• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒

Simultaneous Determination of Trace Arsenic, Copper, Lead, Zinc, Nickel and Vanadium in Soils by Hydride Generation-Inductively Coupled Plasma-Optical Emission Spectrometry

  • 摘要: 土壤中砷的测定方法多采用氢化物发生-原子荧光光谱法(HG-AFS);电感耦合等离子体发射光谱法(ICP-OES)在多元素同时测定方面应用普遍,但测定砷的检出限稍高。氢化物发生技术与ICP-OES两者联用也多有研究,较大幅度降低了砷的检出限,已能实现砷锑铋汞等元素的同时测定。但联用技术只能应用于测定能够发生氢化反应的元素,无法实现易氢化元素和难氢化元素的同时测定。本文通过改进ICP-OES仪器的进样装置,采用氢化反应气与ICP-OES雾化气双管路同时进样的方法,实现了一次溶样、一台设备同步测定样品中的砷和多种金属元素。土壤样品经氢氟酸、硝酸、高氯酸、盐酸溶解后,用10%盐酸提取,用硫脲-抗坏血酸溶液将砷元素预还原为+3价后双流路同时进样测定。对于溶液中共存的离子,高于1.0mg/L的La和Dy对砷测定有干扰;低于50.0mg/L的K、Na、Ca、Mg、Fe,低于20.0mg/L的Pb、Mo、Zn、Cu、Ba、Ti、Mn、Ni、Sr、V、Cr,低于10.0mg/L的Co、Ag、U、Cd、Li、Au对砷测定无影响。本方法提高了砷的测定灵敏度,又充分利用多元素同测的优势,实现了同时测定易氢化的痕量砷和难氢化的铜、铅、锌、镍、钒等元素。方法精密度高(RSD < 5%),经土壤标准物质验证方法可靠,适合痕量砷与其他元素的同步测定。

     

    Abstract:
    BACKGROUNDHydride generation-atomic fluorescence spectrometry (HG-AFS) is widely used for the determination of arsenic in soil. Inductively coupled plasma-optical emission spectrometry (ICP-OES) is widely used in the simultaneous determination of multiple elements, but the detection limit of arsenic is slightly higher. The combination of hydride generation technology and ICP-OES has been widely studied, which can greatly reduce the detection limit of arsenic and yield the simultaneous determination of arsenic, antimony, bismuth, mercury and other elements. However, the combination technology can only be used to determine easy hydrogenation elements but it cannot simultaneously determine easy hydrogenation elements and difficult hydrogenation elements.
    OBJECTIVESTo obtain the simultaneous determination of arsenic and various metal elements in samples by one dissolved sample and one apparatus.
    METHODSThe soil samples were dissolved by hydrofluoric acid, nitric acid, perchloric acid and hydrochloric acid, followed by the addition of thiourea ascorbic acid solution to reduce arsenic to +3, by using 10% hydrochloric acid as the dissolving medium. The elements were determined by double flow method at the same time.
    RESULTSFor the coexisting ions in the solution, La and Dy higher than 1.0mg/L had interference on the determination of arsenic. These elements had no effect on the determination of arsenic, when K, Na, Ca, Mg, and Fe concentrations were lower than 50.0mg/L, Pb, Mo, Zn, Cu, Ba, Ti, Mn, Ni, Sr, V, when Cr concentrations were lower than 20.0mg/L, and Co, Ag, U, Cd, Li, Au concentrations were lower than 10.0mg/L.
    CONCLUSIONSThis method improves the sensitivity of arsenic and has the advantages of multi-element simultaneous determination. It can simultaneously determine trace arsenic and difficult hydrogenation elements such as copper, lead, zinc, nickel, and vanadium. The relative standard deviation (RSD) of the method is less than 5%. This method is confirmed by soil standard materials and is proved to be reliable and suitable for the simultaneous determination of trace arsenic and other elements.

     

/

返回文章
返回