• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WANG Xue-wei, PENG Nan-lan, TANG Qi-ping, JIN Ting-ting. Determination of Sc in Geological Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry with Four-Acid Digestion[J]. Rock and Mineral Analysis, 2014, 33(2): 212-217.
Citation: WANG Xue-wei, PENG Nan-lan, TANG Qi-ping, JIN Ting-ting. Determination of Sc in Geological Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry with Four-Acid Digestion[J]. Rock and Mineral Analysis, 2014, 33(2): 212-217.

Determination of Sc in Geological Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry with Four-Acid Digestion

More Information
  • Received Date: August 09, 2013
  • Accepted Date: August 17, 2013
  • The national standard method for the analysis of scandium in geological samples uses sodium peroxide to fuse samples. After the filtration and separation of the sample solution, Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) is applied to determine scandium. This process is complex, moreover, large amounts of salts are brought in during the pretreatment and the accuracy of the result is not satisfactory, and the procedure is lengthy, making it unsuitable for current mineral exploration. A mixture of four-acid system, which includes nitric acid, hydrochloric acid, perchloric acid and hydrofluoric acid, to decompose geological samples has been used and is reported in this paper. The Sc was measured by ICP-AES. Hydrochloric acid of 5% is used as the solution medium. When the interference element content is lower than 2%, the interference factor correction (IEC) is applied to optimize the intensity of the spectral line and the solution is diluted appropriately to reduce the matrix effects. Through these steps, the accuracy and precision of the measurement results of scandium were improved. The detection limit of this new method is 0.0016 μg/mL, which is better than the detection limit (0.004 μg/mL) of the national standard method, and the recovery rate of this method is 97.0%-99.3% with measurement range of 0.00003%-10%. The relative standard deviation (RSD, n=6) is in the range of 0.4%-2.3%. National standard reference materials were analysed by this method, and the test results of scandium agree well with the recommended values. Unlike the alkali fusion method, the acid leaching method can avoid bringing in interfering substances. Hereby, the stability has been improved greatly by using ICP-AES to determine Sc. This method is less demanding on the regional and environmental conditions, is simple and fast and can be applied to a large number of geological samples in laboratories.

  • [1]
    岩石矿物分析编委会.岩石矿物分析(第四版 第三分册) [M].北京:地质出版社, 2011:446-450.
    [2]
    Poedniok J. Speciation of scandium and gallium in soil [J].Chemosphere, 2008, 73(4):572-579. doi: 10.1016/j.chemosphere.2008.06.012
    [3]
    林河成.金属钪的资源及其发展现状[J].四川有色金属, 2010(2):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201002003.htm
    [4]
    朱智华.云南牟定二台坡岩体中钪的发现及其意义[J].云南地质, 2010, 29(1):235-244. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD201003000.htm
    [5]
    罗道成,刘俊峰.阴离子树脂萃取富集-分光光度法测定煤矸石中痕量钪[J].分析试验室, 2010, 29(6):108-110. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201006029.htm
    [6]
    罗道成,刘俊峰.阴离子树脂固相萃取光度法测定煤矸石中痕量钪[J].化学试剂,2010,32(11):1006-1008. doi: 10.3969/j.issn.0258-3283.2010.11.014
    [7]
    李爱秀,张晓芸.可见分光光度计测定赤泥盐酸浸出液中的钪[J].分析仪器, 2011(6):34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201106027.htm
    [8]
    喻德忠,陈芬儿,王钢.水相荧光分析法测定地质样品中的钪[J].武汉化工学院学报, 1997, 19(1):19-21. http://www.cnki.com.cn/Article/CJFDTOTAL-WHHG701.005.htm
    [9]
    李龙泉,孙哗,淦五二,李亚栋.液膜富集原子吸收分光光度法测定痕量钪[J].化学研究与应用,1997,9(1):79-81. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ701.018.htm
    [10]
    刘江斌,赵峰,余宇,党亮,张旺强,陈月源.X射荧光光谱法同时测定地质样品中铌钽锆铪铈镓钪铀等稀有元素[J].岩矿测试,2010,29(1):74-76. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201001023.htm
    [11]
    白金峰,张勤,孙晓玲,董永胜,范辉,徐进力,刘亚轩.高分辨电感耦合等离子体质谱法测定地球化学试样中钪钇和稀土元素[J].岩矿测试,2011,30(1):17-22. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201101007.htm
    [12]
    白金峰,薄玮,张勤,王海鹰.高分辨电感耦合等离子体质谱法测定地球化学试样中的36种元素[J].岩矿测试,2012,31(5):814-819. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201205012.htm
    [13]
    王冠,杜谷,刘书生,石洪召,张林奎,任静.电感耦合等离子体质谱法对白钨矿中稀土元素的准确测定——以云南麻栗坡南秧田白钨矿床的成因探讨为例[J].岩矿测试,2012:31(6):1050-1057. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201206028.htm
    [14]
    李全春,王常有. ICP-OES法测定白云鄂博矿及稀土精矿中的微量钪[J].光谱仪器与分析,1996,2(4):33-37.
    [15]
    Ramanaiah G V. Determination of yttrium, scandium and other rare earth elements in uranium-rich geological materials by ICP-AES [J]. Talanta, 1998, 46(4):533-40. doi: 10.1016/S0039-9140(97)00315-9
    [16]
    Satyanarayana K, Durani S, Ramanaiah G V. Deter-mination of scandium in geological materials, rare earth minerals and niobate/tantalate-type of samples by inductively coupled plasma atomic emission spectrometry after solvent extraction/acid hydrolysis separation [J]. Analytica Chimica Acta, 1998, 376:273-281. doi: 10.1016/S0003-2670(98)00548-0
    [17]
    罗榕梅. ICP-AES法测定稀土矿中各元素的研究[J].中国西部科技,2012,11(12):3-7. http://www.cnki.com.cn/Article/CJFDTOTAL-XBKJ201212005.htm
    [18]
    赵庆令,李清彩,蒲军,武殿喜.电感耦合等离子体发射光谱法同时测定土壤试样中砷硼铈碘铌硫钪锶钍锆等31种元素 [J].岩矿测试,2010,29(4):455-457. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201004031.htm
    [19]
    李芬,李启华,樊朝英,马英.电感耦合等离子体原子发射光谱法测定镁钪合金中钪[J].理化检验(化学分册),2011,47(7):816-817. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201107026.htm

Catalog

    Article views (1442) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return