• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Kun-yang WANG, Gu DU, Yu-jie YANG, Shi-tao DONG, Xiao-lin YU, Jian-wei GUO. Characteristics Study of Reservoirs Pores and Mineral Compositions for Black Shale, Northern Guizhou, by Using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5): 634-639.
Citation: Kun-yang WANG, Gu DU, Yu-jie YANG, Shi-tao DONG, Xiao-lin YU, Jian-wei GUO. Characteristics Study of Reservoirs Pores and Mineral Compositions for Black Shale, Northern Guizhou, by Using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5): 634-639.

Characteristics Study of Reservoirs Pores and Mineral Compositions for Black Shale, Northern Guizhou, by Using SEM and X-ray EDS

More Information
  • Received Date: November 20, 2013
  • Revised Date: July 27, 2014
  • Accepted Date: July 29, 2014
  • Published Date: May 24, 2014
  • Shale reservoir research has become a focus in the study of shale gas, and the special structure feature of shale development at the nano/micro level pore size. Guizhou is one of the shale gas test pilot areas in our country. The northern region under the lower Cambrian Niutitang group hosts more than 100 m of black rock series. The nano/micron level pore in rocks and minerals is a typical structure for black shale in northern Guizhou. According to the limitation of resolution and magnification, the pore types in the shale reservoir cannot be observed using the traditional optical microscope. Nuclear magnetic resonance instruments can accurately study shale reservoir porosity, but cannot obtain the pore morphology and distribution of information. By combining the advantages of Scanning Electron Microscopy (SEM) and X-ray Spectrometry microanalysis, Hitachi S-4800 type of field emission SEM and Energy Spectrometer of Oxford IE250X Max50 to study mineral distribution, morphological characteristics and element composition in the black shale reservoir, a new study was conducted and is reported in this paper. Results indicate that micro fracture and nano/micro level intragranular dissolved pore were found in black shale using field emission SEM. Through the X-ray Energy Spectrum, minerals in black shale are mainly illite and quartz, albite, followed by chlorite, white mica, dolomite, to name a few. The black shale fracture diameter is 0.1-20 μm, which is mainly distributed in 1-5 μm, which is greater than the methane molecule diameter (0.414 nm). Thus, it can be used as a gas migration channel and storage space. In addition, through the X-ray Spectrometer study on the brittleness mineral analysis in quartz, calcite, dolomite and illite, the brittle mineral content of quartz contains 9.1%-78%, and the clay mineral content of illite is 17.6%-25.5%. Therefore, the black shale has high brittleness, making it prone to cracking. The study can provide the basis for reservoir evaluation and prediction of Northern Guizhou.
  • http://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201005003.htm
    http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605006.htm
    http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202030.htm
    http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204015.htm
    Mavor M. Barnett Shale Gas-in-Place Volume Including Sorbed and Free Gas Volume[C]//Proceedings of AAPG Southwest Section Meeting. Texas, 2003.
    doi: 10.1346/CCMN
    Sondergeld C H, Ambrose R J. Microstructural studies of gas shales[C]//Proceedings of SPE Unconventional Gas Conference. 2010.
    赵蕾. 核磁共振在储层物性测定中的研究及应用[D]. 北京: 中国石油大学, 2010: 1-23.
    doi: 10.2113/gssajg.104.4.275
    http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198603007.htm
    http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200806048.htm
    国家能源局. 页岩气发展规划(2011—2015年)[R]. 2012.
    doi: 10.11781/sysydz200103341
    http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305011.htm
    doi: 10.7623/syxb201302012
    doi: 10.7623/syxb201202009
    doi: 10.11743/ogg20120303
    http://www.cnki.com.cn/Article/CJFDTOTAL-TRYS201205014.htm
    http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201204014.htm
  • Cited by

    Periodical cited type(18)

    1. 周伟,张嘉升,祁晓鹏,徐磊,杨杰. X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态. 岩矿测试. 2024(01): 76-86 . 本站查看
    2. 王奇奇,孙贺,顾海欧,侯振辉,葛粲,汪方跃,周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用. 岩矿测试. 2024(01): 63-75 . 本站查看
    3. 鲁银鹏,孟郁苗,黄小文,王丛林,杨秉阳,谭侯铭睿,谢欢. 宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征. 岩矿测试. 2024(02): 259-269 . 本站查看
    4. 张利军,鲁文豪,张建东,彭光雄,卜建财,唐凯,谢渐成,徐质彬,杨海燕. 基于深度学习的镜下岩石、矿物薄片识别. 地学前缘. 2024(03): 498-510 .
    5. 温利刚,贾木欣,赵建军,王清,付强. 工艺矿物学参数自动分析系统在铜矿浮选尾矿银赋存特征研究中的应用. 岩矿测试. 2024(03): 417-431 . 本站查看
    6. 李子龙,范昌育,惠潇,邓秀芹,孙勃,韩晓洁,王爱国,王刚. 非常规沉积储层层理缝研究进展及趋势. 沉积学报. 2024(04): 1150-1163 .
    7. 肖迪,戴朝成,白斌,卞从胜,董若婧,刘羽汐,许亚鑫. 陆相富有机质页岩黄铁矿特征及意义——以鄂尔多斯盆地延长组和松辽盆地青山口组为例. 科学技术与工程. 2023(23): 9888-9902 .
    8. 张涛,宋文磊,陈倩,杨金昆,胡轶,黄军,许丹妮,徐亦桐. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用. 岩矿测试. 2023(04): 748-759 . 本站查看
    9. 杨晋东,于振锋,郭旭,赵瑞熙. 鄂尔多斯盆地东缘晚古生代泥岩地球化学特征及有机质富集机理. 岩矿测试. 2023(06): 1104-1119 . 本站查看
    10. 徐园园,谢远云,康春国,迟云平,吴鹏,孙磊,魏振宇. 松花江早更新世水系演化:来自TIMA矿物和地球化学的证据. 地质科学. 2022(01): 190-206 .
    11. 许可,许德如. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究. 黄金科学技术. 2022(02): 151-164 .
    12. 李秋杭,谢远云,康春国,迟云平,吴鹏,孙磊,李思琪. 基于人工和TIMA自动化方法的松花江水系重矿物组成:对源-汇物源示踪的指示. 海洋地质与第四纪地质. 2022(03): 170-183 .
    13. 汪进秋,谢远云,康春国,迟云平,孙磊,吴鹏,魏振宇. 中更新世以来的哈尔滨黄土物源变化——来自TIMA自动定量矿物的证据. 中国沙漠. 2022(05): 25-35 .
    14. 程涌,胡煜昭,崔苗,聂琪,许赛华,范惠珺. 黔东柏松铅锌矿床矿物特征及地质意义. 有色金属(矿山部分). 2022(05): 160-172 .
    15. 许振浩,马文,李术才,林鹏,梁锋,许广璐,李珊,韩涛,石恒. 岩性识别:方法、现状及智能化发展趋势. 地质论评. 2022(06): 2290-2304 .
    16. 曾烃详,刘岩,文志刚,樊云鹏,冯兴强,季长军,史旭凯,高变变,武远哲. 基于迁移学习的全岩光片有机显微组分识别与定量——以皖泾地1井下三叠统殷坑组烃源岩为例. 科学技术与工程. 2022(35): 15485-15493 .
    17. 张一帆,范裕,陈静,刘兰海,李梦梦. 矿精粉中关键金属元素赋存状态研究方法流程的建立:以长江中下游成矿带富钴硫矿精粉为例. 岩石学报. 2021(09): 2791-2807 .
    18. 杨波,杨莉,沈茂森,刘涛,孟文祥,于宏东. TIMA测试技术在白云鄂博矿床铌工艺矿物学中的应用. 矿冶工程. 2021(06): 65-68 .

    Other cited types(5)

Catalog

    Article views (1221) PDF downloads (18) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return