• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Jing-jing FANG, Ai-guo ZHOU, Cun-fu LIU, Yi-qun GAN, Jian-wei ZHOU, He-sheng CAI, Yun-de LIU, Yan-peng ZHANG. Research Progress on Stable Isotope Online Testing Technology for Organic Contaminants[J]. Rock and Mineral Analysis, 2013, 32(2): 192-202.
Citation: Jing-jing FANG, Ai-guo ZHOU, Cun-fu LIU, Yi-qun GAN, Jian-wei ZHOU, He-sheng CAI, Yun-de LIU, Yan-peng ZHANG. Research Progress on Stable Isotope Online Testing Technology for Organic Contaminants[J]. Rock and Mineral Analysis, 2013, 32(2): 192-202.

Research Progress on Stable Isotope Online Testing Technology for Organic Contaminants

More Information
  • Received Date: March 11, 2012
  • Accepted Date: August 15, 2012
  • Published Date: March 31, 2013
  • Compound-specific isotope analysis (CSIA) online is an indispensable key technique for identifying the sources of organic contaminants in the environment and characterizing their transformation processes, but there are still some problems in practical applications. In this study, firstly, the development of six methods for online determination of compound-specific organic isotope analysis was introduced and reviewed, including Gas Chromatography-Isotope Ratio Mass Spectrometer (GC-IRMS), Liquid Chromatography Coupled-Isotope Ratio Mass Spectrometer (LC-IRMS), Direct Introduction-Gas Chromatography-Isotope Ratio Mass Spectrometer (DI-GC-IRMS), Gas Chromatography-Quadrupole Mass Spectrometer (GC-qMS), Gas Chromatography-Multicollector Inductively Coupled Plasma-Mass Spectrograph (GC-MC-ICPMS) and Gas Chromatography-Cavity Ring-Down Spectroscopy (GC-CRDS). Secondly, five noteworthy problems in online testing were proposed: sample pre-concentration, Gas Chromatography (GC) and Liquid Chromatography (LC) separation, selection of instruments and methods, the development of organic compound stable isotope standard material and safety control. Finally, three suggestions were proposed: 1) to develop vigorously the direct injection technology without combustion, such as GC-qMS and GC-CRDS, 2) to continually develop the determination technology for organic chlorine and organic bromine isotopes and 3) to rapidly develop international stable isotope standards for organic compounds. The new understanding in this study was that when multi-element isotope analysis was applied to study compound-specific isotopes, direct injection technology without combustion was the optimal choice.
  • Hofstetter T B, Schwarzenbach R P, Bernasconi S M. Assessing transformation processes of organic compounds using stable isotope fractionation[J].Environmental Science & Technology, 2008, 42(21): 7737-7743.
    Schmidt T C, Zwank L, Elsner M, Berg M, Meckenstock R U, Haderlen S B. Compound-specific stable isotope analysis of organic contaminants in natural environments: A critical review of the state of the art, prospects, and future challenges[J]. Analytical and Bioanalytical Chemistry, 2004,378(2): 283-300. doi: 10.1007/s00216-003-2350-y
    Elsner M, Zwank L, Hunkeler D, Schwarzenbach R P. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants[J]. Environmental Science & Technology, 2005, 39(18): 6896-6916.
    周爱国,李小倩,刘存富,周建伟,蔡鹤生,余婷婷.氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J].地球科学进展, 2008, 23(4): 342-349.
    马腾,周爱国,刘存富,蔡鹤生,李理.地下水污染研究中稳定同位素测试方法及其应用前景[J].水文地质工程地质,2008(Z1): 330-335.
    De Laeter J R, Bohlke J K, de Bievre P, Hidaka H, Peiser H S, Rosman K J R, Taglor P D P. Atomic weights of the elements: Review 2000 (IUPAC technical report)[J]. Pure and Applied Chemistry,2003,75(6): 683-800.
    Groning M, Hakkarainen M, Albertsson A C. Recycling of glass-fibre reinforced phenolic prepreg waste. Part 2. Milled prepreg as functional filler in PP and PA6[J]. Polymers and Polymer Composites, 2004, 12(6): 501-509.
    Horfs J. Stable Isotope Geochemistry [M]. 6th ed. Berlin: Springer Press, 2009.
    Hofstetter T B, Berg M. Assessing transformation proce-sses of organic contaminants by compound-specific stable isotope analysis[J].Trends in Analytical Chemistry, 2011, 30(4): 618-627. doi: 10.1016/j.trac.2010.10.012
    刘国卿,张干,彭先芝,祈士华,李军.水体中痕量挥发性有机物单体碳同位素组成的固相微萃取-冷阱预富集GC-IRMS分析[J].地球科学——中国地质大学学报, 2004, 29(2): 235-238, 246. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402018.htm
    Berg M, Bolotin J, Hofstetter T B. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS[J]. Analytical Chemistry, 2007, 79: 2386-2393. doi: 10.1021/ac0622577
    Skarpeli-Liati M, Turgeon A, Carr A N, Arnold W A, Cramer C J, Hofstetter T B. pH-dependment equili-brium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substibuted anilines by SPME-GC/IRMS[J]. Analytical Chemistry, 2011, 83: 1641-1648. doi: 10.1021/ac102667y
    Bergmann F D, Abu Laban N M F H, Meger A H, Elsner M, Meckenstock R U. Dual(C, H) isotope fractionation in anaerobic low molecular weight (Poly) aromatic hydrocarbon (PAH) degradation: Potential for field studies and mechanistic implications[J]. Environmental Science & Technology, 2011, 45: 6947-6953.
    Godin J P, Fay L B, Hopfgartner G. Liquid chromato-graphy combined with mass Spectrometry for C-13 isotopic analysis in life science research[J].Mass Spectrometry Reviews, 2007, 26(6): 751-774. doi: 10.1002/(ISSN)1098-2787
    Krummen M. A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry[J].Rapid Communications in Mass Spectrometry, 2004, 18(19): 2260-2266. doi: 10.1002/rcm.v18:19
    Shouakar-Stash O, Drimmie R J, Zhang M, Frape S K. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS[J]. Applied Geochemistry, 2006, 21(5): 766-781. doi: 10.1016/j.apgeochem.2006.02.006
    Shouakar-Stash O, Frape S K, Drimmie R J. Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry[J]. Analytical Chemistry, 2005,77(13): 4027-4033. doi: 10.1021/ac048318n
    Shouakar-Stash O, Frape S K, Aravena R, Gargini A, Pasini M, Drimmie R J. Analysis of compound-specific chlorine stable isotopes of vingl chloride by continuous flow-isotope ratio mass spectrometry (FC-IRMS)[J]. Environmental Forensics, 2009, 10: 299-306. doi: 10.1080/15275920903347628
    Sakaguchi-Söder K, Jager J, Grund H, Matthäus F, Schüth C. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis[J].Rapid Communications in Mass Spectrometry, 2007, 21(18): 3077-3084. doi: 10.1002/(ISSN)1097-0231
    Aeppli C, Holmstrand H, Adersson P, Gustafsson. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing[J]. Analytical Chemistry, 2010, 82(1): 420-426. doi: 10.1021/ac902445f
    Elsner M, Hunkeler D. Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules[J]. Analytical Chemistry, 2008, 80(12): 4731-4740. doi: 10.1021/ac702543y
    Jin B, Laskov C, Rolle M, Haderlein S B. Chlorine isotope analysis of organic contaminants using GC-qMS: Method optimization and comparison of different evaluation schemes[J].Environmental Science & Technology, 2011, 45: 5279-5286.
    Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguch-Söder K, Laaks J, Jochmann M A, Cretnik S, Jager J, Haderlein S B, Schmidt T C, Aravena R, Elsner M. Compounds-specific chlorine isotope analysis: A comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study[J].Analytical Chemistry, 2011, 83: 7624-7634. doi: 10.1021/ac200516c
    Sakaguchi-Söder K. A new method for compound-specific stable chlorine isotope analysis: Basics and application[D]. Darmstadt: Technische University, 2010.
    van Acker M R, Shahar A, Young E D, Coleman M L. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13): 4663-4667. doi: 10.1021/ac0602120
    Jendrzejewski N, Eggenkamp H G M, Coleman M L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotope compositions: Scope of application to environmental problems[J]. Applied Geochemistry, 2001, 16: 1021-1031. doi: 10.1016/S0883-2927(00)00083-4
    Eggenkamp H G M, Coleman M L. Rediscovery of classical method and their application to the measurement of stable bromine isotopes in natural samples[J].Chemical Geology,2000,167: 393-402. doi: 10.1016/S0009-2541(99)00234-X
    Sylva S P, Ball L, Nelson R K, Reddy C M. Compound-specific 81Br/79Br analysis by capillary gas chromato-graphy/multicollector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(20): 3301-3305. doi: 10.1002/(ISSN)1097-0231
    Gelman F, Halicz L. High precision determination of bromine isotope ratio by GC-MC-ICPM[J]. International Journal of Mass Spectrometry, 2010, 289: 167-169. doi: 10.1016/j.ijms.2009.10.004
    Krupp E M. Precise isotope-ratio determination by CGC hyphenated to ICP-MCMS for speciation of trace amounts of gaseous sulfur, with SF6 as example compound [J]. Analytical and Bioanalytical Chemistry, 2004, 378(2): 250-255. doi: 10.1007/s00216-003-2328-9
    Kerstel E, Gianfrani L. Advances in laser-based isotope ratio measurements: Selected applications[J]. Applied Physics B-Lasers and Optics, 2008, 92(3): 439-449. doi: 10.1007/s00340-008-3128-x
    Lis G, Wassenaar L I, Hendry M J. High-precision laser spectroscope D/H and 18O/16O measurement of microliter natural water samples[J]. Analytical Chemistry, 2008, 80: 287-293. doi: 10.1021/ac701716q
    Wang L X, Caylor K K, Dragoni D. On the calbration of continuous, high-precision δ18O and δ2H measure-ment using an off-axis integrated cavity output spectrometer[J]. Rapid Communications in Mass Spectrometry, 2009, 23: 530-536. doi: 10.1002/rcm.v23:4
    Christensen L E, Brunner B, Treong K N, Mielke R E, Webster C R, Coleman M. Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO2[J].Analytical Chemistry,2007,79: 9261-9268. doi: 10.1021/ac071040p
    Barker S L L, Dipple G M D, Dong F, Baer D S. Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals[J]. Analytical Chemistry, 2011, 83: 2220-2226. doi: 10.1021/ac103111y
    Krestel E. Handbook of Stable Isotope Analytical Tech-niques[M].Amsterdam: Elsevier Press, 2004: 759-787.
    Keppler F. Measurements of 13C/12C methane from anaerobic digesters: Comparison of optical spectrometry with continuous-flow isotope ratio mass spectrometry[J]. Environmental Science & Technology, 2010, 44(13): 5067-5073.
    刘国卿,张干,彭先芝.单体同位素技术在有机环境污染中的研究进展[J].地球与环境, 2004,32(1):23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200401004.htm
  • Related Articles

    [1]CHEN Kai, LIU Fei, YANG Zihan, XIANG Xin. Review on the Determination of Oxidant Demand for in-situ Chemical Oxidation Application[J]. Rock and Mineral Analysis, 2023, 42(2): 271-281. DOI: 10.15898/j.cnki.11-2131/td.202202170023
    [2]ZHANG Xiaorui, WU Bailin, LEI Angui, YANG Songlin, YAO Luhang, PANG Kang, BAO Zhian, WANG Miao, HAO Xin, LIU Mingyi, LI Qi, LIN Zhouyang. In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717-732. DOI: 10.15898/j.cnki.11-2131/td.202111300192
    [3]XIAO Zhi-bin, GENG Jian-zhen, TU Jia-run, ZHANG Ran, YE Li-juan, BI Jun-hui, ZHOU Hong-ying. In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. DOI: 10.15898/j.cnki.11-2131/td.201908120129
    [4]Wei-meng ZHANG, Jie YAN, Fu-jun ZHONG, Jia-yong PAN, Wen-quan LIU, Jing LAI, Tang-bo ZHOU. In situ LA-ICP-MS U-Pb Dating of Uraninite from the Shijiaowei Granite-type Uranium Deposit, Northern Guangdong Province[J]. Rock and Mineral Analysis, 2019, 38(4): 449-460. DOI: 10.15898/j.cnki.11-2131/td.201901160007
    [5]Miao TIAN, Qing-guo MENG, Chang-ling LIU, Cheng-feng LI, Gao-wei HU, Juan FENG, Quan-sheng ZHAO. Parameter Optimization and Analysis Method for Determination of Natural Gas Hydrate by Powder X-ray Diffraction[J]. Rock and Mineral Analysis, 2017, 36(5): 481-488. DOI: 10.15898/j.cnki.11-2131/td.201703160033
    [6]Shan-ling FU, Cheng-hai ZHAO. Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1-13. DOI: 10.15898/j.cnki.11-2131/td.2017.01.002
    [7]Zhi-xiong LI, Yi-tong HAN, Yong-qiang XU, Yang YANG, Jia-wei CHEN. In Situ Measurement of Aggregation Effect of Nanoscale Zero-valent Iron in the Presence of Natural Organic Matter Based on the Dynamic Light Scattering Technique[J]. Rock and Mineral Analysis, 2016, 35(6): 634-641. DOI: 10.15898/j.cnki.11-2131/td.2016.06.010
    [8]Sheng-xuan HUANG, Xiang WU, Shan QIN. Research Progress on in situ Experimental and Theoretical Simulations of Element Partitioning under High Temperature and High Pressure[J]. Rock and Mineral Analysis, 2016, 35(2): 117-126. DOI: 10.15898/j.cnki.11-2131/td.2016.02.002
    [9]Jiao-hua ZHOU, Jian-yu WANG, Ming-xin GU, Zhen WANG. The Main Mineral Typomorphic Characteristics of the Henan Tangjiaping Molybdenum District Using X-ray Diffraction and Rock Mineral Identification Technology[J]. Rock and Mineral Analysis, 2015, 34(1): 82-90. DOI: 10.15898/j.cnki.11-2131/td.2015.01.011
    [10]Development of a Portable Extinction Photometer and Its Application to in situ Rapid Detection of Adulterated Milk[J]. Rock and Mineral Analysis, 2008, 27(3): 169-173.

Catalog

    Article views (1263) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return