• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LUO Lei, FU Sheng-bo, XIAO Jie, WEI Ling-qiao, DAI Wei-feng, DING Xiao-xiao. Determination of Lead in Argentalium Ores Containing Barite by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 203-207.
Citation: LUO Lei, FU Sheng-bo, XIAO Jie, WEI Ling-qiao, DAI Wei-feng, DING Xiao-xiao. Determination of Lead in Argentalium Ores Containing Barite by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 203-207.

Determination of Lead in Argentalium Ores Containing Barite by Inductively Coupled Plasma-Atomic Emission Spectrometry

More Information
  • Received Date: August 18, 2013
  • Accepted Date: September 21, 2013
  • Acid digestion (aqua regia, tetracid), as a conventional method, is usually used for dissolving Ag-Pb deposit to detect Pb. However, samples containing 40%-80% of barite are difficult to dissolve completely, possibly causing low results for Pb. Additionally, determination results can also be affected due to the formation of double salt precipitation from BaSO4 reacting with Pb. In this paper, a novel method for dissolving Ag-Pb ores by Na2O2 and determination of Pb by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) combining with high salt nebulizer was proposed. Experimental conditions such as sample volume and multiple dilutions were optimized. The detection limit was 0.013%, RSD was 1.1%-1.6% and recovery was 97.9%-102.9%. The samples were decomposed completely by alkali fusion with Na2O2. The addition of BaCl2 can eliminate the influence of sulfate on Pb for barite-bearing sample. However, there is no effect for non-barium-barite samples. This method solves the problems of both difficult and complete decomposing for Ag-Pb ores with high content barite and the influence of BaSO4 in the quantification of Pb.

  • [1]
    郭敏生.含重晶石的铅矿中铅含量的测定[J].分析化学,1982,10(4):254-255. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198204020.htm
    [2]
    GB/T 8152.2—2006,铅精矿化学分析方法;铅量的测定;硫酸铅沉淀;EDTA返滴定法[S].
    [3]
    桂义军.催化极谱法测定土壤中的铅[J].化工技术与开发,2006,35(11):43-45. doi: 10.3969/j.issn.1671-9905.2006.11.012
    [4]
    岩石矿物分析编委会.岩石矿物分析(第四版 第三分册)[M].北京:地质出版社,2011:134-137.
    [5]
    GB/T 14353.2—2010,铜矿石、铅矿石、锌矿石化学分析方法[S].
    [6]
    王蕾,温宏利,马新荣,张保科,马生凤,许俊玉,巩爱华.电感耦合等离子体发射光谱法测定中硫化物矿中的高含量铅[J].岩矿测试,2011,30(3):305-309. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201103018.htm
    [7]
    陈永欣,吕泽娥,刘顺琼,崔翔,谢毓群.电感耦合等离子体发射光谱法测定铜精矿中银砷铅[J].岩矿测试,2007,26(6):497-499. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200706016.htm
    [8]
    徐进力,邢夏,张勤,白金峰.电感耦合等离子体发射光谱法直接测定铜矿石中银铜铅锌[J].岩矿测试,2012,31(2):258-262. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201004014.htm
    [9]
    袁秀茹,谈建安,王建波,毛振才.ICP-AES法测定铜镍矿、铅锌矿中铜、镍、铅、锌、钴[J].分析测试技术与仪器,2009,15(1):47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ200901012.htm
    [10]
    马红岩. ICP-AES测定进口铜精矿中有害元素[J].理化检验(化学分册),2004,40(6):334-335. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200406010.htm
    [11]
    马新荣,马生凤,王蕾,温宏利,巩爱华,许俊玉.王水溶矿-等离子体光谱法测定砷矿石和锑矿石中砷锑硫铜铅锌[J].岩矿测试,2011,30(2):190-194. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201102018.htm
    [12]
    熊英,王晓雁,胡建平.电感耦合等离子体发射光谱法同时测定铜铅锌矿石中铜铅锌钴镍等元素方法确认[J].岩矿测试,2011,30(3):299-304. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201103017.htm
    [13]
    李志伟. EDTA络合滴定法快速测定含钡铅矿石中的铅[J].岩矿测试,2013,32(6):920-923. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201306017.htm
    [14]
    贺大鹏,龚琦,方铁勇,黄玉龙.微波加热酸浸提-原子吸收光谱法测定重晶石中铅镉[J].冶金分析,2007,27(5):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200705016.htm
    [15]
    崔德松.电感耦合等离子体发射光谱法测定重晶石矿石中Cu、Pb、Zn[J].计量与测试技术,2009,36(11):12-14. doi: 10.3969/j.issn.1004-6941.2009.11.006
    [16]
    张超,李享.电感耦合等离子体发射光谱法测定镍矿石中镍铝磷镁钙[J].岩矿测试,2011,30(4):473-476. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201104021.htm
  • Related Articles

    [1]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2022, 41(5): Former. DOI: 10.15898/j.cnki.11-2131/td.2022.05.001
    [2]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2021, 40(1): FormerⅠ-FormerⅣ. DOI: 10.15898/j.cnki.11-2131/td.2021.01.001
    [3]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2020, 39(5): FormerⅠ-FormerⅣ. DOI: 10.15898/j.cnki.11-2131/td.2020.05.001
    [4]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2018, 37(5): FormerⅠ-FormerⅢ. DOI: 10.15898/j.cnki.11-2131/td.2018.05.001
    [5]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2018, 37(3): FormerⅠ-FormerⅣ. DOI: 10.15898/j.cnki.11-2131/td.2018.03.001
    [6]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2017, 36(6): FormerⅢ-FormerⅣ. DOI: 10.15898/j.cnki.11-2131/td.2017.06.001
    [7]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2015, 34(4): FormerⅠ-FormerⅡ. DOI: 10.15898/j.cnki.11-2131/2015.04.001
    [8]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2014, 33(3): FormerⅢ-FormerⅤ.
    [9]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2013, 32(6): FormerⅢ-FormerⅤ.
    [10]Reviews on Articles in the Issue[J]. Rock and Mineral Analysis, 2012, 31(6): FormerⅢ-FormerⅣ.

Catalog

    Article views (1529) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return