• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
XIAO Fang, TANG Zhi-yong, HAO Zhi-hong, SHUAI Qin, ZHENG Hong-tao, QIU Hai-ou. Determination of As(Ⅲ) and As(Ⅴ) in Stream Sediments by Hydride Generation-Atomic Fluorescence Spectrometry with Ultrasonic Extraction[J]. Rock and Mineral Analysis, 2011, 30(5): 545-549.
Citation: XIAO Fang, TANG Zhi-yong, HAO Zhi-hong, SHUAI Qin, ZHENG Hong-tao, QIU Hai-ou. Determination of As(Ⅲ) and As(Ⅴ) in Stream Sediments by Hydride Generation-Atomic Fluorescence Spectrometry with Ultrasonic Extraction[J]. Rock and Mineral Analysis, 2011, 30(5): 545-549.

Determination of As(Ⅲ) and As(Ⅴ) in Stream Sediments by Hydride Generation-Atomic Fluorescence Spectrometry with Ultrasonic Extraction

More Information
  • Received Date: April 10, 2011
  • Revised Date: June 12, 2011
  • An analysis method was established for the determination of As(Ⅲ) and total arsenic in stream sediments by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) by using 4.8 mol/L HCl for ultrasonic extraction at 50℃. The amount of As(Ⅴ) could be obtained by substracting As(Ⅲ) from total arsenic. The masking effects of citric acid, sodium citrate, oxalic acid, sodium oxalate, tartaric acid and sodium tartrate on As(Ⅴ) were investigated, then As(Ⅲ) was determined by controlling suitable acidity of medium. The results showed that the best masking effect on As(Ⅴ) is sodium citrate. Moreover, As(Ⅲ) is of higher sensitivity in the medium of sodium citrate. The optimum determination results could be achieved under the condition of ultrasonic extraction for 30 min, sodium citrate for 6 g/L and determination acidity for 0.24 mol/L. Meanwhile, the signal interference of As(Ⅲ) on As(Ⅴ) can be greatly reduced. The detection limit is 0.41 μg/L and the relative standard deviation level is 1.33% (n=11). The linear range of the calibration curve is 1.5-500 μg/L. The recoveries of As(Ⅲ) and As(Ⅴ) are 82.7%-95.3% and 96.1%-107.6%, respectively. The method is simple, rapid, highly accurate and of low cost. It has been applied to determine the As(Ⅲ) and As(Ⅴ) in stream sediment samples with satisfactory results which meet the requirements of multiple geological sample analysis.
  • 杨泽湘,王秀京,刘炳璋.变价元素在找矿评价工作中的意义和指示作用[J].物探与化探,2008,32(6):600-603.
    伯英,罗立强.砷的地球化学特征与研究方向[J].岩矿测试,2009,28(6):569-575.
    马志玮.水体沉积物中砷形态分析及其生物有效性研究 .上海:同济大学,2007:3.
    韦昌金,刘霁欣,裴晓华.离子交换色谱-氢化物发生双道原子荧光法同时测定砷和硒形态[J].分析化学,2008,36(8):1061-1065.
    Wei C J, Liu J X. A new hydride generation system applied in determination of arsenic species with ion chromatography-hydride generation-atomic fluorescence spectrometry (IC-HG-AFS) [J].Talanta,2007,73(3): 540-545.

    Wei C J, Liu J X. A new hydride generation system applied in determination of arsenic species with ion chromatography-hydride generation-atomic fluorescence spectrometry (IC-HG-AFS) [J].Talanta,2007,73(3): 540-545.
    王振华,何滨,史建波,阴永光,江桂斌.液相色谱-双通道原子荧光检测联用法同时测定砷和硒的形态[J].色谱,2009,27(5):711-716.
    张华,王英锋,施燕支,陈玉红.高效液相色谱及联用技术在砷形态分析中的应用[J].光谱学与光谱分析,2007,27(2):386-390.
    顾婕,施伟华,温晓华,张琢,何中发,邵超英.砷形态分析方法[J].东华大学学报:自然科学版,2009,35(2):62-68.
    彭岚,谈明光,李玉兰,张桂林,陈建敏,金婵,李燕.微波辅助萃取-液质联用技术测底泥砷、硒的化学形态[J].分析试验室,2006,25(5):10-14.
    何小青,刘湘生,潘元海,姚建明.HPLC-ICP-MS联用技术应用于砷的形态分析[J].现代科学仪器,2004(4):33-36.
    Szpunar J, McSheehy S, PołeK, Polec K, Vacchina V, Mounicou S, Rodriguez I, Łobiński R. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis—Advances and limitations[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2000,55(7):779-793.

    Szpunar J, McSheehy S, PołeK, Polec K, Vacchina V, Mounicou S, Rodriguez I, Łobiński R. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis—Advances and limitations[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2000,55(7):779-793.
    Thomas P, Finnie J K, Williams J G. Feasibility of identifi-cation and monitoring of arsenic species in soil and sediment samples by coupled HPLC/ICP-MS[J]. Journal of Analytical Atomic Spectrometry,1997,12(12):1367-1372.

    Thomas P, Finnie J K, Williams J G. Feasibility of identifi-cation and monitoring of arsenic species in soil and sediment samples by coupled HPLC/ICP-MS[J]. Journal of Analytical Atomic Spectrometry,1997,12(12):1367-1372.
    解楠,徐红斌,胡其敏,李亦奇.微波消解-电感耦合等离子体-质谱和原子荧光光谱测定海产品中总砷含量差异的研究[J].光谱实验室,2011,28(2):645-649.
    金航,王元忠,杨美权,杨维泽,赵振玲,张智慧,吴莉华,刘莉,刘大会,张金渝.流动注射-氢化物发生-ICP-AES测定滇龙胆中的有害元素[J].光谱实验室,2010,27(6):2431-2433.
    Xiong C M, He M, Hu B. On-line separation and preconcen-tration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry[J].Talanta, 2008, 76:772-779.

    Xiong C M, He M, Hu B. On-line separation and preconcen-tration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry[J].Talanta, 2008, 76:772-779.
    Fuentes E, Pinochet H, Gregori I D, Potin-Gautier M. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2003,58(7):1279-1289.

    Fuentes E, Pinochet H, Gregori I D, Potin-Gautier M. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2003,58(7):1279-1289.
    郭敬华,马辉,王水锋.原子荧光光谱法测定土壤和水系沉积物国家标准物质中砷[J].岩矿测试,2009,28(2):182-184.
    刘昌岭,江志刚,姜彤暲.氢化物-原子荧光法测定大洋沉积物中的砷[J].岩矿测试,1997,16(1):37-39.
    张静,刘晓端,江林.土壤中不同形态砷的分析方法[J].岩矿测试,2008,27(3):179-183.
    武素茹,谷松海,姚传刚,王虹,马德起,苏明跃.微波消解试样-氢化物发生-原子荧光光谱法测定铁矿石中砷[J].理化检验:化学分册,2010,46(9):1043-1045.
    赵永红,高国伟.土壤样品中微量砷的形态分析方法研究[J].南方冶金学院学报,2003,24(2):59-63.
    陈锦风,高国伟.氢化物发生-原子荧光光谱法测定土壤中水溶态As(Ⅲ)和As(Ⅴ)的方法研究[J].江西化工,2005(2):78-81.
    周康民,汤志云,肖灵,黄光明,江冶,高孝礼.土壤及水中As价态分析方法研究[J].地质学刊,2008,32 (3):189-197.
    刘汉东,史建波,池泉,汤志勇,金泽祥,熊采华.流动注射氢化物发生-原子荧光光谱法测定土壤中有效态As(Ⅲ)和As(Ⅴ)[J].光谱学与光谱分析,2002,22(5):862-864.
    Woolson E A, Axley J H, Kearney P C. Correlation betw-een available soil arsenic, estimated by six methods and response of corn[J]. Soil Science Society of America Journal,1970,35(1):101-105.

    Woolson E A, Axley J H, Kearney P C. Correlation betw-een available soil arsenic, estimated by six methods and response of corn[J]. Soil Science Society of America Journal,1970,35(1):101-105.
    Georgiadis M, Cai Y, Solo-gabriele H M.Extraction of arsenate and arsenite species from soils and sediments[J]. Environmental Pollution,2006,141(1):22-29.

    Georgiadis M, Cai Y, Solo-gabriele H M.Extraction of arsenate and arsenite species from soils and sediments[J]. Environmental Pollution,2006,141(1):22-29.
    Anawar H M, Garcia-Sanchez A, Regina I S. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils[J].Chemosphere,2008,70(8):1459-1467.

    Anawar H M, Garcia-Sanchez A, Regina I S. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils[J].Chemosphere,2008,70(8):1459-1467.
    赵秋香,李海萍,赵文海,张汉萍,张华新.土壤中毒性元素As的形态分析及其测定[J].分析试验室,2007,26(2):56-59.
    黄瑞卿,王果,汤榕雁,廖上强,陈炎辉.酸性土壤有效砷提取方法研究[J].农业环境科学学报,2005,24(3):610-615.
    肖玲,赵允格.石灰性土壤中有效砷提取剂的选择[J].陕西环境,1996,3(3):17-21.
  • Related Articles

    [1]Chang-qing YANG, Shuang-shuang ZHANG, Nan WU, Yan-na HOU, Cai-chun XU, Zhi-bin XU. Feasibility Study on Content Determination of Mercury and Arsenic in High Organic Anthracite by Microwave Digestion-Hydride Generation-Atomic Fluorescence Spectrometry and Mass Spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487. DOI: 10.15898/j.cnki.11-2131/td.2016.05.006
    [2]ZHOU Hui-qiong, ZHU Xia-ping, LIAO Yu-you. Simultaneous Determination of As and Hg in Fertilizers by Hydride Generation-Atomic Fluorescence Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2012, 31(2): 268-271.
    [3]SU Ming-yue, CHEN Guang-zhi, WANG Jing, YAO Chuan-gang. Determination of Arsenic and Mercury in Iron Ores by Water-bath Digestion-Hydride Generation-Atomic Fluorescence Spectrometry with a Sequential Injection System[J]. Rock and Mineral Analysis, 2011, 30(2): 210-213.
    [4]WEI Jian-lu, SONG Hai-tao, WANG Hai-chao, ZHOU Hong-xia. Determination of Arsenic, Antimony and Bismuth in Geochemical Samples by Hydride Generation-Double Channel Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 451-454.
    [5]XU Guo-dong, GE Jian-hua, JIA Hui-xian, DU Gu, CHENG Jiang, DONG Jun. Simultaneous Determination of Trace Arsenic and Mercury in Geological Samples by Hydride Generation-Atomic Fluorescence Spectrometry with Water Bath Soaking Sample Preparation[J]. Rock and Mineral Analysis, 2010, 29(4): 391-394.
    [6]ZHAO Bin, CHEN Zhi-bing, DONG Li. Determination of Hg, Se and As in Plant Samples by Hydride Generation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2010, 29(3): 319-321.
    [7]MA Ling, ZHA Lixin, FENG Lingling, LIU Wenzhang. Determination of Arsenic, Antimony and Bismuth in Copper Ores by Hydride Generation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 497-498.
    [8]Determination of Trace Selenium in Soil Samples by Hydride Generation-Atomic Fluorescence Spectrometry with Baking Separation[J]. Rock and Mineral Analysis, 2008, 27(2): 120-122.
    [9]Determination of Trace Arsenic, Antimony, Selenium in Soil Samples by Hydride Generation-Atomic Fluorescence Spectrometry with Slurry Sample Introduction[J]. Rock and Mineral Analysis, 2007, 26(6): 460-464.
    [10]Determination of Trace Arsenic, Antimony and Bismuth in Copper Ores by Hydride Generation Atomic Fluorescence Spectrometry from Alkaline Solution[J]. Rock and Mineral Analysis, 1998, (4): 285-289.

Catalog

    Article views (1781) PDF downloads (1056) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return