Qing-xia LI, Ya-xuan LIU, Wei-ming CHEN, Bin LIU, Qin ZHANG. Analysis of Aromatic Hydrocarbons in Oil and Gas Geochemical Exploration Samples by Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 561-569.
Citation: Qing-xia LI, Ya-xuan LIU, Wei-ming CHEN, Bin LIU, Qin ZHANG. Analysis of Aromatic Hydrocarbons in Oil and Gas Geochemical Exploration Samples by Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 561-569.

Analysis of Aromatic Hydrocarbons in Oil and Gas Geochemical Exploration Samples by Fluorescence Spectrometry

More Information
  • Received Date: June 17, 2013
  • Revised Date: September 23, 2013
  • Accepted Date: January 19, 2014
  • Published Date: June 30, 2014
  • Fluorescence spectrometry, with the characteristics of high sensitivity, low detection limits and rapid analysis, avoids complex separating work in the chromatography method, and is suitable for oil and gas geochemical exploration samples requiring a large number of assays. In this paper, sample pretreatment methods and analytical conditions that were optimized in order to analyse aromatic hydrocarbons in oil samples by fluorescence spectrometry are reported. Ultra pesticide residue grade n-hexane was selected as the extraction solvent, which simplified the purification operation, and intermittent oscillation was selected to improve the extraction effect of aromatics. Through selecting proper standard materials (naphthalene, phenanthrene and chrysene) and adopting an external standard method, aromatic hydrocarbon in the samples was determined under the optimal analytical conditions. With the excitation wavelength of 265 nm and the emission wavelength of 320 nm, 360 nm and 405 nm, the fluorescent spectra of aromatic hydrocarbon were studied. The relative intensities were converted into the concentration of a certain standard material, which could then be used to compare the fluorescence data between different laboratories and different instruments. The detection limit of the method was 1.8 ng/g (naphthalene), which was lower than the limit of the national industry standard (2.0 ng/g, SY/T 6009.8—2003). The precision results of the method (RSD, n=12) were 4.5% (320 nm), 9.6% (360 nm) and 14.7% (405 nm), respectively. Through improving the quality control and management, the proposed method has been conducted successfully in the Daqin oil field, and it was found that the fluorescent data could effectively indicate sampling depth and anomalies.
  • 朱扬明.塔里木原油芳烃的地球化学特征[J].地球化学,1996,25(1):10-18. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201101019.htm
    Requejo A G, Sassen R, Mcdonald T, Denoux G, Kennicutt Ⅱ M C, Brooks J M.Polynuclear aromatic hydrocarbons (PAH) as indicators of the source and maturity of marine crude oils[J].Organic Geochemistry, 1996,25(11):1017-1033.
    刘洛夫,王伟华,徐新德,毛东风.塔里木盆地群5井原油芳烃地球化学研究[J].沉积学报,1996,14(2):49-57. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB602.005.htm
    宋继梅,胡刚.芳烃分析在油气化探中的作用和意义[J].物探与化探,2003,27(2):97-100. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200302004.htm
    宋继海,黄建军.油气化探样品芳烃分析中干扰因素的识别[J].化学通报,2004(9):695-699. http://www.cnki.com.cn/Article/CJFDTOTAL-HXTB200409014.htm
    蒋涛,汤玉平,李武,张恒启.分析和认识我国油气化探技术[J].物探与化探,2011,35(1):7-11. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201101003.htm
    Jonny B, Grete J, Cinta P, Margaret M K, Freek A.Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review[J].Environmental Toxicology and Pharmacology, 2010, 35:224-244.
    李庆霞,刘亚轩,王正武,陈卫明,张勤.微波辅助萃取及其联用技术在有机污染物分析中的应用[J].物探与化探,2010,34(2):134-140. http://www.cnki.com.cn/Article/CJFDTOTAL-HXTB201002009.htm
    胡斌,李武,程桂.HPLC-DAD-FD联用检测油气化探样品的芳烃[J].物探与化探,2003,27(2):101-103. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200302005.htm
    李武,雍克岚.三维荧光光谱指纹技术应用研究[J].石油勘探与开发,1996,23(4):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK604.008.htm
    孙忠军.真武油田水中紫外荧光异常与油气关系[J].世界地质,1990(3):94-97. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199003012.htm
    崔树宝.紫外分光光度法测定石油产品中芳烃含量[J].天津化工,2006,20(6):51-52. http://www.cnki.com.cn/Article/CJFDTOTAL-TJHG200606020.htm
    宁丽荣,汤玉平,赵克斌,李吉鹏,陈浙春,蒋涛.油气勘探荧光光谱法在土壤与其上方积雪的对比实验[J].物探与化探,2011,35(3):337-339. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201103012.htm
    程军,刘伟,程正发,宋明水,李学田.近地表荧光光谱特征及其与烃源岩关系初探——以合肥盆地为例[J].安徽地质,2004,14(4):277-281. http://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ200404012.htm
    程同锦,戴联善.油气化探技术的现状与发展、问题与对策[C]//第四届全国油气化探学术会议论文集.武汉:中国地质大学出版社,1998:7-13.
    陈国珍,黄贤纠,郑朱梓.荧光分析法(第二版)[M].北京:科学出版社,1990:31-57.
    Hegazi E, Hamdan A, Mastromarino J.New approach for spectral characterization of crude oil using time-resolved fluorescence spectra[J].Applied Spectroscopy,2001,55(2):202-207. doi: 10.1366/0003702011951515
    宁丽荣,沈洪久,李武,张庆珍,王波舫.影响荧光光谱分析质量的因素[J].物探与化探,2008,32(6):675-677. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200806023.htm
    胡斌,赵淑华,王凌峰,程桂英.油气化探荧光指标量化方法初探[J].物探与化探,2001,25(1):132-134. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200102008.htm
    SY/T 6009.8—2003,油气化探试样测定方法;第8部分:稠环芳烃测定;荧光法[S].
  • Cited by

    Periodical cited type(8)

    1. 张小毅,张淼,艾力·尼亚孜. 熔融制样-X射线荧光光谱法测定铬铁矿中多种主量元素. 广东化工. 2022(14): 161-164+167 .
    2. 张小丰. 甘肃省肃北县长头山石膏矿矿床地质特征及成因分析. 西部资源. 2022(04): 13-15 .
    3. 郭进,张孟群,吴锁贞. 熔融制样-X射线荧光光谱法测定火力发电厂烟气脱硫石膏中主次量元素. 理化检验(化学分册). 2021(09): 850-854 .
    4. 汪虹敏,张颖,徐磊,林学辉,高晶晶,朱爱美,王赛,刘季花. 能量色散X射线荧光光谱法测定海洋碎屑沉积物中28种元素. 海洋科学进展. 2020(01): 70-80 .
    5. 黄康,刘菊琴,邵晓龙,金艳婷. X-射线荧光光谱法测定钛铁矿中的主次量元素. 甘肃冶金. 2020(02): 93-96 .
    6. 王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
    7. 刘玉纯,林庆文,马玲. X射线荧光光谱技术在地质分析中的应用及发展动态. 化学分析计量. 2019(04): 125-131 .
    8. 陈美瑜,兰琳. 熔融制样X射线荧光光谱法测定陶瓷中的硅含量. 功能材料. 2018(12): 12217-12220 .

    Other cited types(2)

Catalog

    Article views (1030) PDF downloads (16) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return