• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

乙醇介质制备载炭泡塑及其在地质样品金测定中的应用

Application of Carbon-loaded Polyurethane Foam Produced by Ethanol Media in Determination of Gold in Geological Samples

  • 摘要: 载炭泡塑相较于无负载泡塑,可有效提高泡塑对金的吸附能力,但现有制备载炭泡塑的方法制备效率不高。为了缩短制备载炭泡塑的时间,提高制备效率,本文采用活性炭-乙醇溶液制备载炭泡塑,通过优化制备条件,包括负载介质的种类、试剂浓度、浸泡时间,使得制备100个载炭泡塑的时间可以控制在30 min之内,并结合ICP-OES建立了测定地质样品中金的方法。实验结果表明:该方法的振荡时间可以缩短至20 min。金的质量浓度在0~100.00 μg/mL范围内与光谱强度呈良好的线性关系,相关系数为0.9997,方法检出限(3σ)为0.0066 μg/g,测定结果相对标准偏差为0.81%~2.11%(n=10)。该方法经4个国家标准物质验证,准确度与精密度良好,能够满足地质样品中金的分析测试要求。

     

    Abstract:
    BACKGROUND Compared with unloaded polyurethane foam, carbon-loaded polyurethane foam can effectively increase the adsorption capacity of gold, but the existing preparation method of carbon-loaded polyurethane foam is not efficient.
    OBJECTIVESTo shorten the preparation time of carbon-loaded polyurethane foam, improve the preparation efficiency, and optimize experimental conditions.
    METHODSActivated carbon-ethanol solution was used to prepare carbon-loaded polyurethane foam. By optimizing conditions such as the load medium type, reagent concentration, and soaking time, the time for preparing 100 carbon-loaded polyurethane foams can be reduced to under 30 min. A method for the determination of gold in geological samples by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) combined with carbon-loaded polyurethane foam is described.
    RESULTSThe experimental results show that the oscillation time can be shortened to 20 min. The mass concentration of gold has a good linear relationship with the spectral intensity in the range of 0-100 μg/mL with the correlation coefficient of 0.9997. The detection limit (3σ) is 0.0066 μg/g, and the relative standard deviations of the results are 0.81%-2.11% (n=10).
    CONCLUSIONSFour certified reference materials of gold ore are used to evaluate the method. The results show good accuracy and precision, and the method meets the requirements of geological sample analysis.

     

/

返回文章
返回