• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Determination of Solanesol in Different Parts of Tobacco Leaves from Different Breeds and Planting Areas by High Performance Liquid Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(2): 105-108.
Citation: Determination of Solanesol in Different Parts of Tobacco Leaves from Different Breeds and Planting Areas by High Performance Liquid Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(2): 105-108.

Determination of Solanesol in Different Parts of Tobacco Leaves from Different Breeds and Planting Areas by High Performance Liquid Chromatography-Mass Spectrometry

More Information
  • Received Date: May 17, 2006
  • Revised Date: July 27, 2006
  • In this article, the contents of solanesol in different parts of tobacco leaves, from different breeds and different planting areas were determined. The solanesol was extracted from tobacco leaves via saponification and ultrasonic assist extraction and determined by RP-HPLC and APCI-MS with linear range of 41.2~6180 ng(R2=0.9999). The precision of the retention time is 0.08%RSD (n=5) and the precision of the peak area determination is 0.20%RSD (n=5). The recovery of the method is 83.1%~103.9% with the detection limit of 3.72 ng at 211 nm for solanesol. The results indicate that the contents of solanesol in different parts of tobacco leaves are distinctly different. The content of solanesol in a single tobacco leave drops from the top part to the nether part. The content of solanesol in the peduncle is very low. In order to increase the production and cut the cost, the obacco leaves with higher solanesol should be selected for solanesol production.
  • Related Articles

    [1]ZHAO Xin, YAN Hui, YU Lian-ling, TANG Xing, LIU Zhao. Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2020, 39(3): 459-466. DOI: 10.15898/j.cnki.11-2131/td.201911020150
    [2]MEN Qian-ni, SHEN Ping, GAN Li-ming, FENG Bo-xin. Determination of Rare Earth Elements and Nb, Ta, Zr, Hf in Polymetallic Mineral Samples by Inductively Coupled Plasma-Mass Spectrometry Coupled with Open Acid Dissolution and Lithium Metaborate Alkali Fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. DOI: 10.15898/j.cnki.11-2131/td.201905100060
    [3]Zhan-chang LEI, Si-qin-tu HAN, Chang-ju JIANG, Hui-zhen LIANG. Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-332. DOI: 10.15898/j.cnki.11-2131/td.201812030127
    [4]Chao-guan HUANG, Yi-shu MENG, Huan-hua GUO, Ling-yu LIN, Chun-tao YANG. Determination of Chromium, Iron, Molybdenum and Silicon in Ti-Al Alloy by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35. DOI: 10.15898/j.cnki.11-2131/td.201704240065
    [5]Xuan HU, Lei SHI, Wei-hua ZHANG. Determination of Sulfur in High-sulfur Bauxite by Alkali Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124-129. DOI: 10.15898/j.cnki.11-2131/td.2017.02.005
    [6]Xiao-qiang WANG, Hui XIA, Jiu-hong QIN, Shu-qin WANG, Hui-ling YANG, Zhi-min SONG, Tian-jun DU. Determination of Sn, W, Ti and Other Elements in Polymetallic Ore by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Fusion[J]. Rock and Mineral Analysis, 2017, 36(1): 52-58. DOI: 10.15898/j.cnki.11-2131/td.2017.01.008
    [7]Qing-ling ZHAO, Qing-cai LI. Determination of Hf, Ti and Zr in Zirconium-Titanium Placer by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 883-886.
    [8]WANG Qing, ZHAO Wei, ZHANG Hui-tang, ZHOU Chang-xiang, HUI Han-xing. Determination of Cr, V and P in Ilmenite by Inductively Coupled Plasma-Atomic Emission Spectrometry with Sodium Peroxide Fusion[J]. Rock and Mineral Analysis, 2012, 31(6): 971-974.
    [9]WEN Jia-bo, SHANG Dan, SONG Wan-hong, PENG Guo-ping. Quantification of Gallium in Bauxites by Inductively Coupled Plasma-Atomic Emission Spectrometry-Comparison of Sample Pretreatment Methods between Alkali Fusion and Acid Dissolution[J]. Rock and Mineral Analysis, 2011, 30(4): 481-485.
    [10]Multi-element Determination in Geological Samples by Inductively Coupled Plasma Mass Spectrometry after Fusion-precipitation Treatment[J]. Rock and Mineral Analysis, 2003, (2): 86-92.

Catalog

    Article views (1648) PDF downloads (969) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return