Citation: | Jun-dong HU, Wei LIU, Ya-ting SHEN, Guo-hui LU Guo-hui. Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment[J]. Rock and Mineral Analysis, 2013, 32(5): 669-680. |
Farre M, Sanchis J, Barcelo D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment [J].Trac-Trends in Analytical Chemistry, 2011, 30(3): 517-527. doi: 10.1016/j.trac.2010.11.014
|
Subcommitte on Nanoscale Science Engineering and Technology, National Scicence and Technology Council Committee on Technology. National Nanotechnology Initiative Strategic Plan [R].USA,2011.
|
Majewski P, Thierry B.Functionalized magnetite nanoparticles-Synthesis, properties, and bio-applications [J].Critical Reviews in Solid State and Materials Sciences, 2007, 32(3-4):203-215.
|
Wei X C, Viadero R C.Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2007, 294(1-3):280-286.
|
Zhang Q A, Thompson M S, Carmichael-Baranauskas A Y, Caba B L, Zalich M A, Lin Y N, Mefford O T, Davis R M, Riffle J S. Aqueous dispersions of magnetite nanoparticles complexed with copolyether dispersants: Experiments and theory [J].Langmuir, 2007, 23(13): 6927-6936. doi: 10.1021/la070116+
|
Hu J H, Johnston K P, Williams R O. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs [J].Drug Development and Industrial Pharmacy, 2004, 30(3): 233-245. doi: 10.1081/DDC-120030422
|
Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles [J].Dyes and Pigments, 2004, 61(1): 93-98. doi: 10.1016/j.dyepig.2003.10.008
|
Li X Q, Cao J S, Zhang W X. Stoichiometry of Cr(Ⅵ) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS) [J].Industrial & Engineering Chemistry Research, 2008, 47(7): 2131-2139.
|
Hu J D, Zevi Y, Kou X M, Xiao J, Wang X J, Jin Y. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions [J].Science of the Total Environment, 2010, 408(16): 3477-3489. doi: 10.1016/j.scitotenv.2010.03.033
|
De D, Mandal S, Bhattacharya J, Ram S, Roy S. Iron oxide nanoparticle-assisted arsenic removal from aqueous system [J].Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(2): 155-162.
|
Liu R Q, Zhao D Y. Reducing leachability and bioacce-ssibilty of lead in soils using a new class of stabilized iron phosphate nanoparticles [J].Water Research, 2007, 41(12): 2491-2502. doi: 10.1016/j.watres.2007.03.026
|
Liang P, Qin Y C, Hu B, Li C X, Peng T Y, Jiang Z C. Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES [J].Fresenius Journal of Analytical Chemistry, 2000, 368(6): 638-640. doi: 10.1007/s002160000546
|
Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media [J].Ecotoxicology, 2008, 17(5): 326-343. doi: 10.1007/s10646-008-0213-1
|
Hiemstra T, Antelo J, Rahnemaie R, van Riemsdijk W H. Nanoparticles in natural systems Ⅰ: The effective reactive surface area of the natural oxide fraction in field samples [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 41-58. doi: 10.1016/j.gca.2009.10.018
|
Gilbert B, Ono R K, Ching K A, Kim C S. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake [J].Journal of Colloid and Interface Science, 2009, 339(2): 285-295. doi: 10.1016/j.jcis.2009.07.058
|
Hiemstra T, Antelo J, van Rotterdam A M D, van Riemsdijk W H. Nanoparticles in natural systems Ⅱ: The natural oxide fraction at interaction with natural organic matter and phosphate [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 59-69. doi: 10.1016/j.gca.2009.10.019
|
Tombacz E. Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions [J].Soil Science,1999, 164(11): 814-824. doi: 10.1097/00010694-199911000-00005
|
胡俊栋.四氧化三铁纳米颗粒的稳定性及其在饱和多孔介质中的迁移持留行为[D].北京:北京大学,2010.
|
王萌,陈世宝,李娜,马义兵.纳米材料在污染土壤修复及污水净化中应用前景探讨[J].中国生态农业学报, 2010, 18(4): 434-439. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201002042.htm
|
Qiu H, Zhang S J, Pan B C, Zhang W M, Lü L. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-iron oxides: Behavior and XPS study [J].Journal of Colloid and Interface Science,2012, 366(1): 37-43. doi: 10.1016/j.jcis.2011.09.070
|
Sharma Y C, Srivastava V, Weng C H, Upadhyay S N. Removal of Cr(Ⅵ) from wasterwater by adsorption on iron nanoparticles [J].Canadian Journal of Chemical Engineering,2009, 87(6): 921-929. doi: 10.1002/cjce.v87:6
|
Hu J, Chen G H, Lo I M C. Removal and recovery of Cr(Ⅵ) from wastewater by maghemite nanoparticles [J].Water Research,2005, 39(18): 4528-4536. doi: 10.1016/j.watres.2005.05.051
|
Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching [J].Chemosphere,2011, 82(8): 1178-1184. doi: 10.1016/j.chemosphere.2010.11.075
|
Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J.Adsorption of As(Ⅴ) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects,2009,346(1-3): 106-113.
|
Hu J, Chen G H, Lo I M C.Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms [J].Journal of Environmental Engineering,2006, 132(7): 709-715. doi: 10.1061/(ASCE)0733-9372(2006)132:7(709)
|
Nishio K, Gokon N, Tsubouchi S, Ikeda M, Narimatsu H, Sakamoto S, Izumi Y, Abe M, Handa H. Direct detection of redox reactions of sulfur-containing compounds on ferrite nanoparticle (FP) surface [J].Chemistry Letters,2006, 35(8): 974-975. doi: 10.1246/cl.2006.974
|
Lin K S, Chang N B, Chuang T D. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater [J].Science and Technology of Advanced Materials,2008,9(2):doi:10. 1088/1468-6996/9/2/025015.
|
Zhou J G, Fang H T, Hu Y F, Sham T K, Wu C X, Liu M, Li F. Immobilization of RuO2 on carbon nanotube: An X-ray absorption near-edge structure study [J].Journal of Physical Chemistry C,2009, 113(24): 10747-10750. doi: 10.1021/jp902871b
|
Olegario J T, Yee N, Miller M, Sczepaniak J, Manning B. Reduction of Se(Ⅵ) to Se(-Ⅱ) by zerovalent iron nanoparticle suspensions [J].Journal of Nanoparticle Research,2010, 12(6): 2057-2068. doi: 10.1007/s11051-009-9764-1
|
Pelley A J, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media [J].Journal of Colloid and Interface Science,2008, 321(1): 74-83. doi: 10.1016/j.jcis.2008.01.046
|
Zhang M Y, Wang Y, Zhao D Y, Pan G. Immobi-lization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), magnetite (Fe3O4) particles [J].Chinese Science Bulletin,2010, 55(4-5): 365-372. doi: 10.1007/s11434-009-0703-4
|
Manzoori J L, Amjadi M, Hallaj T. Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry [J].International Journal of Environmental Analytical Chemistry,2009, 89(8-12): 749-758. doi: 10.1080/03067310902736955
|
Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts J P. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate [J].Environmental Science & Technology,2010, 44(19): 7635-7640.
|
Xiong Z, He F, Zhao D Y, Barnett M O.Immobi-lization of mercury in sediment using stabilized iron sulfide nanoparticles [J].Water Research,2009, 43(20): 5171-5179. doi: 10.1016/j.watres.2009.08.018
|
Jin Y, Chu Y J, Li Y S.Virus removal and transport in saturated and unsaturated sand columns [J].Journal of Contaminant Hydrology,2000, 43(2): 111-128. doi: 10.1016/S0169-7722(00)00084-X
|
方婧,周艳萍,温蓓.二氧化钛纳米颗粒对铜在土壤中运移的影响[J].土壤学报, 2011, 48(3): 549-556. doi: 10.11766/trxb200912220584
|
Ghosh S, Jiang W, McClements J D, Xing B S.Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes [J].Langmuir,2011, 27(13): 8036-8043. doi: 10.1021/la200772e
|
Pan B, Xing B S.Applications and implications of manufactured nanoparticles in soils: A review [J].European Journal of Soil Science,2012, 63(4): 437-456. doi: 10.1111/ejss.2012.63.issue-4
|
Franchi A, O′Melia C R.Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media [J].Environmental Science & Technology,2003, 37(6): 1122-1129.
|
Uchimiya M, Lima I M, Klasson K T, Wartelle L H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter [J].Chemosphere,2010, 80(8): 935-940. doi: 10.1016/j.chemosphere.2010.05.020
|