• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Yuan-ying HUANG, Xin YUAN, Qian WANG, Song-guang LUO, Xiao-duan LIU. Kinetics and Impact Factors for Nanoscale Zinc Adsorption of Arsenite from Water[J]. Rock and Mineral Analysis, 2013, 32(5): 759-766.
Citation: Yuan-ying HUANG, Xin YUAN, Qian WANG, Song-guang LUO, Xiao-duan LIU. Kinetics and Impact Factors for Nanoscale Zinc Adsorption of Arsenite from Water[J]. Rock and Mineral Analysis, 2013, 32(5): 759-766.

Kinetics and Impact Factors for Nanoscale Zinc Adsorption of Arsenite from Water

More Information
  • Received Date: May 12, 2012
  • Accepted Date: June 09, 2012
  • Published Date: September 30, 2013
  • As(Ⅲ) is a highly toxic, mobile, and predominant arsenic species in anoxic groundwater.The removal of arsenic in contaminated water by using nanoscale iron particles has received extensive attention. The reduction potential and storage of Zn is lower and easier than that of Fe. Therefore, Zn is considered to be the best choice for the reduction of chlorinated organic compounds. To our knowledge, there is little research on the reduction of arsenic with nanoscale zinc in water. The objectives of this study were to investigate kinetics and impact factors by batch experiments. Pseudo-first-order, second-order kinetics and the intraparticle diffusion model were applied to simulate the sorption process. The sorption process was best fitted by the pseudo-second-order kinetic with reaction rate constants (k2) of 0.18 g/(mg·min). The adsorption capacity of nanoscale zinc for As(Ⅲ) was 0.47 mg/g. Chemical adsorption is the main mechanism of As(Ⅲ) removal by nanoscale zinc. The shaking time for optimum removal of As(Ⅲ) has been noted as 120 min for nanoscale zinc. The adsorbent dose for nanoscale zinc is 2.5 g/L. Maximum removal of As(Ⅲ) was observed in the pH range of 2-7. Over 99.5% As(Ⅲ) and As(Ⅴ) were removed within 120 min in an initial concentration of 0.565 g/L. These results suggest that nanoscale zinc particles can be used for treating As-affected groundwater that contains substantial As(Ⅲ) without preoxidation of As(Ⅲ) to As(Ⅴ). In comparison with traditional methods, the removal of As(Ⅲ) by nanoscale zinc is simple, inexpensive and has a high efficiency for application in water treatment facilities.
  • Mohan D, Pittman Jr C U.Arsenic removal from water/wastewater using adsorbents—A critical review [J].Journal of Hazardous Materials,2007, 142:1-53. doi: 10.1016/j.jhazmat.2007.01.006
    Nickson R, McArthur J, Burgess W, Ahmed K M, Ravenscroft P, Rahman M.Arsenic poisoning of Bangladesh groundwater [J].Nature, 1998, 385:338.
    Watkims C D, de Groot P H.A perspective on the FOCUS Conference on Eastern regional ground water issues [J].Ground Water Management, 1991, 7:967-978.
    Das D, Chatterjee A, Mandal B K, Samanta G, Chakraborti D, Chanda B.Arsenic in ground water in six districts of West Bengal, India:The biggest arsenic callamity in the word (Part 2). Arsenic concentration in drinking water, hair, nails, urine, skin-scale, and liver tissue (biopsy) of the affected people [J].Analyst, 1995, 120:917-924. doi: 10.1039/an9952000917
    肖唐付,洪冰,杨中华,杨帆.砷的水地球化学及环境效应[J].地质科技情报,2001,20(1):71-76. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200101016.htm
    庄金陵.砷对世界地下水源的污染[J].矿产与地质, 2003, 17(2):177-178. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200302015.htm
    Hering J G, Chen P Y, Wilkie J A, Elimelech M.Arsenic removal from drinking water during coagulation[J].Journal of Environment Engineering, 1997, 123(8):800-807. doi: 10.1061/(ASCE)0733-9372(1997)123:8(800)
    Borho M, Wilderer P.Optimized removal of arsenate(Ⅲ) by adaptation of oxidation and precipitation processes to the filtration step [J].Water Science Technology, 1996, 34(9):25-31.
    苑宝玲,李坤林,邓临莉,张之东.多功能高铁酸盐去除饮用水中砷的研究[J].环境科学, 2006, 27(2):281-284. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200602015.htm
    Daus B, Wennrich R, Weiss H.Sorption materials for arsenic removal from water:A comparative study [J].Water Research, 2004, 38:2948-2954. doi: 10.1016/j.watres.2004.04.003
    Boddu V M, Abburi K, Talbott J L, Smith E D, Haasch R.Removal of arsenic(Ⅲ) and arsenic(Ⅴ) from aqueous medium using chitosan-coated biosorbent [J].Water Research, 2008, 42:633-642. doi: 10.1016/j.watres.2007.08.014
    Jaeshin K, Benjamin M M.Modeling a novel ion exchange process for arsenic and nitrate removal [J].Water Research, 2004, 38:2053-2062. doi: 10.1016/j.watres.2004.01.012
    Sato Y, Kang M, Kamei T, Magara Y.Performance of nanofiltration for arsenic removal[J].Water Research, 2002, 36:3371-3377. doi: 10.1016/S0043-1354(02)00037-4
    van der Bruggen B, Vandecasteele C.Removal of pollutants from surface water and groundwater by nanofiltration:Overview of possible applications in the drinking water industry [J].Environment Pollution, 2003, 122:435-445. doi: 10.1016/S0269-7491(02)00308-1
    Gholami M M, Mokhtari M A, Aameri A, Alizadeh F M R.Application of reverse osmosis technology for arsenic removal from drinking water [J].Desalination, 2006, 200(1-3):725-727. doi: 10.1016/j.desal.2006.03.504
    Zouboulis A I, Katsoyiannis I A.Recent advances in the bioremediation of arsenic-contaminated groundwaters [J].Environment International, 2005, 31:213-219. doi: 10.1016/j.envint.2004.09.018
    Al Rmalli S W, Harrington C F, Ayub M, Haris P I.A biomaterial based approach for arsenic removal from water [J].Journal Environment Monitoring,2005, 7:279-282. doi: 10.1039/b500932d
    Mondal P, Majumder C B, Mohanty B.Removal of trivalent arsenic [As(Ⅲ)] from contaminated water by calcium chloride (CaCl2)-impregnated rice husk carbon[J].Industrial and Engineering Chemistry Research,2007, 46:2550-2557. doi: 10.1021/ie060702i
    Li Z, Beachner R, McManama Z, Hanlie H.Sorption of arsenic by surfactant modified zeolite and kaolinite [J].Microporous Materials,2007, 105:291-297. doi: 10.1016/j.micromeso.2007.03.038
    Streat M, Hellgardt K, Newton N L R.Hydrous ferric oxide as an adsorbent in water treatment. Part 2. Adsorption studies [J].Process Safety Environmental Protection,2008, 86:11-20. doi: 10.1016/j.psep.2007.10.008
    Guo H, Stüben D, Berner Z.Adsorption of arsenic(Ⅲ) and arsenic(Ⅴ) from groundwater using natural siderite as the adsorbent[J].Journal of Colloid Interface Science,2007, 315:47-53. doi: 10.1016/j.jcis.2007.06.035
    汪大翠,徐新华,宋爽.工业废水中专项污染物处理手册[M].北京:化学工业出版社,2000:66-79.
    杨杰,顾海红,赵浩,徐炎华.含砷废水处理技术研究进展[J].工业水处理,2003,23(6):14-18. doi: 10.11894/1005-829x.2003.23(6).14
    黄园英,秦臻,刘菲.纳米铁去除饮用水中As(Ⅲ)和As(Ⅴ)[J].岩矿测试,2009,28(6):529-534. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200906007.htm
    黄园英,刘丹丹,刘菲.纳米铁用于饮用水中As(Ⅲ)去除效果[J].生态环境学报,2009,18(1):83-87. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200901019.htm
    朱慧杰,贾永峰,吴星,王赫.负载型纳米铁吸附剂去除饮用水中As(Ⅲ)的研究[J].环境科学,2009, 30(6):1644-1648. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200906013.htm
    Boronina T N, Lagadic I, Sergeev G B, Klabunde K J.Activated and nonactivated forms of zinc powder:Reactivity toward chlorocarbons in water and AFM studies of surface morphologies[J].Environmental Science & Technology,1998, 32:2614-2622.
    Choia J H, Kim Y H.Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc [J].Journal of Hazardous Materials, 2009, 166:984-991. doi: 10.1016/j.jhazmat.2008.12.004
    Roberts A L, Totten L A, Arnold W A, Burris D R, Campbell T J.Reductive elimination of chlorinated ethylenes by zero-valent metals [J].Environmental Science & Technology,1996,30:2654-2659.
    Arnold W A, Roberts A L.Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0)[J].Environmental Science & Technology,1998, 32:3017-3025.
    Fennelly J P, Roberts A L.Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants[J].Environmental Science & Technology, 1998, 32:1980-1988.
    Ho Y S.Citation review of Lagergren kinetic rate equation on adsorption reactions [J].Scientometrics, 2004, 59:171-177. doi: 10.1023/B:SCIE.0000013305.99473.cf
    Azizian S.Kinetic models of sorption:A theoretical analysis [J].Journal of Colloid Interface Science, 2004, 276:47-52. doi: 10.1016/j.jcis.2004.03.048
    Lagergren S.About the theory of so-called adsorption of soluble substance [J].Kungliga Svenska Vetenskap-sakademiens Handlingar, 1898, 24(4):1-39.
    Ho Y S.Review of second-order models for adsorption systems [J].Journal of Hazardous Materials, 2006, 136:681-689. doi: 10.1016/j.jhazmat.2005.12.043
    Borah D, Satokawa S, Kato S, Kojima T.Sorption of As(Ⅴ) from aqueous solution using acid modified carbon black [J].Journal of Hazardous Materials, 2009,162:1269-1277. doi: 10.1016/j.jhazmat.2008.06.015
    Ozdes D, Gundogdu A, Kemer B, Duran C, Senturk H B, Soylak M. Removal of Pb(Ⅱ) ions from aqueous solution by a waste mud from copper mine industry:Equilibrium, kinetic and thermodynamic study [J].Journal of Hazardous Materials,2009, 166:1480-1487. doi: 10.1016/j.jhazmat.2008.12.073
    Reed B E, Vaughan R, Jiang L. As(Ⅲ), As(Ⅴ), Hg and Pb removal by Fe-oxide impregnated activated carbon [J]. Journal of Environment Engineering, 2000, 126: 869-873. doi: 10.1061/(ASCE)0733-9372(2000)126:9(869)
    Mondal P, Balomajumder C, Mohanty B.A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon:Effects of shaking time, pH and temperature [J]. Journal of Hazardous Materials, 2007, 144:420-426. doi: 10.1016/j.jhazmat.2006.10.078
    杨力.砷污染及含砷废水治理[J].有色金属加工,1999(4):27-29. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJF199904009.htm
    Pattanayak J, Mondal K, Mathew S, Lalvani S B.A paraletric evaluation of the removal of As(Ⅴ) and As(Ⅲ) by carbon-based adsorbents [J].Carbon, 2000, 38(4):589-596. doi: 10.1016/S0008-6223(99)00144-X
    Ning R Y.Arsefiic removal by reverse osnosis [J].Desalination, 2002,143(3):237-241. doi: 10.1016/S0011-9164(02)00262-X

Catalog

    Article views (683) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return