• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WEN Hong-li, MA Sheng-feng, MA Xin-rong, WANG Lei, FAN Fan, GONG Ai-hua. Simultaneous Determination of 8 Elemental Components of Fe, Cu, Zn and Pb in Sulfide Ores by ICP-AES with Aqua Regia Digestion[J]. Rock and Mineral Analysis, 2011, 30(5): 566-571.
Citation: WEN Hong-li, MA Sheng-feng, MA Xin-rong, WANG Lei, FAN Fan, GONG Ai-hua. Simultaneous Determination of 8 Elemental Components of Fe, Cu, Zn and Pb in Sulfide Ores by ICP-AES with Aqua Regia Digestion[J]. Rock and Mineral Analysis, 2011, 30(5): 566-571.

Simultaneous Determination of 8 Elemental Components of Fe, Cu, Zn and Pb in Sulfide Ores by ICP-AES with Aqua Regia Digestion

More Information
  • Received Date: February 21, 2010
  • Revised Date: June 03, 2010
  • A method is presented in this paper for examining sulphide ores, in order to determine Cu, Pb, Zn, As, Ag, Cd, Hg and Mo within Fe, Cu, Pb and Zn contained in the ores. This method utilizes Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) with aqua regia digestion. The technique for sample dissolution and measuring conditions is also presented. The accuracy and precision of the method were examined by analyzing reference materials GBW07162 (multi-metal lean ore) and GBW07164 (multi-metal ore). The test results indicate that the relative standard deviation (RSD, n=11) of most elemental components is less than 5% and the accuracy (RE) is less than 10% for most elements. The method was validated by different reference materials and the results were in good agreement with the certified values, thereby meeting the requirements of mineral exploitation. The method has the advantage of providing a simple, simultaneous determination of multiple elements, along with having a wide linearity range and low detection limit, especially for the determination of As, Ag and Hg.
  • 曾惠芳,戢朝玉,袁玄晖.等离子体直读光谱法分析以Pb、Zn、Cu、Fe为基体的硫化矿物的研究[J].岩矿测试,1986,5(4):269-274.
    袁玄晖,曾惠芳.等离子体直读光谱法分析单矿物初探[J].中国地质科学院院报,1990(14):125 -127.
    硫化物矿物标准物质研制小组.硫化物矿物标准物质的研制[J].岩矿测试,1995,14(2):81-112.
    夏月莲,温宏利.辉锑铋单矿物的主次痕量元素分析[J].岩矿测试,1995,14(4):245-249.
    常平,王松君,孙春华,苏维娜,王丽娟.电感耦合等离子体原子发射光谱法测定黄铁矿中微量元素[J].岩矿测试,2002,21(4):304-306.
    冯伟,梁成,郭月芳,张万宝.ICP-AES法直接测定锌精矿中铅、铜、镉等10种杂质元素[J].甘肃冶金,2003,25(Z1):162-163.
    王松君,常平,王璞珺,侯天平.电感耦合等离子体发射光谱法直接测定黄铜矿中多元素[J].岩矿测试,2004,23(3):228-230.
    叶家瑜,江宝林.区域地球化学勘查样品分析方法[M]:北京:地质出版社,2004:119-125.
    王松君,常平,王璞珺,侯天平,侯悦.ICP-AES测定闪锌矿中9种元素的方法[J].吉林大学学报:理学版,2006,44(6):993-996.
    王松君,常平,王璞珺,侯天平,侯悦.ICP-AES法测定方铅矿中多元素的方法研究[J].分析试验室,2007,26(3):39-42.
    冯宝艳.ICP-AES测定铜精矿中As,Sb,Bi,Ca,Mg,Pb,Co,Zn和Ni[J].分析试验室,2008,27(Z1):67-68.
    周丽萍,李中玺.王水提取-电感耦合等离子体质谱法同时测定地质样品中微量银、镉、铋[J].分析试验室, 2005, 24(9): 20-25.
    范凡,温宏利,屈文俊,曹亚萍.王水溶样-等离子体质谱法同时测定地质样品中砷锑铋银镉铟[J].岩矿测试,2009,28(4):333-336.
    高若梅,刘鸿皋.检出限问题讨论——IUPAC及其检出限的定义的综合探讨和实验论证[J].分析化学,1993 21(10):1232-1236.
    蒋明蔚,元晓梅.强化碘食品中碘含量测定方法的研究[J].食品与发酵工业, 2001, 27(11): 21-26.
    岩石矿物分析编委会.岩石矿物分析(第三分册)[M].4版.北京:地质出版社,2011:8-19,55,73

    -74.
  • Related Articles

    [1]TANG Yichuan, FENG Yuanyuan, ZHOU Tao, CUI Yanjie, ZHANG Jianying. Rapid Determination of Trace Impurity Elements in Pure Molybdenum by Inductively Coupled Plasma-Mass Spectrometry Based on the Online-Standard-Addition Method[J]. Rock and Mineral Analysis, 2023, 42(6): 1142-1155. DOI: 10.15898/j.ykcs.202304020042
    [2]YANG Rong, GU Tiexin, PAN Hanjiang, LIU Mei, ZHAO Kai. Redevelopment of Oolong Tea and Green Tea Component Analysis Reference Materials[J]. Rock and Mineral Analysis, 2023, 42(2): 420-431. DOI: 10.15898/j.cnki.11-2131/td.202202180025
    [3]LI Tan-ping, LI Ai-yang. Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. DOI: 10.15898/j.cnki.11-2131/td.202004090043
    [4]Qiao-juan YAN, Xiao-yan WEI, Mei-fang YE, Hui-bo ZHAO, Ning-chao ZHOU. Determination of Composition of Pyrite in the Baishantang Copper Deposit by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry and Electron Microprobe[J]. Rock and Mineral Analysis, 2016, 35(6): 658-666. DOI: 10.15898/j.cnki.11-2131/td.2016.06.012
    [5]Yu FU, Xiao-ming SUN, De-xin XIONG. In-situ Determination of Rare Earth Elements in Scheelite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 875-882.
    [6]ZHANG De-xian. Analysis of Trace Elements in Magnetites Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 120-126.
    [7]YUAN Ji-hai, ZHAN Xiu-chun, FAN Xing-tao, HU Ming-yue. Development of Microanalysis of Trace Elements in Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(2): 121-130.
    [8]HOU Dongyan, HUI Ruihua, XU Limin, LIU Junhui. Determination of Mineral Elements in Thermal Mineral Mud fromTanggangzi Hotspring by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2010, 29(1): 47-50.
    [9]Interference and Its Elimination in Determination of Germanium and Cadmium in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 197-200.
    [10]Determination of Iron in High Purity Indium by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 193-196.

Catalog

    Article views (3763) PDF downloads (1256) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return