Research on the Correlation between Methane and Hydrogen in Acid-hydrolyzed Gases for Geochemical Exploration Samples
-
摘要: 酸解烃是油气化探方法中准确度相对较高的一项指标,已得到广泛的应用,深入研究酸解气有助于对其机理的进一步解释,并且有利于开发新的分析指标。本文利用气相色谱法测定了油气化探样品经盐酸分解后所得气体中烃类组分与非烃气体组分的含量,发现了酸解气中甲烷与氢气的含量具有正相关性。进而通过X射线荧光光谱和X射线衍射分析样品的元素和矿物组成、样品再粉碎分析以及激光拉曼光谱分析包裹体成分等实验,获得以下结论:①酸解气中的甲烷和氢气含量与样品元素组成无关,与碳酸盐矿物正相关,其含量可以反映深部油气的情况;②两种气体并不是以物理吸附形式存在于样品中,而是存在于更小的空间内,证明了酸解烃分析方法具有相当高的稳定性;③获得了甲烷和氢气同时存在于包裹体的直接证据,由此推测这两种气体可能具有同源性。由于甲烷和氢气含量相关性的存在,酸解脱气中氢气的含量测定有望成为油气化探的新指标,应用于油气资源调查。要点
(1) 实验过程中发现酸解脱气中氢气与甲烷的含量存在较强的正相关性。
(2) 利用X射线荧光光谱、X射线衍射、激光拉曼光谱等分析手段查明了氢气与甲烷的含量具有正相关性的原因。
(3) 研究结果为酸解氢气成为油气化探新指标提供了可能性。
HIGHLIGHTS(1) There is a strongly positive correlation between the contents of hydrogen and methane according to the experiment results.
(2) The reason for positive correlation between hydrogen and methane was investigated by X-ray Fluorescence Spectrometry, X-ray Diffraction, Laser Raman Spectroscopy and other methods.
(3) The results of the study provide the possibility for acid hydrolysis of hydrogen to become a new indicator for oil and gas exploration.
Abstract: Acidolysis hydrocarbon is an important index with relatively high accuracy in the geochemical exploration for oil and gas and has been widely used. Detailed study of acid-hydrolyzed gases can help further explain its mechanism and help develop new analytical indicators. The content of acidolysis hydrocarbons and other gas released by hydrochloric acid in the samples from geochemical exploration for oil and gas by Gas Chromatography have been determined, and are presented in this paper. There is a positive correlation between the contents of methane and non hydrocarbon gas. The elements and mineral composition of the sample were measured by X-ray Fluorescence Spectrometry (XRF) and X-ray Diffraction (XRD), respectively, whereas the gas-liquid inclusion composition was analyzed by Laser Raman Spectroscopy after sample smashing. The conclusions are as follows:(1) The content of methane and hydrogen in the acidolysis hydrocarbons is independent of the elemental composition of the sample and is positively related to the carbonate minerals. The contents of methane and hydrogen can reflect the situation of deep oil and gas. (2) Two kinds of gas do not exist in the form of physical adsorption but in the smaller space. It is proved that the analysis method of acid hydrolysis hydrocarbon has high stability. (3) There is direct evidence that two kinds of gases exist in the inclusions at the same time, which infers that two types of gases have the same source. Due to the correlation between methane and hydrogen, the content of hydrogen from acidolysis hydrocarbons will be a new analysis index in the geochemical exploration for oil and gas.-
Keywords:
- geochemical exploration for oil and gas /
- acidolysis hydrocarbons /
- inclusion /
- methane /
- hydrogen
-
中国是稀土资源大国,占世界稀土矿产资源的80%,稀土元素对岩石形成过程、元素的迁移等研究都有一定的作用,提供了有价值的信息[1-3]。由于稀土元素的化学性质极其相似,因此采用传统化学法分析时需要冗长的分离富集过程[4],且只能测定稀土总量,而不能测定特定元素的含量[5]。样品中的稀土元素含量超过0.1%,对于这种通常概念上的微量元素,其实已转变为常量组分,大多采用电感耦合等离子体发射光谱法(ICP-OES)[6]测定,相对于应用X射线荧光光谱法(XRF)的前处理程序比较繁琐且试剂用量大。
XRF法具有制样方法简单、分析速度快、重现性好等特点[7],熔融制样法能消除粒度效应,降低元素间的基体效应影响,使复杂的试样也能完全熔融[8],适合于多种固体样品中主量、次量多元素的同时测定。目前XRF法分析稀土矿石类样品,主要的应用有:混合稀土氧化物中稀土分量的测定[9-11];采用同步辐射XRF法测定稀土元素的最低浓度[12];利用粉末压片法制备样品,通过无标定量分析软件添加与待测组分相似样品来建立标签,从而实现稀土矿物中五氧化二磷的准确测定[13];以及在其他地质矿化类样品中测定主次量元素开展了大量的研究[5, 14-17]。但应用于测定稀土矿石、矿化样品中的主、次量元素的相关报道较少。对于稀土样品的分析,存在现有的稀土国家标准物质少、稀土元素含量较低、重稀土元素谱线重叠严重等问题,从而导致了应用XRF分析稀土矿石类样品中的主量元素和稀土元素仍存在一定的困难。
鉴于此,本文通过现有的国家稀土标准样品和高纯稀土氧化物混合均匀制得的人工标准样品绘制工作曲线,扩大了自然界丰度较大的稀土元素镧、铈、钇的线性范围,应用熔融制样-波长色散XRF法测定样品,采用理论α系数的校准方法对主量元素进行校正的同时加入稀土元素的校正系数,其余元素用经验系数法来校正元素间的基体效应,对有谱线重叠的元素进行重叠干扰校正。通过对未知样品的检测和对标准样品的反测检验方法的可行性,证明了建立的测定方法可满足稀土矿化类样品分析的可靠性,可为地质评估提供满意的数据要求。
1. 实验部分
1.1 仪器和测量条件
Axios型X射线荧光光谱仪(荷兰帕纳科公司)。主要测量参数:X光管最大电压60 kV,最大电流125 mA,满功率4.0 kW,真空光路,视野光栏直径为32 mm,试样盒面罩直径32 mm。各待测元素的谱线选择和测量条件见表 1。
表 1 仪器分析条件Table 1. Working conditions of the elements by XRF元素及谱线 分晶体 准直器
(μm)探测器 电压
(kV)电流
(mA)2θ(°) PHD范围 峰值 背景1 背景2 Si Kα PE 002 550 FL 32 100 109.14 -2.3160 1.7938 26~76 K Kα LiF 200 150 FL 32 100 136.73 -1.1730 2.2190 26~74 Ti Kα LiF 200 150 FL 40 90 86.215 -0.6320 0.8640 26~75 Mn Kα LiF 200 150 DUP 55 66 62.998 -0.7190 0.7868 13~72 Na Kα PX1 550 FL 32 100 27.895 -1.8910 2.1214 22~82 Mg Kα PX1 550 FL 32 100 23.077 -1.8760 2.1788 20~78 Al Kα PE 002 550 FL 32 100 144.98 2.9372 -1.2490 21~76 P Kα Ge 111 550 FL 32 100 141.02 -1.3960 2.8040 23~78 S Kα Ge 111 550 FL 32 100 110.74 -1.5160 1.4708 16~74 Ca Kα LiF 200 150 FL 32 100 113.16 -0.8730 1.6258 28~70 Fe Kα LiF 200 150 DUP 55 66 57.530 -0.7130 0.8854 16~69 Cr Kα LiF 200 150 DUP 55 66 69.365 -0.6450 0.7386 12~73 Ni Kα LiF 200 150 DUP 55 66 48.658 -0.5890 0.8294 18~70 Y Kα LiF 200 150 SC 55 66 23.767 0.7668 -0.7400 23~78 Rb Kα LiF 200 150 SC 55 66 26.581 0.7720 -0.5110 22~78 Sr Kα LiF 200 150 SC 55 66 25.121 -0.5610 0.7542 22~78 Zr Kα LiF 200 150 SC 55 66 22.470 -0.7750 0.8758 24~78 Nb Kα LiF 200 150 SC 55 66 21.372 -0.5870 0.4690 24~78 Cu Kα LiF 200 150 DUP 55 66 45.010 -0.6960 0.9256 20~69 Zn Kα LiF 200 150 SC 55 66 41.796 -0.7050 0.6534 15~78 Ba Kα LiF 200 150 FL 40 90 87.204 0.6376 - 33~71 Rh Kαc LiF 200 150 SC 55 66 18.447 - - 26~78 V Kα LiF 200 150 DUP 40 90 76.929 -0.6230 - 15~74 Br Kα LiF 200 150 SC 55 66 29.940 -0.6830 0.9706 20~78 La Lα LiF 200 150 FL 40 90 82.938 -0.9010 24~78 Ce Lα LiF 200 150 DUP 40 90 79.047 -0.8740 - 26~78 Pr Lα LiF 200 150 DUP 55 66 75.379 -0.8580 - 15~74 Nd Lα LiF 200 150 DUP 55 66 72.141 -0.9860 - 13~74 Sm Lα LiF 200 150 DUP 55 66 66.237 0.9598 - 15~73 Tb Lα LiF 200 150 DUP 55 66 58.800 0.3626 - 15~72 Dy Lα LiF 200 150 DUP 55 66 56.600 -0.8020 - 15~71 Ho Lα LiF 200 150 DUP 55 66 54.575 -0.6550 - 16~71 Er Lα LiF 200 150 DUP 55 66 52.605 0.7728 - 17~71 Yb Lα LiF 200 150 DUP 55 66 49.038 0.8474 - 18~70 Lu Lα LiF 200 150 DUP 55 66 47.417 -0.4030 - 19~70 Ta Lα LiF 200 150 DUP 55 66 44.403 0.9066 - 20~69 Eu Lα LiF 200 150 DUP 55 66 63.591 0.4858 - 15~73 Gd Lα LiF 200 150 DUP 55 66 61.115 -0.8880 - 15~72 注: FL为流气式正比计数器, SC为闪烁计数器。DUP为流气式正比计数器和封闭式正比计数器串联使用,以提高探测效率。PHD为脉冲高度分析器。 Front-1型电热式熔样机(国家地质实验测试中心研制)。
铂金坩埚(95%铂+5%金)。石英表面皿:直径20 cm。
1.2 主要试剂
偏硼酸锂+四硼酸锂混合熔剂[8](质量比22:12,购自张家港火炬仪器厂):将混合溶剂置于大表面皿中,于马弗炉中650℃灼烧2 h,待冷却转入试剂瓶,置于干燥器中保存备。
碘化锂[18](脱模剂):优级纯,浓度为40 g/L。配制方法:称取40.0 g碘化锂溶于100 mL棕色试剂瓶中,待用。
硝酸铵(氧化剂):分析纯。
氧化镧、氧化钇、氧化铈:均为分析纯, 纯度99.99%。
1.3 样片制备
样品及熔剂的称量:精确称取灼烧后的混合溶剂5.8500±0.0002 g于30 mL瓷坩埚中,精确称取0.6500±0.0002 g样品置于瓷坩埚中[16],用玻璃棒充分搅匀(样品的要求:样品的粒径需小于200目,分取样品于纸质样品袋置于烘箱中,在105℃温度下烘样2 h。于干燥器内保存[16])。
熔样机条件设定:熔样温度1150℃,预熔2 min,上举1.5 min,摆平0.5 min,往复4次,熔样时间约为10 min;先粗略称取0.100 g硝酸铵[8]试剂平铺于铂金坩埚中,将称量好的试剂及样品倒入铂金坩埚中,滴两滴碘化锂溶液[18],当熔样机温度到达1150℃后,用坩埚钳将装有试样的铂金坩埚放入熔样机,启动熔样机开始熔样。待熔样机提示熔样完成后,将铂金坩埚取出,此时样品为玻璃熔融状态。观察试样底部是否有气泡,如有气泡可手动将气泡摇出[16],将铂金坩埚置于水平冷却台待样品底部与铂金坩埚分离后吹风冷却约3 min, 此时在玻璃样片上贴上标签,倒出样片置于干燥器中保存, 待测。
制备样片时,将稀土矿石标准物质(GBW07187、GBW07158、GBW07159、GBW07160、GBW07161)和人工配制标准样品(HC-XT-1~HC-XT-8)分别制备两套重复样片,一套用于建立标准曲线,另一套用作样品测量,检测方法的可行性。GBW07188、HC-XT-8分别重复制备10个,用于精密度的分析。岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136)和超基性岩石样品(DZΣ1、DZΣ2)各制备一个用于建立标准曲线。
1.4 样品配制及制备标准曲线的范围
在自然界中,镧、铈、钇的丰度较大,日常样品检测中这三个元素矿化的样品最为常见,因此本文重点通过人工标准物质来解决镧、铈、钇高含量样品的定量问题。在不同的稀土矿石国家标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161)中加入不等量高纯的稀土氧化物(La2O3、CeO2、Y2O3)扩大稀土的含量范围,既使各人工标准基体存在差异,镧、铈、钇含量又有一定梯度。制备人工标准样片时,各高纯稀土氧化物成分的质量和各标准物质称样量见表 2所示。
表 2 人工标准样品的配制Table 2. Preparation of artificial standard samples人工标准样品编号 La2O3加入量
(g)CeO2加入量
(g)Y2O3加入量
(g)国家标准物质编号 标准物质称样量
(g)HC-XT-1 0.0400 0.0500 - GBW07159 0.5600 HC-XT-2 0.0300 0.0400 - GBW07160 0.5800 HC-XT-3 0.0200 0.0300 - GBW07187 0.6000 HC-XT-4 0.0100 0.0200 - GBW07158 0.6200 HC-XT-5 - 0.0100 - GBW07188 0.6400 HC-XT-6 - - - GBW07187 0.3250 HC-XT-7 - - 0.0200 GBW07188 0.3250 HC-XT-8 0.0050 0.0050 - GBW07161 0.6300 GBW07188 0.6400 为满足不同类型稀土样品的测试要求,又要满足日常普通硅酸盐、碳酸盐样品的测试要求,本实验采用稀土矿石标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161),岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136),DZΣ1、DZΣ2和人工配制标准样品(HC-XT-1~HC-XT-8)共33个样片作为标准样品制备标准曲线。
各元素工作曲线范围列于表 3。
表 3 各元素工作曲线浓度范围Table 3. Working range of elements concentration主量元素 含量范围(%) 稀土元素 含量范围(μg/g) SiO2 0.3~74.55 Pr6O11 5.43~890 Al2O3 0.1~19.04 Sm2O3 13.53~2000 TFe2O3 0.07~3.49 Eu2O3 0.31~75 FeO 0.007~0.49 Gd2O3 27.91~2500 TiO2 0.003~0.537 Tb4O7 5.15~550 CaO 0.0224~55.49 Dy2O3 26.04~3700 Na2O 0.014~0.66 Tm2O3 2.29~310 MnO 0.004~0.1 Yb2O3 13.45~2100 P2O5 0.0022~0.124 La2O3* 0.002~6.16 MgO 0.066~20.15 CeO2* 0.0022~7.69 K2O 0.01~5.52 Y2O3* 0.017~3.2 Nd2O3* 0.0024~0.4 Lu2O3 1.91~300 Ho2O3 5.44~640 Er2O3 15.26~2000 Σ RExOy* 0.085~13.92 注:标记“*”的元素含量单位为%。 2. 结果与讨论
2.1 基体效应及谱线重叠干扰的校正
对主量元素采用消去烧失量的理论α系数法, 其余元素用经验系数法来校正元素间的基体效应,其中NiO、Rb2O、SrO、Y2O3、ZrO2、Nb2O5、Sm2O3、CeO2、Tb4O7、Ho2O3、Er2O3、Lu2O3采用Rh Kα线康普顿散射强度作内标校正基体效应[19]。采用帕纳科公司SuperQ3.0软件所用的综合数学校正公式(1),通过回归,同时求出校准曲线的基体校正系数和谱线重叠干扰校正系数。
$ \begin{align} &{{C}_{\text{i}}}=\text{ }{{D}_{\text{i}}}-\sum {{L}_{\text{im}}}{{Z}_{\text{m}}}+{{E}_{\text{i}}}{{R}_{\text{i}}}(1+\sum\limits_{j\ne 1}^{N}{{{\alpha }_{\text{ij}}}\cdot {{Z}_{\text{j}}}+} \\ &\ \ \ \ \ \sum\limits_{j=1}^{N}{\frac{{{\beta }_{\text{ij}}}}{1+{{\delta }_{\text{ij}}}\cdot {{C}_{\text{j}}}}\cdot {{Z}_{\text{j}}}+\sum\limits_{j=1}^{N}{\sum\limits_{k=1}^{N}{{{\gamma }_{\text{ij}}}\cdot {{Z}_{\text{j}}}\cdot {{Z}_{\text{k}}}}})} \\ \end{align} $
式中:Ci为校准样品中分析元素i的含量(在未知样品分析中,Ci为基体校正后分析元素i的含量;Di为分析元素i的校准曲线的截距;Lim为干扰元素m对分析元素i的谱线重叠干扰校正系数;Zm为干扰元素m的含量或计数率;Ei为分析元素i校准曲线的斜率;Ri为分析元素i的计数率(或与内标线的强度比值);Zj、Zk为共存元素的含量;Cj为共存元素j的含量;N为共存元素的数目;α、β、δ、γ为校正基体效应的因子。
根据快速扫描的结果,对有谱线重叠干扰的元素进行谱线重叠干扰校正,表 4列出了各稀土元素所校正的元素。
表 4 稀土元素的重叠谱线和影响元素Table 4. Overlapping spectral lines and influencing elements of rare earth elements待测元素 重叠谱线 校正基体元素 Y Rb Kβ1 Al,Si,Ba,Sr,Ni,Cr,Fe,Ca La Cs Lβ1 Si,Fe,Nd Nd Ce Lβ1 La,Sm,Al Ce Ba Lβ2 - Sm Ce Lβ2 - Tb Sm Lβ1 La,Ce Ho Gd Lβ1 Er,Yb Er Tb Lβ1,Co Kα La,Ce,Fe Yb Ni Kα Y Lu Dy Lβ2,Ni Kβ1 La Pr La Lβ1 La,Ce Eu - La,Ce Gd Ce Lγ1 La,Nd,Dy P Y Lβ1 - 2.2 方法检出限
按照检出限的公式计算出各元素的检出限:
$ \text{LOD}=\frac{3\sqrt{2}}{m}\sqrt{\frac{{{I}_{\text{b}}}}{t}} $
式中:m为计数率;Ib为背景计数率;t为峰值及背景的测量时间。
采用较低的标准物质重复测定12次计算的检出限结果见表 5。因本方法考虑测定的是稀土矿化类样品中的主量元素,而稀土元素检出限均在60 μg/g以下,因此对于高含量稀土元素能够满足定量分析要求。
表 5 分析元素的检出限Table 5. Detection limits of elements元素 方法检出限
(μg/g)Na2O 56.44 MgO 44.34 Al2O3 15.82 SiO2 96.03 P2O5 18.59 K2O 25.36 CaO 30.37 TiO2 20.04 MnO 8.32 Fe2O3 6.69 Y2O3 4.52 La2O3 42.6 Nd2O3 52.85 Sm2O3 42.74 CeO2 38.11 Tb4O7 44.83 Dy2O3 39.23 Ho2O3 8.86 Er2O3 27.19 Yb2O3 30.10 Lu2O3 13.41 Pr6O11 58.19 Eu2O3 6.14 Gd2O3 29.25 2.3 方法精密度和准确度
按照所建立的方法对国家标准物质GBW07188和人工标准样品HC-XT-8分别重复制作13个样片,以表 1所选测量条件测定,计算的相对标准偏差(RSD)和相对误差等测量结果列于表 6,其中绝大多数主量元素的RSD均小于1.5%,稀土元素的RSD在7%以下,个别含量较低元素的精密度较差,例如HC-XT-8号样品的CaO标准值为0.026%,测定平均值为0.021%,RSD为16.3%。而对于其他高含量CaO样品能够实现准确定量,例如GBW07188的CaO标准值为0.29,测定平均值同样为0.29,RSD为1.4%。对于Tb4O7、Lu2O3、Pr6O11等存在相同情况。表 6中的低含量结果仅作为参考数据,在此不作讨论。
表 6 方法准确度和精密度Table 6. Accuracy and precision tests of the method元素 GBW07188 HC-XT-8 测定平均值
(%)标准值
(%)相对误差
(%)RSD
(%)测定平均值
(%)标准值
(%)相对误差
(%)RSD
(%)Na2O 0.62 0.66 5.30 2.35 0.121 0.156 3.54 5.45 MgO 0.13 0.11 11.82 4.07 0.074 0.076 25.0 4.37 Al2O3 13.8 14.26 2.52 0.27 14.51 14.47 2.14 0.213 SiO2 66.8 66.9 0.01 0.19 73.5 73.4 0.15 0.17 K2O 5.56 5.52 1.09 0.32 4.861 4.9 0.86 0.27 CaO 0.29 0.29 0.69 1.40 0.021 0.026 2.80 16.3 TiO2 0.18 0.17 4.12 1.09 0.034 0.022 3.59 7.07 MnO 0.05 0.052 7.69 1.40 0.017 0.017 7.84 2.89 Fe2O3 2.28 2.24 2.05 0.30 1.13 1.13 1.90 0.14 Y2O3 2.14 2.16 0.93 0.71 0.054 0.056 1.78 0.98 La2O3 0.21 0.23 7.83 1.64 0.768 0.771 8.85 0.49 Nd2O3 0.41 0.4 2.50 0.88 0.003 0.003 5.57 69.5 Sm2O3* 2006 2000 0.05 2.92 30 15.5 3.40 34.7 CeO2 0.0619 0.053 26.42 5.39 0.728 0.771 2.26 2.30 Tb4O7* 652 550 16.55 6.94 7.93 8.07 24.17 46.2 Dy2O3* 3645 3700 2.38 0.69 未检出 55.4 6.64 - Ho2O3* 655 640 5.16 2.05 10.8 11.8 7.30 26.9 Er2O3* 1989 2000 1.95 1.94 25.45 35.8 13.71 38.8 Lu2O3* 306 300 5.60 4.13 2.57 5.4 1.02 48.1 Pr6O11* 863 890 8.58 5.40 99.5 6.2 18.49 55.2 Yb2O3* 2063 2100 2.72 0.79 13.55 36 8.95 33.0 Gd2O3* 2536 2500 0.80 1.16 111.9 31.9 7.47 13.4 加和 99.8 - - 0.12 99.6 - - 0.14 注:标记“*”的元素含量单位为μg/g。 2.4 全分析加和结果
以本文所建立的方法测量6个国家一级稀土标准物质、8个人工标准样品及8个未知的稀土样品,分析结果列于表 7,样品中主量元素、稀土元素和烧失量的加和结果均在99.41%~100.63%之间,所建分析方法能够满足全分析加和的要求,符合DZ/T0130—2006《地质矿产实验室测试质量管理规范》规定的一级标准。
表 7 全分析加和结果Table 7. Analytical results of sam additivity标准物质和样品编号 烧失量 主量元素和稀土元素测定值(%) 加和
(%)GBW07187 5.42 94.51 99.93 GBW07188 5.53 94.36 99.89 GBW07158 6.73 93.00 99.73 GBW07159 3.70 96.39 100.09 GBW07160 3.77 96.08 99.85 GBW07161 6.80 92.61 99.41 HC-XT-1 3.19 96.58 99.77 HC-XT-2 3.36 96.18 99.55 HC-XT-3 5.00 94.90 99.90 HC-XT-4 6.42 93.21 99.63 HC-XT-5 5.35 94.52 99.87 HC-XT-6 5.43 94.70 100.13 HC-XT-7 6.59 93.00 99.59 HC-XT-8 3.64 95.93 99.57 GX-TC-F2 7.48 93.15 100.63 GX-TC-F4 5.38 94.76 100.14 GX-DB-F1 5.85 94.27 100.12 GX-DB-F2 6.02 94.59 100.61 GX-DB-F3 3.55 96.55 100.10 GX-DB-F4 3.57 96.29 99.86 GX-DB-F5 3.65 96.53 100.18 XF-WX-F3 7.13 93.28 100.41 3. 结论
通过配制人工标准样品,解决了现有国家标准物质不能满足稀土矿样品等复杂类型样品中主量元素和稀土元素的定量问题。通过加入高纯氧化镧、氧化铈和氧化钇与碳酸盐标准样品混合,配制人工标准样品扩大了La、Ce和Y的定量范围。对稀土标准物质、人工标准样品和未知稀土样品进行反测,测定结果未采用归一化处理,元素的精密度和全分析加和结果都比较理想。本方法有效地扩大了XRF方法的适用范围。
-
表 1 10个样品中各类矿物的X射线衍射数据
Table 1 The X-ray diffraction data of minerals in 10 samples
矿物种类 各样品中各类矿物的含量(%) 003 014 030 046 059 067 069 110 130 143 石英 42.4 44.6 48.6 42.4 42.6 39.2 48.9 43.5 39.3 39.9 斜长石 15.8 17.2 15.1 16.6 16 26.1 16.6 17.2 17.2 16.5 钾长石 5.2 4.1 4.1 4.0 3.6 1.6 3.5 3.1 5.6 1.8 方解石 16.7 12.4 10.2 18.6 14.4 1.3 12.5 14.2 14.3 18.8 白云石 1.3 1.4 - 2.0 3.4 0.5 - 2.0 2.0 2.9 菱铁矿 0.8 - - 0.6 - - - - - - 角闪石 1.2 1.3 1.1 1.3 2.5 3.3 1.7 1.0 1.1 2.6 赤铁矿 - - 0.9 - - 1.0 0.8 - - - 蒙脱石 1.0 - - - - 2.0 - 1 - - 伊蒙混层 - - 13.0 - - - - - - - 伊利石 8.0 9.0 7.0 9.5 12.0 10.0 9.0 11.5 9.0 绿泥石 7.6 6.0 5.0 7.5 6.0 13.0 6.0 6.0 6.0 8.5 高岭石 - 4.0 2.0 - 2.0 - - 3.0 3.0 - -
李广之, 胡斌.中国油气化探分析技术新进展与发展方向[J].天然气地球科学, 2013, 24(6):1171-1185. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_trqdqkx201306011 Li G Z, Hu B.The latest progress of the analytical techniques of the petroleum geochemocal exploration China:Problems and development direction[J].Natural Gas Geoscience, 2013, 24(6):1171-1185. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_trqdqkx201306011
吴传璧.中国油气化探50年[J].地质通报, 2009, 8(11):1572-1604. doi: 10.3969/j.issn.1671-2552.2009.11.007 Wu C B.Fifty years history of Chinese oil and gas geo-chemical exploration[J].Geological Bulletin of China, 2009, 8(11):1572-1604. doi: 10.3969/j.issn.1671-2552.2009.11.007
Schumacher D.Surface geochemical exploration for oil and gas:New life for an old technology[J].The Leading Edge, 2000, 19(3):258-261. doi: 10.1190/1.1438582
蒋涛, 汤玉平, 李武, 等.分析和认识我国油气化探技术[J].物探与化探, 2011, 35(1):7-11. http://www.cnki.com.cn/Article/CJFDTOTAL-WTZB200801002.htm Jiang T, Tang Y P, Li W, et al.Analysis and understanding of oil and gas exploration technology in China[J].Geophysical and Geochemical Exploration, 2011, 35(1):7-11. http://www.cnki.com.cn/Article/CJFDTOTAL-WTZB200801002.htm
杨少平, 孙跃, 弓秋丽."十一五"以来化探方法技术研究主要进展[J].物探与化探, 2014, 38(2):194-199. doi: 10.11720/j.issn.1000-8918.2014.2.02 Yang S P, Sun Y, Gong Q L.The main progress in the research of geochemical exploration methods since 11th Five-Year[J].Geophysical and Geochemical Exploration, 2014, 38(2):194-199. doi: 10.11720/j.issn.1000-8918.2014.2.02
汤玉平, 姚亚明.我国油气化探的现状与发展趋势[J].物探与化探, 2006, 30(6):475-479. http://www.cnki.com.cn/Article/CJFDTOTAL-JXSI200606016.htm Tang Y P, Yao Y M.Current situation and development trend of oil and gas geochemical exploration in China[J].Geophysical and Geochemical Exploration, 2006, 30(6):475-479. http://www.cnki.com.cn/Article/CJFDTOTAL-JXSI200606016.htm
贾承造, 郑民, 张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发, 2012, 39(2):129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm Jia C Z, Zheng M, Zhang Y F.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development, 2012, 39(2):129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
缪九军, 荣发准, 李广之.酸解烃技术在油气勘探中的应用[J].物探与化探, 2005, 29(3):209-212. http://www.cqvip.com/QK/95670X/200503/15977069.html Miao J J, Rong F Z, Li G Z.Application of acidolysis hydrocarbon technology in oil and gas exploration[J].Geophysical and Geochemical Exploration, 2005, 29(3):209-212. http://www.cqvip.com/QK/95670X/200503/15977069.html
陈卫明, 肖细炼, 李庆霞, 等.气相色谱法测定油气化探样品中酸解烃的研究[J].岩矿测试, 2015, 34(6):698-703. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykcs201506019&dbname=CJFD&dbcode=CJFQ Chen W M, Xiao X L, Li Q X, et al.Determination of acidolysis hydrocarbons in oil/gas geochemical exploration samples by gas chromatography[J].Rock and Mineral Analysis, 2015, 34(6):698-703. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykcs201506019&dbname=CJFD&dbcode=CJFQ
王振平, 傅晓泰.油气垂向化探酸解烃异常识别[J].石油勘探与开发, 1996, 23(1):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD702.013.htm Wang Z P, Fu X T.Identification of acidolysis hydrocarbon anomaly in vertical geochemical prospecting for oil and gas[J].Petroleum Exploration and Development, 1996, 23(1):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD702.013.htm
梁前勇, 熊永强, 赵克斌, 等.高精度地表油气化探技术的发展及应用——以济阳凹陷垛石桥地区土壤酸解烃为例[J].地球化学, 2014, 43(2):141-148. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx201402005&dbname=CJFD&dbcode=CJFQ Liang Q Y, Xiong Y Q, Zhao K B, et al.Development and application of high-precision surface geochemical exploration technique for petroleum:Take the soil acid-extraction hydrocarbons in Duoshiqiao area, Jiyang Depression as an example[J].Geochimica, 2014, 43(2):141-148. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx201402005&dbname=CJFD&dbcode=CJFQ
程党性, 邓秀芹, 孙勃, 等.西峰油区酸解烃指标异常与长8油藏关系[J].西南石油大学学报(自然科学版), 2016, 38(4):48-55. doi: 10.11885/j.issn.1674-5086.2014.04.05.05 Cheng D X, Deng X Q, Sun B, et al.Relationship between unusual index of soil acid hydrolysis hydrocarbon and Chang 8 oil pool in Xifeng oil area[J].Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(4):48-55. doi: 10.11885/j.issn.1674-5086.2014.04.05.05
赵妮霞, 申鹏.油气包裹体研究进展及其在油气成藏中的应用[J].辽宁化工, 2012, 41(8):818-821. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200503001.htm Zhao N X, Shen P.Research progress in the oil inclusion and its application in oil and gas accumulation[J].Liaoning Chemical Industry, 2012, 41(8):818-821. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200503001.htm
施伟军, 蒋宏, 席斌斌.油气包裹体成分及特征分析方法研究[J].石油实验地质, 2009, 31(6):643-648. doi: 10.11781/sysydz200906643 Shi W J, Jiang H, Xi B B.Studies of analysis approaches of oil and gas inclusion composition and characteristics[J].Petroleum Geology and Experiment, 2009, 31(6):643-648. doi: 10.11781/sysydz200906643
胡国艺, 单秀琴, 李志生, 等.流体包裹体烃类组成特征及对天然气成藏示踪作用——以鄂尔多斯盆地西北部奥陶系为例[J].岩石学报, 2005, 21(5):1461-1466. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=200505146&journal_id=ysxb&year_id=2005 Hu G Y, Shan X Q, Li Z S, et al.The component and isotope characteristics of hydrocarbon in fluid inclusions and its affection on the gas reservoir formation:The case of Ordovcian reservoir in the northwest area of Ordos Basin[J].Acta Petrologica Sinca, 2005, 21(5):1461-1466. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=200505146&journal_id=ysxb&year_id=2005
付孝悦, 孙庭金, 温景萍.南盘江盆地含烃非烃气藏的发现及意义[J].天然气工业, 2005, 25(5):26-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200505007 Fu X Y, Sun T J, Wen J P.Discovery of hydrocarbon bearing nonhydrocarbon gas reservoirs in Nanpangjiang Basin and its significance[J].Natural Gas Industry, 2005, 25(5):26-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200505007
史建南, 曾治平, 周陆扬, 等.中国沉积盆地非烃气成因机制研究[J].特种油气藏, 2003, 10(2):5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198502002.htm Shi J N, Zeng Z P, Zhou L Y, et al.Genetic mechanism of non-hydrocarbon gas in China sedimentary basin[J].Special Oil and Gas Reservoirs, 2003, 10(2):5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198502002.htm
曹春辉, 张铭杰.四川盆地志留系龙马溪组页岩气气体地球化学特征及意义[J].天然气地球科学, 2015, 26(8):1604-1612. http://cdmd.cnki.com.cn/Article/CDMD-10730-1018803996.htm Cao C H, Zhang M J.Geochemical characteristics and implications of shale gas in Longmaxi Formation Sichuan Basin, China[J].Natural Gas Geoscience, 2015, 26(8):1604-1612. http://cdmd.cnki.com.cn/Article/CDMD-10730-1018803996.htm
李吉鹏, 王国建, 汤玉平.一种痕量氦氖氢的检测方法及其化探效果[J].物探与化探, 2013, 37(2):251-254. http://or.nsfc.gov.cn/handle/00001903-5/58287 Li J P, Wang G J, Tang Y P.A detection method for trace helium, neon and hydrogen and its effect in oil and gas exploration[J].Geophysical and Geochemical Exploration, 2013, 37(2):251-254. http://or.nsfc.gov.cn/handle/00001903-5/58287
刘德汉, 戴金星, 肖贤明, 等.普光气田中高密度甲烷包裹体的发现及形成的温度和压力条件[J].科学通报, 2010, 55(4-5):359-366. http://mall.cnki.net/magazine/article/KXTB2010Z1010.htm Liu D H, Dai J X, Xiao X M, et al.High density methane inclusions in Puguang gasfield:Discovery and a T-P genetic study[J].Chinese Science Bulletin, 2010, 55(4-5):359-366. http://mall.cnki.net/magazine/article/KXTB2010Z1010.htm
任鹏程, 苏亮, 刘卿, 等.小麦中元素含量相关性分析的方法比较[J].中国食品卫生杂志, 2017, 29(2):140-144. http://www.irgrid.ac.cn/handle/1471x/307593 Ren P C, Su L, Liu Q, et al.Method comparison of correlation analysis of element content in wheat[J].Chinese Journal of Food Hygiene, 2017, 29(2):140-144. http://www.irgrid.ac.cn/handle/1471x/307593
王建其, 柳小明.X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J].岩矿测试, 2016, 35(2):145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006 Wang J Q, Liu X M.Proficiency testing of the XRF method for measuring 10 major elements in different rock types[J].Rock and Mineral Analysis, 2016, 35(2):145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006
罗松英, 曹建劲, 吴政权.内蒙古草原拜仁达坝矿区地表土壤的X射线衍射和近红外光谱分析[J].光谱学与光谱分析, 2014, 34(8):2268-2272. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=guan201408057&dbname=CJFD&dbcode=CJFQ Luo S Y, Cao J J, Wu Z Q.XRD and NIR analysis of the soil overlying the Bairendaba deposit of the Inner Mongolia[J].Spectroscopy and Spectral Analysis, 2014, 34(8):2268-2272. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=guan201408057&dbname=CJFD&dbcode=CJFQ
凡慧, 马诗淳, 王春芳, 等.产氢细菌FSC-15对稻草秸秆厌氧发酵产甲烷的影响[J].应用与环境生物学报, 2017, 23(2):251-255. http://mall.cnki.net/magazine/Article/ZGZQ201401011.htm Fan H, Ma S C, Wang C F, et al.Effect of the hydrogen-producing bacterium FSC-15 on methanogenesis during rice straw anaerobic fermentation[J].Chinese Journal of Applied and Environmental Biology, 2017, 23(2):251-255. http://mall.cnki.net/magazine/Article/ZGZQ201401011.htm
-
期刊类型引用(6)
1. 孙成阳,陆太进,宋中华,何明跃,邓怡. 津巴布韦金刚石中石墨包裹体及金刚石异常双折射特征分析. 岩矿测试. 2022(02): 199-210 . 本站查看
2. 赵畅,王海阔,刘迎新. 一种高温高压合成钻石原石的宝石学及谱学特征研究. 中国宝玉石. 2022(06): 2-14 . 百度学术
3. 宋中华,陆太进,唐诗,高博,苏隽,柯捷. 高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征. 岩矿测试. 2020(01): 85-91 . 本站查看
4. 罗跃平,陈晶晶. 紫外-可见光谱具480 nm吸收的黄色钻石的宝石学特征. 宝石和宝石学杂志(中英文). 2020(05): 39-43 . 百度学术
5. 周宏,金绪广,黄文清,王磊. 钻石的红外光谱表征及其鉴定意义. 超硬材料工程. 2020(05): 18-25 . 百度学术
6. 唐诗,苏隽,陆太进,马永旺,柯捷,宋中华,张钧,张晓玉,代会茹,李海波,张健,吴旭旭,刘厚祥. 化学气相沉积法再生钻石的实验室检测特征研究. 岩矿测试. 2019(01): 62-70 . 本站查看
其他类型引用(6)