• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Jun-sheng BAN, Jin-xin REN, LIU Gui-zhen LIU, Miao-miao ZANG, Ying-xue YANG, Ye WANG. Determination of the Magnetic Material Composition in Magnetite Ore and Processability Evaluation[J]. Rock and Mineral Analysis, 2013, 32(3): 469-473.
Citation: Jun-sheng BAN, Jin-xin REN, LIU Gui-zhen LIU, Miao-miao ZANG, Ying-xue YANG, Ye WANG. Determination of the Magnetic Material Composition in Magnetite Ore and Processability Evaluation[J]. Rock and Mineral Analysis, 2013, 32(3): 469-473.

Determination of the Magnetic Material Composition in Magnetite Ore and Processability Evaluation

More Information
  • Received Date: July 19, 2012
  • Accepted Date: November 04, 2012
  • Published Date: May 31, 2013
  • Magnetite samples were magnetically separated with a magnetic tube and artificial magnetic separation. The contents of TFe, P, S, V2O5, TiO2, SiO2, Al2O3, CaO, MgO, Sn, Cu, Pb and Zn in the magnetite samples were determined. The results of the two separation methods were consistent. Consequently, artificial magnetic separation in subsequent experiments was chosen in order to simplify the process. The average content of mFe in mining area A (22.42%) was lower than that in mining area B (22.59%), but the content of TFe in the magnetic material of mining area A magnetite samples (>66%) was higher than that in mining area B ( < 57%). The results indicate that the effect of mineral processing of mining area A is much better than that of mining area B since the content of TFe in magnetic material can better reflect processability. The contents of P and S were 0.328% and 0.271% in the magnetite ore samples, 0.021% and < 0.005% in the magnetic material, which met the requirements of the iron ore smelting standards as P<0.15% and S<0.15% in the magnetite. The contents of V2O5 and TiO2 were 0.156% and 1.37% in the magnetite ore samples, 0.823% and 13.62% in the magnetic material, which meet the requirements of the iron ore smelting standards as V2O5>0.15% and TiO2>3% in the magnetite. The magnetite with a(CaO+MgO)/(SiO2+Al2O3) ratio of 0.876 is the self-fluxing ore, but the magnetic material of this magnetite with a (CaO+MgO)/(SiO2+Al2O3) ratio of 0.453 is acid ore. This indicates that the evaluation of the magnetite does not depend on the contents of each component in the ore sample, but rather depends on the contents of each component in the magnetic material of the magnetite. Through the determination of magnetic materials in magnetite ore, a new evaluation method for magnetic separation and smelting has been determined.
  • 李厚民,王瑞江,肖克炎,张晓华,刘亚玲,孙莉.中国超贫磁铁矿资源的特征、利用现状及勘查开发建议——以河北和辽宁的超贫磁铁矿资源为例[J].地质通报,2009,28(1): 85-90. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901012.htm
    孙炳泉.超贫铁矿资源化利用技术现状及发展趋势[J].金属矿山,2009,6(1): 9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200901004.htm
    王世军.承德超贫磁铁矿的开发与评价[J].资源与产业,2004,6(5): 16-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU200405003.htm
    DZ/T 0200—2002,铁、锰、铬矿地质勘查规范[S].
    祁向雷.超贫磁铁矿勘查技术规程(暂行)[M].北京:地质出版社,2005.
    GB/T 18711—2002,选煤用磁铁矿粉试验方法[S].
    张皓,李勇.磁性物含量测定中常见问题及解决方法[J].选煤技术,2008(5): 32-33. http://www.cnki.com.cn/Article/CJFDTOTAL-XMJS200805010.htm
    赵鹏.相态分析与地质找矿(第二版)[M].北京:地质出版社,2008: 351-352.
    曲亮亮,周平.云南罗茨铁矿降硫降磷选矿试验研究[J].矿产保护与利用,2010(6): 33-36. http://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201006008.htm
    谢美芳,文书明,郑海雷,陈宇.钒钛磁铁矿精矿提铁降硫工艺试验研究[J].金属矿山,2010,7(4): 44-46. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201007014.htm
    岩石矿物分析编委会.岩石矿物分析(第四版 第二分册)[M].北京:地质出版社,2011: 738-739.
    GB/T 6730,铁矿石化学分析方法[S].

Catalog

    Article views (1191) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return