• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
CHEN He-hai, BAO Hui-jun, FU Ran-ran, YING Hai-song, LU Chun-mei, JIN Xian-zhong, XIAO Da-hui. Determination of Cr, As, Cd, Hg and Pb in Iron Ores Using Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2012, 31(2): 234-240.
Citation: CHEN He-hai, BAO Hui-jun, FU Ran-ran, YING Hai-song, LU Chun-mei, JIN Xian-zhong, XIAO Da-hui. Determination of Cr, As, Cd, Hg and Pb in Iron Ores Using Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2012, 31(2): 234-240.

Determination of Cr, As, Cd, Hg and Pb in Iron Ores Using Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

More Information
  • Received Date: November 29, 2010
  • Cr, As, Cd, Hg and Pb in iron ores not only contaminate smelting facilities and affect the quality of final products, but also pollute the environment. Cr, As, Cd, Hg and Pb contents in five certified standard iron ore samples of BS105, JSS804-2, Euro680-1, JK42 and ASCM007 were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) with microwave. Compared with the routine methods of Atomic Absorption Spectrometric (AAS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), this method has the advantages of using a small sample weight of about (0.1000±0.0200) g, needing less acids for digestion as 2.5 mL HCl+0.5 mL HF+1.0 mL HNO3, less effluent and has a lower cost. There are small interferences without preparation of the Fe base solution and any addition of masking reagent. Results for Cr, As, Cd, Hg and Pb in the Fe ore samples are 5.5×10-10-2.5×10-4, 7.6×10-10-1.9×10-4, 4.5×10-11-5.5×10-6, 1.88×10-9-1.9×10-7 and 1.2×10-10-3.2×10-5, respectively. The optimized sample pre-treatment method saves energy, reagent and sample consumption, and reduces secondary pollution and actual loss.
  • ISO 4689-3: 2004,Iron ores—Determination of sulfur content—Part 3: Combustion/infrared method [S].

    ISO 4689-3: 2004,Iron ores—Determination of sulfur content—Part 3: Combustion/infrared method [S].
    ISO 10203: 2006, Iron ores—Determination of calci-um—Flame atomic absorption spectrometric method [S].

    ISO 10203: 2006, Iron ores—Determination of calci-um—Flame atomic absorption spectrometric method [S].
    ISO 10204: 2006, Iron ores—Determination of magnesi-um—Flame atomic absorption spectrometric method [S].

    ISO 10204: 2006, Iron ores—Determination of magnesi-um—Flame atomic absorption spectrometric method [S].
    ISO 13310: 1997, Iron ores—Determination of zinc—Flame atomic absorption spectrometric method [S].

    ISO 13310: 1997, Iron ores—Determination of zinc—Flame atomic absorption spectrometric method [S].
    ISO 13311: 1997, Iron ores—Determination of lead—Flame atomic absorption spectrometric method [S].

    ISO 13311: 1997, Iron ores—Determination of lead—Flame atomic absorption spectrometric method [S].
    ISO 13312: 2006, Iron ores—Determination of potassium—Flame atomic absorption spectrometric method [S].

    ISO 13312: 2006, Iron ores—Determination of potassium—Flame atomic absorption spectrometric method [S].
    ISO 13313: 2006, Iron ores—Determination of sodium —Flame atomic absorption spectrometric method [S].

    ISO 13313: 2006, Iron ores—Determination of sodium —Flame atomic absorption spectrometric method [S].
    ISO 2597-2: 2008, Iron ores—Determination of total iron content—Part 2: Titrimetric methods after titanium(Ⅲ) chloride reduction [S].

    ISO 2597-2: 2008, Iron ores—Determination of total iron content—Part 2: Titrimetric methods after titanium(Ⅲ) chloride reduction [S].
    ISO 5418-2: 2006, Iron ores—Determination of copper— Flame atomic absorption spectrometric method [S].

    ISO 5418-2: 2006, Iron ores—Determination of copper— Flame atomic absorption spectrometric method [S].
    ISO 9516-1-2003, Iron ores—Determination of various elements by X-ray fluorescence spectrometry—Part Ⅰ: Comprehensive procedure [S].

    ISO 9516-1-2003, Iron ores—Determination of various elements by X-ray fluorescence spectrometry—Part Ⅰ: Comprehensive procedure [S].
    陈宗宏,孙明星,楚民生.微波消解等离子体发射光谱法测定铁矿石中14种元素的研究[J].化学世界,2006(7):401-413.
    胡述戈.微波消解-电感耦合等离子体原子发射光谱法测定铁矿石中8种成分[J].冶金分析,2006,26(6): 40-43.
    王丽君,胡述戈,杜建民,苗国玉,王琦,万冬林.应用ICP-AES法测定铁矿石中6元素[J].冶金分析,2003,23(3): 67-68.
    梁丽虹. ICP-AES法测定铁矿石中微量氧化钾、氧化钠[J].冶金丛刊,2004,150(2): 14-15.
    杨立,胡晓民,王成. ICP-AES法快速测定球团铁矿石中的总铁、二氧化硅、氧化钙、氧化镁及三氧化二铝[J].光谱实验室,2003,20(5): 772-776.
    Houk R S. Mass spectrometry of inductively coupled plasma[J]. Analytical Chemistry, 1986, 58(1): 97A-105A.

    Houk R S. Mass spectrometry of inductively coupled plasma[J]. Analytical Chemistry, 1986, 58(1): 97A-105A.
    Richter S, Meckelburg A, Recknagel S, Matschat R. Determination of trace elements in iron ore, cast iron and steel materials using ICP-MS. Berlin: Federal Institute for Materials Research and Testing, 2007.

    Richter S, Meckelburg A, Recknagel S, Matschat R. Determination of trace elements in iron ore, cast iron and steel materials using ICP-MS. Berlin: Federal Institute for Materials Research and Testing, 2007.
    齐剑英,李祥平.微波消解-电感耦合等离子体质谱法测定黄铁矿石中重金属元素[J].冶金分析,2007,27(12):1-16.
    孙明星,徐鑫,屠虹,王芳,高勤芬. ICP-MS测定化肥中有害元素Cr、Cd、As、Pb、Hg的新方法[J].分析测试学报,2009,28(2):243-256.
    刘丽萍,张妮娜,张岚,张勐.电感耦合等离子体质谱法测定矿泉水中23种元素[J].质谱学报,2005,26(1):27-31.
    ISO 7764: 2006, Iron ores—Preparation of predried test samples for chemical analysis [S].

    ISO 7764: 2006, Iron ores—Preparation of predried test samples for chemical analysis [S].
    任春生,付冉冉,余清.铁矿石检验结果的数据处理[M].北京:冶金工业出版社,2009: 98-104.

Catalog

    Article views (3540) PDF downloads (1643) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return