• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Jun-dong HU, Wei LIU, Ya-ting SHEN, Guo-hui LU Guo-hui. Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment[J]. Rock and Mineral Analysis, 2013, 32(5): 669-680.
Citation: Jun-dong HU, Wei LIU, Ya-ting SHEN, Guo-hui LU Guo-hui. Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment[J]. Rock and Mineral Analysis, 2013, 32(5): 669-680.

Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment

More Information
  • Received Date: January 14, 2013
  • Accepted Date: January 26, 2013
  • Published Date: September 30, 2013
  • Due to the wide presence of nanoparticles (NPs) and heavy metals (HMs) in the environment, especially in porous media like soil, their fate and transport behaviors and hence the environmental impacts will greatly depend on their speciation, the impacts of natural organic matter (NOM) and how they interact with each other. Most correlative studies select typical NPs, HMs and NOM as the model subjects and conduct a series of adsorption-desorption batch experiments and NPs-HMs co-transport experiments in porous media to systematically study the NPs-HMs co-behaviors. Both thermodynamic and kinetics models have been applied to describe the interfacial reaction and transport/retention data obtained from experiments. The parameters were well compared, simulated and interpreted in order to achieve a complete picture of the effects of NOM on the fate of NPs-HMs. To reveal the mechanisms of NPs surface adsorption and the metal ions immobilization by NPs between soil grains, a big series of characterization analysis methods can be employed, such as Transmission Electron Microscopy (TEM), X-ray Diffractomer (XRD), X-ray Photoelectron Spectrometer (XPS), Fourier Transform Infrared Spectrometry (FTIR) and X-ray Absorption Near Edge Structure Spectrometry/Extended X-ray Absorption Fine Structure Spectrometry(XANES/EXAFS). Some of these methods working together are believed as a very effective and efficient approach in modern study. Understanding how the NPs impact on the leachability and bioavailability of heavy metals in subsurface porous media is of fundamental importance to the accurate assessment of environmental and ecological impacts of NPs. The results also have great significance to well comprehend the mechanisms of nano soil remediation.
  • Farre M, Sanchis J, Barcelo D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment [J].Trac-Trends in Analytical Chemistry, 2011, 30(3): 517-527. doi: 10.1016/j.trac.2010.11.014
    Subcommitte on Nanoscale Science Engineering and Technology, National Scicence and Technology Council Committee on Technology. National Nanotechnology Initiative Strategic Plan [R].USA,2011.
    Majewski P, Thierry B.Functionalized magnetite nanoparticles-Synthesis, properties, and bio-applications [J].Critical Reviews in Solid State and Materials Sciences, 2007, 32(3-4):203-215.
    Wei X C, Viadero R C.Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2007, 294(1-3):280-286.
    Zhang Q A, Thompson M S, Carmichael-Baranauskas A Y, Caba B L, Zalich M A, Lin Y N, Mefford O T, Davis R M, Riffle J S. Aqueous dispersions of magnetite nanoparticles complexed with copolyether dispersants: Experiments and theory [J].Langmuir, 2007, 23(13): 6927-6936. doi: 10.1021/la070116+
    Hu J H, Johnston K P, Williams R O. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs [J].Drug Development and Industrial Pharmacy, 2004, 30(3): 233-245. doi: 10.1081/DDC-120030422
    Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles [J].Dyes and Pigments, 2004, 61(1): 93-98. doi: 10.1016/j.dyepig.2003.10.008
    Li X Q, Cao J S, Zhang W X. Stoichiometry of Cr(Ⅵ) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS) [J].Industrial & Engineering Chemistry Research, 2008, 47(7): 2131-2139.
    Hu J D, Zevi Y, Kou X M, Xiao J, Wang X J, Jin Y. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions [J].Science of the Total Environment, 2010, 408(16): 3477-3489. doi: 10.1016/j.scitotenv.2010.03.033
    De D, Mandal S, Bhattacharya J, Ram S, Roy S. Iron oxide nanoparticle-assisted arsenic removal from aqueous system [J].Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(2): 155-162.
    Liu R Q, Zhao D Y. Reducing leachability and bioacce-ssibilty of lead in soils using a new class of stabilized iron phosphate nanoparticles [J].Water Research, 2007, 41(12): 2491-2502. doi: 10.1016/j.watres.2007.03.026
    Liang P, Qin Y C, Hu B, Li C X, Peng T Y, Jiang Z C. Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES [J].Fresenius Journal of Analytical Chemistry, 2000, 368(6): 638-640. doi: 10.1007/s002160000546
    Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media [J].Ecotoxicology, 2008, 17(5): 326-343. doi: 10.1007/s10646-008-0213-1
    Hiemstra T, Antelo J, Rahnemaie R, van Riemsdijk W H. Nanoparticles in natural systems Ⅰ: The effective reactive surface area of the natural oxide fraction in field samples [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 41-58. doi: 10.1016/j.gca.2009.10.018
    Gilbert B, Ono R K, Ching K A, Kim C S. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake [J].Journal of Colloid and Interface Science, 2009, 339(2): 285-295. doi: 10.1016/j.jcis.2009.07.058
    Hiemstra T, Antelo J, van Rotterdam A M D, van Riemsdijk W H. Nanoparticles in natural systems Ⅱ: The natural oxide fraction at interaction with natural organic matter and phosphate [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 59-69. doi: 10.1016/j.gca.2009.10.019
    Tombacz E. Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions [J].Soil Science,1999, 164(11): 814-824. doi: 10.1097/00010694-199911000-00005
    胡俊栋.四氧化三铁纳米颗粒的稳定性及其在饱和多孔介质中的迁移持留行为[D].北京:北京大学,2010.
    王萌,陈世宝,李娜,马义兵.纳米材料在污染土壤修复及污水净化中应用前景探讨[J].中国生态农业学报, 2010, 18(4): 434-439. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201002042.htm
    Qiu H, Zhang S J, Pan B C, Zhang W M, Lü L. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-iron oxides: Behavior and XPS study [J].Journal of Colloid and Interface Science,2012, 366(1): 37-43. doi: 10.1016/j.jcis.2011.09.070
    Sharma Y C, Srivastava V, Weng C H, Upadhyay S N. Removal of Cr(Ⅵ) from wasterwater by adsorption on iron nanoparticles [J].Canadian Journal of Chemical Engineering,2009, 87(6): 921-929. doi: 10.1002/cjce.v87:6
    Hu J, Chen G H, Lo I M C. Removal and recovery of Cr(Ⅵ) from wastewater by maghemite nanoparticles [J].Water Research,2005, 39(18): 4528-4536. doi: 10.1016/j.watres.2005.05.051
    Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching [J].Chemosphere,2011, 82(8): 1178-1184. doi: 10.1016/j.chemosphere.2010.11.075
    Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J.Adsorption of As(Ⅴ) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects,2009,346(1-3): 106-113.
    Hu J, Chen G H, Lo I M C.Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms [J].Journal of Environmental Engineering,2006, 132(7): 709-715. doi: 10.1061/(ASCE)0733-9372(2006)132:7(709)
    Nishio K, Gokon N, Tsubouchi S, Ikeda M, Narimatsu H, Sakamoto S, Izumi Y, Abe M, Handa H. Direct detection of redox reactions of sulfur-containing compounds on ferrite nanoparticle (FP) surface [J].Chemistry Letters,2006, 35(8): 974-975. doi: 10.1246/cl.2006.974
    Lin K S, Chang N B, Chuang T D. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater [J].Science and Technology of Advanced Materials,2008,9(2):doi:10. 1088/1468-6996/9/2/025015.
    Zhou J G, Fang H T, Hu Y F, Sham T K, Wu C X, Liu M, Li F. Immobilization of RuO2 on carbon nanotube: An X-ray absorption near-edge structure study [J].Journal of Physical Chemistry C,2009, 113(24): 10747-10750. doi: 10.1021/jp902871b
    Olegario J T, Yee N, Miller M, Sczepaniak J, Manning B. Reduction of Se(Ⅵ) to Se(-Ⅱ) by zerovalent iron nanoparticle suspensions [J].Journal of Nanoparticle Research,2010, 12(6): 2057-2068. doi: 10.1007/s11051-009-9764-1
    Pelley A J, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media [J].Journal of Colloid and Interface Science,2008, 321(1): 74-83. doi: 10.1016/j.jcis.2008.01.046
    Zhang M Y, Wang Y, Zhao D Y, Pan G. Immobi-lization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), magnetite (Fe3O4) particles [J].Chinese Science Bulletin,2010, 55(4-5): 365-372. doi: 10.1007/s11434-009-0703-4
    Manzoori J L, Amjadi M, Hallaj T. Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry [J].International Journal of Environmental Analytical Chemistry,2009, 89(8-12): 749-758. doi: 10.1080/03067310902736955
    Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts J P. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate [J].Environmental Science & Technology,2010, 44(19): 7635-7640.
    Xiong Z, He F, Zhao D Y, Barnett M O.Immobi-lization of mercury in sediment using stabilized iron sulfide nanoparticles [J].Water Research,2009, 43(20): 5171-5179. doi: 10.1016/j.watres.2009.08.018
    Jin Y, Chu Y J, Li Y S.Virus removal and transport in saturated and unsaturated sand columns [J].Journal of Contaminant Hydrology,2000, 43(2): 111-128. doi: 10.1016/S0169-7722(00)00084-X
    方婧,周艳萍,温蓓.二氧化钛纳米颗粒对铜在土壤中运移的影响[J].土壤学报, 2011, 48(3): 549-556. doi: 10.11766/trxb200912220584
    Ghosh S, Jiang W, McClements J D, Xing B S.Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes [J].Langmuir,2011, 27(13): 8036-8043. doi: 10.1021/la200772e
    Pan B, Xing B S.Applications and implications of manufactured nanoparticles in soils: A review [J].European Journal of Soil Science,2012, 63(4): 437-456. doi: 10.1111/ejss.2012.63.issue-4
    Franchi A, O′Melia C R.Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media [J].Environmental Science & Technology,2003, 37(6): 1122-1129.
    Uchimiya M, Lima I M, Klasson K T, Wartelle L H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter [J].Chemosphere,2010, 80(8): 935-940. doi: 10.1016/j.chemosphere.2010.05.020

Catalog

    Article views (1309) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return