表 1 TpPa-NH2涂层萃取5种酚类化合物的分析性能Table 1. Analysis performance of 5 kinds of phenolic compounds by TpPa-NH2 coating酚类化合物 线性范围
(ng/L)R2 检出限
(ng/L)RSD(%) 批内重复性(n=3) 批间重复性(n=3) 2-NP 20~5.0×104 0.998 4.64 7.1 2.6 2,4-DMP 10~5.0×104 0.996 1.81 4.2 8.2 2,6-DMP 10~5.0×104 0.997 1.30 7.1 8.1 2,4-DCP 20~5.0×104 0.996 5.35 5.7 5.4 2,4,6-TCP 20~5.0×104 0.999 4.59 8.9 3.4 表 2 与已报道的基于SPME-GC-MS检测酚类的材料对比Table 2. Comparison with the reported materials for the detection of phenols based on SPME-GC-MS表 3 本文方法与国家标准方法检测酚类化合物结果对比Table 3. Comparison of results with the study method and national standard methods for detection of the phenols酚类化合物检测方法 进样量 检出限 《水质酚类化合物的测定液液萃取法/气相色谱法》 (HJ 676—2013) 500mL 0.5~3.4μg/L 《固体废物酚类化合物的测定气相色谱法》(HJ 711—2014) 100mL 2~6μg/L 本文方法 10.0μL 1.30~5.35ng/L 2.8 方法验证
按照上述的实验方法,采用TpPa-NH2涂层结合GC-MS分析方法对两个标准品(BWQ8341—2016和BWQ8236—2016)进行分析,由表 4分析结果可知,标准品所得测量值与参考值基本吻合,RSD在0.04%~3.90%之间,说明该方法是可靠的。
表 4 标准物质分析结果Table 4. Analytical results of the reference materials标准品 酚类化合物 参考值
(μg/L)测定值
(μg/L)RSD(%)
(n=5)BWQ8341—2016 2-NP 5±0.15 5.10±0.00 0.04 2,4-DMP 5±0.15 4.95±0.05 0.92 2,4-DCP 5±0.15 5.37±0.04 0.83 2,4,6-TCP 5±0.15 5.04±0.15 2.90 BWQ8236—2016 2-NP 5±0.15 5.09±0.19 3.90 2,4-DMP 5±0.15 4.93±0.02 0.44 2,4-DCP 5±0.15 5.36±0.04 0.87 2,4,6-TCP 5±0.15 4.98±0.08 1.60 3. 结论
本文通过无溶剂法一步合成了氨基官能化的COFs材料TpPa-NH2,与传统的溶剂热合成方法相比,本文方法具有省时、廉价、环保等优点。同时合成了带有不同官能团的COFs材料TpPa-NO2和TpPa-1,将其应用于SPME技术中,以酚类化合物作为目标分析物,通过表征和性能对比探究了不同官能团对酚类萃取性能的影响。结果表明:采用TpPa-NH2萃取酚类化合物的性能是TpPa-1的3~5倍,而TpPa-NO2萃取酚类化合物的性能整体不如TpPa-1,说明氨基的引入能有效地提升TpPa对酚类化合物的萃取性能,硝基的引入不利于发挥TpPa对酚类化合物的萃取性能。
将TpPa-NH2作为SPME涂层,结合GC-MS应用于标准品分析,所得的测量值与其参考值吻合良好。基于本文建立的SPME-GC-MS检测方法实现了实际样品中酚类化合物的灵敏、便捷、绿色检测,具有良好的应用前景。
致谢: 云南文山麻栗坡紫金钨业集团有限公司对本文野外地质工作的大力支持和帮助,以及两位审稿人对本文提出的建设性意见,在此表示衷心感谢! -
表 1 长石-石英脉中辉钼矿Re-Os同位素分析结果
Table 1 Re-Os isotope analytical results of molybdate in feldspar-quartz veins
样品编号 样品质量
(g)Re(μg/g) 普Os(ng/g) 187Re(μg/g) 187Os(ng/g) 模式年龄(Ma) 测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ NYTS-16-1 0.00304 60.93 0.460 0.0309 0.0024 38.29 0.289 95.71 0.59 149.8 2.1 NYTS-16-2 0.02081 197.6 1.723 0.5608 0.0454 124.2 3.768 313.7 2.1 151.4 2.3 NYTS-16-3 0.01190 235.0 2.141 0.5961 0.0178 147.7 1.346 373.6 2.3 151.7 2.2 NYTS-16-4 0.00309 213.1 1.678 0.1013 0.0077 133.9 1.055 333.9 2.0 149.4 2.1 NYTS-16-5 0.00313 246.2 2.146 0.1744 0.0076 154.8 1.349 390.0 2.8 151.1 2.3 表 2 白钨矿中稀土元素含量测定结果
Table 2 Anaytical results of rare earth elements in scheelite
白钨矿类型 样品编号 元素含量(μg/g) δEu Mo Sr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE 矽卡岩型 NYTX-5-01 300.1 1202 0.15 8.21 28.80 5.73 24.13 1.18 0.07 0.73 0.03 0.05 0.01 0.03 < LOD < LOD 0.01 68.98 0.24 NYTX-5-02 295.2 1332 0.24 18.60 52.48 8.57 36.18 2.20 0.15 0.85 0.04 0.07 < LOD < LOD 0.01 0.04 < LOD 119.18 0.36 NYTX-5-03 283.7 1197 0.02 6.54 25.21 4.97 22.30 1.56 0.15 0.45 0.06 < LOD < LOD 0.06 < LOD 0.01 < LOD 61.30 0.60 NYTX-5-04 237.8 1167 0.34 5.71 24.43 5.11 30.62 2.65 0.21 1.33 0.10 0.47 0.03 0.04 < LOD 0.01 < LOD 70.72 0.38 NYTX-5-05 248.8 1167 0.52 8.33 28.80 4.95 23.28 1.73 0.12 0.68 0.03 0.15 0.03 0.09 < LOD < LOD < LOD 68.20 0.37 NYTX-5-06 231.6 1191 1.20 7.33 27.39 5.61 32.38 3.49 0.25 1.90 0.18 0.48 0.10 0.23 0.00 0.07 < LOD 79.41 0.33 NYTX-12-01 246.3 672.1 4.23 4.25 15.53 2.96 18.02 4.17 0.77 3.73 0.38 1.96 0.29 0.62 0.04 0.20 0.02 52.95 0.66 NYTX-12-02 231.3 607.0 3.24 3.96 15.51 3.32 20.00 4.21 0.48 3.07 0.29 1.73 0.17 0.40 0.06 0.07 0.03 53.30 0.45 NYTX-12-03 223.5 588.1 4.43 4.66 17.57 3.47 19.00 4.24 0.68 3.80 0.37 1.67 0.29 0.52 0.04 0.20 0.04 56.55 0.58 NYTX-12-04 191.8 547.5 4.72 4.70 17.99 3.00 15.74 3.04 0.48 2.41 0.18 1.11 0.24 0.46 0.06 0.47 0.03 49.91 0.60 NYTX-12-05 207.9 520.8 4.87 3.25 14.63 3.31 17.82 4.71 0.65 4.42 0.47 2.36 0.37 0.84 0.07 0.11 0.02 53.05 0.49 NYTX-12-06 183.8 407.1 4.57 2.68 14.17 3.34 19.77 5.25 0.55 3.82 0.42 2.26 0.37 0.73 0.06 0.16 0.02 53.60 0.42 长石-石英脉型 NYTS-1-01 19.0 136.0 174.20 7.83 30.75 6.59 41.23 15.67 6.61 16.33 3.50 26.85 5.92 19.34 2.64 15.93 2.16 201.35 1.41 NYTS-1-02 19.4 106.4 52.82 3.31 8.45 1.54 8.32 3.58 1.59 4.26 1.16 6.40 1.96 5.89 0.77 4.71 0.94 52.87 1.39 NYTS-1-03 17.8 150.4 91.45 4.75 23.19 5.68 29.20 8.41 7.19 8.28 1.42 10.27 2.66 7.95 1.38 8.33 1.29 119.98 2.94 NYTS-1-04 21.5 149.9 299.92 41.05 86.35 12.79 62.13 15.88 9.40 17.89 3.64 28.31 7.14 22.83 4.72 34.81 4.72 351.65 1.90 NYTS-1-05 25.4 147.4 115.65 5.13 29.22 6.12 34.18 9.97 9.09 10.18 1.79 12.52 3.31 8.66 1.66 10.33 1.42 143.58 3.08 NYTS-1-06 18.5 156.0 78.63 6.28 29.29 6.54 34.74 8.53 8.80 8.56 1.43 8.57 2.19 6.05 0.91 4.96 0.86 127.71 3.51 NYTS-2-01 17.1 165.3 120.68 16.43 39.71 7.26 42.71 13.38 11.60 16.78 3.98 28.50 6.19 18.28 2.33 11.63 1.44 220.20 2.64 NYTS-2-02 15.8 181.8 82.32 5.44 26.48 5.87 30.35 8.32 8.43 7.77 1.62 12.49 3.11 10.01 1.50 9.37 1.31 132.06 3.58 NYTS-2-03 18.2 138.9 195.53 11.58 36.86 8.00 42.80 10.24 11.37 10.68 2.56 18.15 4.43 17.55 3.84 35.18 5.12 218.36 3.71 NYTS-2-04 17.4 139.1 331.40 50.60 232.17 16.05 63.10 14.95 12.72 14.35 2.84 23.03 6.50 26.72 5.35 54.33 7.82 530.55 2.96 NYTS-2-05 24.2 229.1 379.33 59.31 137.24 19.31 72.11 15.77 9.86 17.64 3.78 33.46 8.80 35.80 6.48 50.59 6.27 476.44 2.02 NYTS-2-06 36.6 233.8 30.11 0.57 2.57 0.71 4.22 3.23 0.83 4.28 0.98 6.18 1.51 4.45 0.62 3.56 0.46 34.16 0.77 NYTS-16-A01 7.2 80.9 104.49 15.83 64.67 9.43 44.49 9.55 8.90 10.71 1.74 12.00 2.89 8.07 0.89 4.63 0.71 194.51 3.00 NYTS-16-A02 9.9 78.8 84.31 24.08 49.34 8.61 40.72 9.13 10.06 8.91 1.57 10.65 2.45 6.68 0.75 3.72 0.54 177.21 3.80 NYTS-16-A03 8.0 75.5 216.48 17.77 78.41 11.97 60.53 17.28 10.48 20.42 3.80 27.34 6.30 17.84 2.13 11.33 1.80 287.41 1.90 NYTS-16-A04 8.5 74.2 117.84 20.31 100.61 18.61 78.68 15.98 10.67 14.52 2.58 16.47 3.58 9.60 1.11 5.74 0.71 299.17 2.39 NYTS-16-A05 9.1 69.0 93.65 22.56 68.14 10.58 46.13 15.18 10.49 9.47 1.57 10.35 2.69 6.78 0.87 3.83 0.62 209.26 2.99 NYTS-16-A06 9.3 69.1 164.20 58.80 122.66 17.72 73.98 14.31 13.80 13.55 2.26 15.54 3.49 10.22 1.16 6.81 1.05 355.37 3.38 NYTS-16-B01 14.7 115.9 39.49 1.42 6.00 1.16 7.47 2.46 6.46 3.25 0.67 5.20 1.21 4.01 0.60 4.23 0.72 44.87 7.79 NYTS-16-B02 12.9 139.4 58.82 3.64 13.09 2.72 18.22 6.37 5.01 8.18 1.53 10.89 2.43 7.31 0.90 5.19 0.72 86.22 2.37 NYTS-16-B03 13.5 133.5 44.99 2.01 8.90 1.98 14.00 4.96 5.60 6.88 1.30 8.96 2.05 5.56 0.71 4.33 0.66 67.90 3.27 NYTS-16-B04 11.8 115.6 79.60 5.51 20.36 4.57 34.26 10.83 4.33 12.07 1.88 12.31 2.82 7.75 0.99 6.86 1.11 125.64 1.29 NYTS-16-B05 12.9 106.3 57.57 4.57 17.56 3.47 25.36 7.21 4.69 8.98 1.53 9.00 2.03 5.58 0.71 4.44 0.79 95.90 1.99 NYTS-16-B06 15.4 110.0 50.36 14.57 30.26 4.50 26.18 6.14 5.79 6.50 0.97 6.32 1.48 4.32 0.63 4.62 0.85 113.13 3.13 注:“ < LOD”表示低于检出限。 表 3 白钨矿原位Sr同位素分析结果
Table 3 in situ Sr isotope analytical results of scheelite
白钨矿类型 样品编号 85Rb信号强度(V) 88Sr信号强度(V) 87Rb/86Sr 2 σ 87Sr/86Sr 2 σ 矽卡岩型 NYTX-5-01 0.0003 10.34 0.00009 0.00004 0.71383 0.00008 NYTX-5-02 0.0000 10.48 0.00001 0.00001 0.71352 0.00007 NYTX-5-03 0.0001 9.74 0.00004 0.00004 0.71359 0.00007 NYTX-5-04 0.0003 9.58 0.00009 0.00005 0.71351 0.00007 NYTX-5-05 0.0007 10.26 0.00021 0.00004 0.71353 0.00006 NYTX-5-06 0.0072 11.08 0.00227 0.00041 0.71364 0.00008 NYTX-5-07 0.0000 11.32 0.00000 0.00001 0.71356 0.00006 NYTX-5-08 0.0000 11.25 0.00001 0.00001 0.71356 0.00007 NYTX-5-09 0.0001 11.23 0.00002 0.00001 0.71351 0.00007 NYTX-5-10 0.0002 7.25 0.00009 0.00001 0.71359 0.00007 NYTX-5-11 0.0000 10.88 0.00000 0.00001 0.71354 0.00006 NYTX-5-12 0.0003 10.44 0.00008 0.00003 0.71358 0.00007 NYTX-5-13 0.0006 9.95 0.00021 0.00005 0.71359 0.00007 NYTX-5-14 0.0098 8.76 0.00393 0.00060 0.71384 0.00010 NYTX-5-15 0.0014 9.61 0.00048 0.00006 0.71354 0.00008 NYTX-12-01 0.0002 3.32 0.00021 0.00004 0.71491 0.00011 NYTX-12-02 0.0002 6.12 0.00011 0.00002 0.71339 0.00007 NYTX-12-03 0.0004 6.43 0.00019 0.00003 0.71336 0.00007 NYTX-12-04 0.0001 5.28 0.00008 0.00002 0.71354 0.00008 NYTX-12-05 0.0003 3.02 0.00036 0.00004 0.71429 0.00011 NYTX-12-06 0.0003 4.85 0.00021 0.00003 0.71349 0.00010 NYTX-12-07 0.0001 5.53 0.00008 0.00001 0.71319 0.00010 NYTX-12-08 0.0002 5.13 0.00013 0.00002 0.71349 0.00011 NYTX-12-09 0.0002 2.57 0.00032 0.00003 0.71478 0.00015 NYTX-12-10 0.0005 4.17 0.00044 0.00013 0.71374 0.00013 NYTX-12-11 0.0003 3.39 0.00034 0.00006 0.71385 0.00012 NYTX-12-12 0.0929 3.59 0.08473 0.01206 0.71401 0.00014 NYTX-12-13 0.0003 5.54 0.00020 0.00003 0.71357 0.00010 NYTX-12-14 0.0007 4.42 0.00051 0.00011 0.71389 0.00011 NYTX-12-15 0.0007 5.15 0.00044 0.00003 0.71353 0.00009 长石-石英脉型 NYTS-1-A01 0.0026 1.41 0.00589 0.00039 0.72027 0.00021 NYTS-1-A02 0.0033 1.33 0.00804 0.00071 0.72014 0.00027 NYTS-1-A03 0.0025 0.90 0.00968 0.00198 0.72135 0.00035 NYTS-1-A04 0.0050 1.18 0.01394 0.00101 0.72072 0.00032 NYTS-1-A05 0.0046 1.34 0.01109 0.00094 0.72043 0.00023 NYTS-1-A06 0.0014 1.29 0.00369 0.00028 0.72094 0.00022 NYTS-1-A07 0.0019 1.24 0.00506 0.00036 0.72106 0.00025 NYTS-1-A08 0.0014 1.18 0.00409 0.00032 0.72061 0.00026 NYTS-1-A09 0.0038 1.09 0.01114 0.00090 0.72085 0.00030 NYTS-1-A10 0.0017 1.11 0.00518 0.00020 0.72104 0.00031 NYTS-1-A11 0.0008 1.10 0.00244 0.00013 0.72186 0.00029 NYTS-1-A12 0.0044 1.13 0.01254 0.00145 0.72168 0.00034 NYTS-1-A13 0.0013 1.30 0.00348 0.00037 0.72079 0.00024 NYTS-1-A14 0.0006 1.39 0.00149 0.00026 0.71923 0.00028 NYTS-1-A15 0.0017 1.24 0.00420 0.00039 0.72066 0.00022 NYTS-1-B01 0.0022 2.35 0.00338 0.00125 0.71604 0.00014 NYTS-1-B02 0.0014 2.17 0.00213 0.00021 0.71584 0.00016 NYTS-1-B03 0.0033 2.14 0.00510 0.00031 0.71613 0.00015 NYTS-1-B04 0.0039 2.40 0.00530 0.00042 0.71693 0.00014 NYTS-1-B05 0.0019 2.23 0.00272 0.00010 0.71618 0.00015 NYTS-1-B06 0.0021 2.49 0.00293 0.00036 0.71649 0.00016 NYTS-1-B07 0.0028 2.28 0.00394 0.00038 0.71666 0.00015 NYTS-1-B08 0.0028 2.15 0.00449 0.00093 0.71622 0.00015 NYTS-1-B09 0.0013 2.37 0.00174 0.00009 0.71537 0.00013 NYTS-1-B10 0.0010 2.47 0.00138 0.00016 0.71589 0.00017 NYTS-1-B11 0.0007 2.67 0.00084 0.00007 0.71588 0.00011 NYTS-1-B12 0.0030 2.74 0.00355 0.00031 0.71601 0.00011 NYTS-1-B13 0.0018 2.82 0.00231 0.00026 0.71636 0.00023 NYTS-1-B14 0.0039 1.29 0.00978 0.00060 0.71716 0.00023 NYTS-1-B15 0.0065 1.72 0.01303 0.00185 0.71724 0.00018 NYTS-2-01 0.0018 1.45 0.00402 0.00025 0.72024 0.00018 NYTS-2-02 0.0005 1.45 0.00120 0.00019 0.72020 0.00018 NYTS-2-03 0.0005 1.48 0.00108 0.00007 0.71906 0.00019 NYTS-2-04 0.0006 1.47 0.00126 0.00011 0.71918 0.00020 NYTS-2-05 0.0004 1.27 0.00108 0.00007 0.72151 0.00023 NYTS-2-06 0.0007 1.27 0.00170 0.00014 0.72158 0.00021 NYTS-2-07 0.0016 1.29 0.00412 0.00022 0.72105 0.00021 NYTS-2-08 0.0016 1.30 0.00404 0.00061 0.72108 0.00023 NYTS-2-09 0.0008 1.39 0.00192 0.00020 0.72372 0.00022 NYTS-2-10 0.0015 1.45 0.00351 0.00031 0.72230 0.00019 NYTS-13-01 0.0004 1.05 0.00125 0.00009 0.72803 0.00029 NYTS-13-02 0.0009 0.94 0.00312 0.00031 0.72764 0.00032 NYTS-13-03 0.0001 0.97 0.00039 0.00008 0.72694 0.00026 NYTS-13-04 0.0001 1.02 0.00034 0.00007 0.72614 0.00028 NYTS-13-05 0.0003 0.95 0.00119 0.00007 0.72705 0.00024 NYTS-13-06 0.0003 0.87 0.00096 0.00008 0.72757 0.00028 NYTS-13-07 0.0001 0.82 0.00055 0.00008 0.72719 0.00030 NYTS-13-08 0.0032 0.91 0.01163 0.00189 0.72769 0.00033 NYTS-13-09 0.0007 0.78 0.00271 0.00018 0.72774 0.00036 NYTS-13-10 0.0005 0.75 0.00204 0.00037 0.72756 0.00034 标准样品 XJSSTD(n=8) 0.0000 6.48 0.00001 0.00002 0.72086 0.00015 -
Lecumberri-Sanchez P, Vieira R, Heinrich C A, et al.Fluid-rock interaction is decisive for the formation of tungsten deposits[J].Geology, 2017, 45(7):579-582. doi: 10.1130/G38974.1
Wu D, Liu Y, Chen C, et al.In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the Northern North China Craton[J].Lithos, 2017, 288-289:338-351. doi: 10.1016/j.lithos.2017.07.018
Christensen J N, Halliday A N, Lee D C, et al.In situ Sr isotopic analysis by laser ablation[J].Earth & Planetary Science Letters, 1995, 136:79-85. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201802006
Ramos F C, Wolff J A, Tollstrup D L.Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS[J].Chemical Geology, 2004, 211(1-2):0-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a071ddcd0b4e05bd8c22894d0b27153d
Schmidberger S S, Simonetti A, Heaman L M, et al.Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine:Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada[J].Earth & Planetary Science Letters, 2007, 254(1-2):0-68. http://www.sciencedirect.com/science/article/pii/S0012821X06008211
杨岳衡, 吴福元, 谢烈文, 等.地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J].岩石学报, 2009, 25(12):331-341. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912028 Yang Y H, Wu F Y, Xie L W, et al.In-situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS[J].Acta Petrologica Sinica, 2009, 25(12):331-341. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912028
Zhao X F, Zhou M F, Gao J F, et al.In situ Sr isotope analysis of apatite by LA-MC-ICPMS:Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China[J].Mineralium Deposita, 2015, 50(7):871-884. doi: 10.1007/s00126-015-0578-z
谭洪旗, 刘玉平.滇东南猛洞岩群构造环境:变质碎屑岩地球化学约束[J].地质学报, 2017, 91(7):1416-1432. doi: 10.3969/j.issn.0001-5717.2017.07.002 Tan H Q, Liu Y P.Tectonic setting of the Mengdong Group Complex, Southeast Yunnan Province:Geochemical constraints from metasedimentary rocks[J].Acta Geologica Sinica, 2017, 91(7):1416-1432. doi: 10.3969/j.issn.0001-5717.2017.07.002
张世涛, 冯明刚, 吕伟.滇东南南温河变质核杂岩解析[J].中国区域地质, 1998, 17(4):390-397. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD804.008.htm Zhang S T, Feng M G, Lü W.Analysis of the Nanwenhe metamorphic core complex in Southeastern Yunnan[J].Regional Geology of China, 1998, 17(4):390-397. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD804.008.htm
谭洪旗, 刘玉平.滇东南猛洞岩群变质-变形研究及构造意义[J].地质学报, 2017, 91(1):15-42. doi: 10.3969/j.issn.0001-5717.2017.01.002 Tan H Q, Liu Y P.Metamorphism and deformation of the Mengdong group-complex in Southeastern Yunnan Province and their tectonic implications[J].Acta Geologica Sinica, 2017, 91(1):15-42. doi: 10.3969/j.issn.0001-5717.2017.01.002
Xu B, Jiang S Y, Wang R, et al.Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China:Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions[J].Lithos, 2015, 218-219:54-72. doi: 10.1016/j.lithos.2015.01.004
Zhou X, Yu J H, O'Reilly S Y, et al.Sources of the Nanwenhe-Song Chay granitic complex (SW China-NE Vietnam) and its tectonic significance[J].Lithos, 2017, 290-291:76-93. doi: 10.1016/j.lithos.2017.07.017
刘玉平, 李正祥, 李惠民, 等.都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件[J].岩石学报, 2007, 23(5):967-976. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200705011.htm Liu Y P, Li Z X, Li H M, et al.U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit:Evidence for Cretaceous large-scale granitic magmatism and mineralization events in Southeastern Yunnan Province, China[J].Acta Petrologica Sinica, 2007, 23(5):967-976. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200705011.htm
冯佳睿, 毛景文, 裴荣富, 等.云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U-Pb定年、地球化学特征及成因探讨[J].岩石学报, 2010, 26(3):845-857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201003017 Feng J R, Mao J W, Pei R F, et al.HRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J].Acta Petrologica Sinica, 2010, 26(3):845-857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201003017
刘艳宾, 莫宣学, 张达, 等.滇东南老君山地区白垩世花岗岩的成因[J].岩石学报, 2014, 30(11):3271-3286. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201411013.htm Liu Y B, Mo X X, Zhang D, et al.Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan Region, Southeastern Yunnan Province[J].Acta Petrologica Sinica, 2014, 30(11):3271-3286. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201411013.htm
冯佳睿, 毛景文, 裴荣富, 等.滇东南老君山地区印支期成矿事件初探——以新寨锡矿床和南秧田钨矿床为例[J].矿床地质, 2011, 30(1):57-73. doi: 10.3969/j.issn.0258-7106.2011.01.006 Feng J R, Mao J W, Pei R F, et al.A tentative discussion on Indosinian ore-forming events in Laojunshan area of Southeastern Yunnan:A case study of Xinzhai tin deposit and Nanyangtian tungsten deposit[J].Mineral Deposits, 2011, 30(1):57-73. doi: 10.3969/j.issn.0258-7106.2011.01.006
李建康, 王登红, 李华芹, 等.云南老君山矿集区的晚侏罗世-早白垩世成矿事件[J].地球科学, 2013, 38(5):1023-1036. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201305014.htm Li J K, Wang D H, Li H Q, et al.Late Jurassic-Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province[J].Earth Science, 2013, 38(5):1023-1036. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201305014.htm
Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
Li C, Zhou L, Zhao Z, et al.In-situ Sr isotopic measure-ment of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160:38-47. doi: 10.1016/j.jseaes.2018.03.025
李超, 杨雪, 赵鸿, 等.pg-ng级Os同位素热表面电离质谱高精度分析测试技术[J].岩矿测试, 2015, 34(4):392-398. doi: 10.15898/j.cnki.11-2131/td.2015.04.003 Li C, Yang X, Zhao H, et al.High precise isotopic measurements of pg-ng Os by negative ion thermal ionization mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(4):392-398. doi: 10.15898/j.cnki.11-2131/td.2015.04.003
冯佳睿, 毛景文, 裴荣富, 等.滇东南老君山南秧田钨矿床的成矿流体和成矿作用[J].矿床地质, 2011, 30(3):403-419. doi: 10.3969/j.issn.0258-7106.2011.03.003 Feng J R, Mao J W, Pei R F, et al.Ore-forming fluids and metallogenesis of Nanyangtian tungsten deposit in Laojunshan, Southeastern Yunnan Province[J].Mineral Deposits, 2011, 30(3):403-419. doi: 10.3969/j.issn.0258-7106.2011.03.003
曾志刚, 李朝阳, 刘玉平, 等.老君山成矿区变质成因夕卡岩的地质地球化学特征[J].矿物学报, 1999, 19(1):48-55. doi: 10.3321/j.issn:1000-4734.1999.01.009 Zeng Z G, Li C Y, Liu Y P, et al.Geology and geochemistry of metamorphogenic skarn from Laojunshan metallogenic province[J].Acta Mineralogica Sinica, 1999, 19(1):48-55. doi: 10.3321/j.issn:1000-4734.1999.01.009
刘玉平, 李正祥, 叶霖, 等.滇东南老君山矿集区钨成矿作用Ar-Ar年代学[J].矿物学报, 2011(增刊1):617-618. http://d.old.wanfangdata.com.cn/Conference/7684868 Liu Y P, Li Z X, Ye L, et al.Ar-Ar chronology of tungsten mineralization in Laojunshan ore concentration area in Southeast Yunnan[J].Acta Mineralogica Sinica, 2011(Supplement 1):617-618. http://d.old.wanfangdata.com.cn/Conference/7684868
谭洪旗, 刘玉平, 叶霖, 等.滇东南南秧田钨锡矿床金云母40Ar-39Ar定年及意义[J].矿物学报, 2011(增刊1):639-640. http://d.old.wanfangdata.com.cn/Conference/7684858 Tan H Q, Liu Y P, Ye L, et al.40Ar-39Ar dating of metallomica and its significance from the South Yangtian tungsten-tin deposit in Southeast Yunnan[J]. Acta Mineralogica Sinica, 2011(Supplement 1):639-640. http://d.old.wanfangdata.com.cn/Conference/7684858
曾志刚, 李朝阳, 刘玉平, 等.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J].地质地球化学, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376 Zeng Z G, Li C Y, Liu Y P, et al.REE geochemistry of scheelite of two genetic types from Nanyangtian, Southeastern Yunnan[J].Geological Geochemistry, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376
谭筱虹, 李志均, 杜再飞.滇东南南温河地区深变质岩中似层状白钨矿[J].云南地质, 2010, 29(4):382-387. doi: 10.3969/j.issn.1004-1885.2010.04.002 Tan Y H, Li Z J, Du Z F.On the stratoid scheelite of Kata-Metamorphite in Nanwenhe area of SE Yunnan[J].Yunnan Geology, 2010, 29(4):382-387. doi: 10.3969/j.issn.1004-1885.2010.04.002
Sun K K, Chen B.Trace elements and Sr-Nd isotopes of scheelite:Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi Deposit, South China[J].American Mineralogist, 2017, 102:1114-1128.
Zhao W, Zhou M, Williams-Jones A, et al.Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China[J].Chemical Geology, 2018, 477:123-136. doi: 10.1016/j.chemgeo.2017.12.020
任云生, 赵华雷, 雷恩, 等.延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J].岩石学报, 2010, 26(12):3720-3726. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201012022 Ren Y S, Zhao H L, Lei E, et al.Trace element and rare earth element geochemistry of the scheelite and ore genesis of the Yangjingou large scheelite deposit in Yanbian area, Northeastern China[J].Acta Petrologica Sinica, 2010, 26(12):3720-3726. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201012022
刘善宝, 刘战庆, 王成辉, 等.赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J].地学前缘, 2017, 24(5):17-30. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705003 Liu S B, Liu Z Q, Wang C H, et al.Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in Northeast Jiangxi[J].Earth Science Frontiers, 2017, 24(5):17-30. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705003
聂利青, 周涛发, 张千明, 等.安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J].岩石学报, 2017, 33(11):3518-3530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711013 Nie L Q, Zhou T F, Zhang Q M, et al.Trace elements and Sr-Nd isotopes of scheelites:Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China[J].Acta Petrologica Sinica, 2017, 33(11):3518-3530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711013
丁腾, 马东升, 陆建军, 等.湘南黄沙坪多金属矿床花岗斑岩的矿物化学及其对矽卡岩白钨矿成矿的指示意义[J].岩石学报, 2017, 33(3):716-728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703004 Ding T, Ma D S, Lu J J, et al.Mineral geochemistry of granite porphyry in Huangshaping pollymetallic deposit, Southern Hunan Province, and its implications for metallogensis of skarn scheelite mineralization[J].Acta Petrologica Sinica, 2017, 33(3):716-728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703004
Ding T, Ma D, Lu J, et al.Garnet and scheelite as indica-tors of multi-stage tungsten mineralization in the Huangshaping deposit, Southern Hunan Province, China[J].Ore Geology Reviews, 2018, 94:193-211. doi: 10.1016/j.oregeorev.2018.01.029
闫国强, 丁俊, 黄勇, 等.西藏努日白钨矿床微量和稀土元素地球化学特征——对成矿流体与矿床成因的指示[J].矿物学报, 2015, 35(1):87-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201501014 Yan G Q, Ding J, Huang Y, et al.Geochemical characteristics of rare earth elements and trace elements in the Nuri scheelite deposit, Tibet, China——Indications for ore-forming fluid and deposit genesis[J].Acta Mineralogica Sinica, 2015, 35(1):87-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201501014
Song G, Qin K, Li G, et al.Scheelite elemental and isotopic signatures:Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, Eastern China[J].American Mineralogist, 2014, 99(2-3):303-317. doi: 10.2138/am.2014.4431
洪为, 张作衡, 蒋宗胜, 等.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约[J].岩石学报, 2012, 28(7):2089-2102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207011 Hong W, Zhang Z H, Jiang Z S, et al.Magnetite and garnet trace element characteristics from the Chagangnuoer iron deposit in the Western Tianshan Mountains, Xinjiang, NW China:Constrain for ore genesis[J].Ore Geology Reviews, 2012, 28(7):2089-2102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207011
Brugger J, Lahaye Y, Costa S, et al.Inhomogeneous dis-tribution of REE in scheelite and dynamics of archaean hydrothermal systems (Mt.Charlotte and Drysdale gold deposits, Western Australia)[J].Contributions to Mineralogy and Petrology, 2000, 139(3):251-264. doi: 10.1007/s004100000135
Brugger J, Maas R, Lahaye Y, et al.Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia[J].Chemical Geology, 2002, 182(2):203-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81a41e5122ad0d4b8120ce4abe7d9003
王冠, 杜谷, 刘书生, 等.电感耦合等离子体质谱法对白钨矿中稀土元素的准确测定——以云南麻栗坡南秧田白钨矿床的成因探讨为例[J].岩矿测试, 2012, 31(6):1050-1057. doi: 10.3969/j.issn.0254-5357.2012.06.025 Wang G, Du G, Liu S S, et al.Accurate determination of rare earth elements in scheelite using high resolution-inductively coupled plasma-mass spectrometry-An instance of Nanyangtian scheelite mining, Malipo, Yunnan[J].Rock and Mineral Analysis, 2012, 31(6):1050-1057. doi: 10.3969/j.issn.0254-5357.2012.06.025
Ghaderi M, Palin J M, Campbell I H, et al.Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Australia[J]. Economy Geology, 1999, 94:423-438. doi: 10.2113/gsecongeo.94.3.423
蔡倩茹, 燕永锋, 杨光树, 等.滇东南南秧田矽卡岩型钨矿床成矿演化[J].矿床地质, 2018, 37(1):116-136. http://d.old.wanfangdata.com.cn/Periodical/kcdz201801009 Cai Q R, Yan Y F, Yang G S, et al.Evolution of scheelite skarn mineralization at Nanyangtian deposit, Southeast Yunnan Province[J].Mineral Deposits, 2018, 37(1):116-136. http://d.old.wanfangdata.com.cn/Periodical/kcdz201801009
Yan D P, Zhou M F, Wang C Y, et al.Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province, SW China[J].Journal of Asian Earth Sciences, 2006, 28(4-6):332-353. doi: 10.1016/j.jseaes.2005.10.011
张斌辉, 丁俊, 任光明, 等.云南马关老君山花岗岩的年代学、地球化学特征及地质意义[J].地质学报, 2012, 86(4):587-601. doi: 10.3969/j.issn.0001-5717.2012.04.005 Zhang B H, Ding J, Ren G M, et al.Geochronology and geochemical characteristics of the Laojunshan granites in Maguan County, Yunnan Province, and its geological implications[J].Acta Geologica Sinica, 2012, 86(4):587-601. doi: 10.3969/j.issn.0001-5717.2012.04.005
-
期刊类型引用(2)
1. 陈海清,徐雄飞,蔡军民,饶高堂,游谦雄. LC-MS/MS法确认苯扎溴铵中杂质结构及杂质含量测定. 药品评价. 2024(10): 1191-1194 . 百度学术
2. 夏诗明,林鸿波,马庆斌. 高效液相色谱-串联质谱法测定生活用纸及纸制品中苯扎氯铵的研究. 轻工标准与质量. 2023(01): 80-82 . 百度学术
其他类型引用(0)