• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
Ya-nan CHENG, Xiang-yu GUAN, Wen-long QU, Hong-han CHEN, Fei LIU, Yu-xuan XIE, Ling-ling ZHU. Microbial Ecological Diversity Characteristics of the Soil Profile in the Vadose Zone Polluted by Ammonia Nitrogen[J]. Rock and Mineral Analysis, 2013, 32(2): 290-299.
Citation: Ya-nan CHENG, Xiang-yu GUAN, Wen-long QU, Hong-han CHEN, Fei LIU, Yu-xuan XIE, Ling-ling ZHU. Microbial Ecological Diversity Characteristics of the Soil Profile in the Vadose Zone Polluted by Ammonia Nitrogen[J]. Rock and Mineral Analysis, 2013, 32(2): 290-299.

Microbial Ecological Diversity Characteristics of the Soil Profile in the Vadose Zone Polluted by Ammonia Nitrogen

More Information
  • Received Date: March 06, 2012
  • Accepted Date: July 23, 2012
  • Published Date: March 31, 2013
  • Scholars at home and abroad in recent years have focused on researching ammonia nitrogen pollution migration rules in the vadose zone soil. Column simulation and software simulation were primarily conducted for the study of ammonia nitrogen pollution migration. Biotechnology was widely used in degradation of pollutant in soil, but less applied to the study of pollution migration. This study applied Denaturing Gradient Gel Electrophoresis (DGGE) and the sequence analysis of the V3 Region of 16S rRNA combined with canonical correspondence analysis to characterize the bacteria vertical distribution characteristics and bacterial community structure in the soil from three typical contaminated zones in the North China Plain. According to the analysis of physical and chemical soil properties in polluted areas, there were some dominant individual bacteria in the key pathways of the nitrogen cycle and sulfate metabolism. It is suggested that the bacterial communities are affected by the distributions of ammonia, nitrate and nitrite nitrogen, showing that the community structure information of the dominant population in contaminated soil is an important parameter to study the ammonia nitrogen pollution migration rules.
  • William J H. Vadose zone microbial biobarriers remove nitrate from percolating groundwater [J]. Current Microbiology, 2009(58): 622-627.
    Mamie N I, Kate M S, Dennis E R. Reduction of perchlorate and nitrate by microbial communities in vadose soil [J]. Applied and Environmental Micro-biology, 2005, 71(7): 3928-3934. doi: 10.1128/AEM.71.7.3928-3934.2005
    卞华松,张仲燕.冷冻固定化优势菌群处理含甲醛苯酚废水[J].环境科学,1998,19(2): 39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ802.009.htm
    赵娟,吕剑,何义亮,靳强,张文英,何霞.异养脱氮菌株Bacillus sp. LY 降解有毒有机污染物的研究[J].环境科学,2007,28(12): 2838-2842. doi: 10.3321/j.issn:0250-3301.2007.12.030
    袁勇军,陆兆新,黄丽金,吕凤霞,别小妹.烟碱降解细菌的分离鉴定及其降解性能的初步研究[J].微生物学报,2005,45(2): 181-184. http://www.cnki.com.cn/Article/CJFDTOTAL-WSXB200502005.htm
    洪青,张忠辉,张晓舟,徐剑宏,李顺鹏.中度嗜盐菌Halomonas sp. BYS2 1启动子的克隆和测序[J].应用与环境生物学报,2005,11(6): 729-732.
    Myers R M, Fischer S G, Maniatis T. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13: 3111-3129. doi: 10.1093/nar/13.9.3111
    Muyzer G, Brinkhoff T, Nübel U. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology [J]. Molecular Microbial Ecology Manual,1998,3(44): 1-27.
    Zweifel U L, Hagstrom A. Total counts of marine bacteria include a large fraction of non- nucleoid-containing bacteria (ghosts) [J].Applied and Environ-mental Microbiology, 1995, 61(6): 2180-2185.
    Schallenberg M, Kalff J, Rasmussen J B. Solutions to problems in enumerating sediment bacteria by direct count[J].Applied and Environmental Microbiology, 1989, 55(5): 1214-1219.
    Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition [J]. Applied and Environ-mental Microbiology, 1996, 62(2): 316-322.
    Muyzer G, Dewaal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993(59): 695-700.
    Rohlf F J. NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System, Version 2.0 [M].New York: State University of New York, 2000: 97.
    Thompson J D, Higgins D G, Gibson T J, Clustal W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994(22): 4673-4680.
    Kumar S, Tamura K, Nei M. MEGA 3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Briefings in Bioinformatics, 2004(5): 150-163.
    Schloss P D, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness [J]. Applied and Environmental Microbiology, 2005(71): 1501-1506.
    Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D.Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. Strain B2 isolated from the Sorghum Mycorrhizosphere[J]. Applied and Environmental Microbiology, 2005(71): 6501-6507.
    Lin Y, Kong H N, He Y L. Simultaneous nitrification and denitrification in a membrane bioreactor and isolation of heterotrophic nitrifying bacteria [J]. Japanese Journal of Water Treatment Biology, 2004, 40(3): 105-114. doi: 10.2521/jswtb.40.105
    Derek R L, Elizabeth J P P. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria [J]. Applied and Environ-mental Microbiology, 1994(60): 2394-2399.
    Robertson L A, Kuenen J G. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, faculta-tively autotrophic sulphur bacterium [J]. General Microbiology, 1983, 129(9): 2847-2855.
    Gupta A B. Thiosphaera pantotropha: A sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification[J]. Enzyme & Microbial Technology, 1997(21): 589-595.
    Moir J W B, Wehrfritz J M, Spiro S. The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17 [J]. Biochemical Journal, 1996, 319(3): 823-827. doi: 10.1042/bj3190823
    Stephen P, Cummings D, Gilmour J. The effect of NaCl on the growth of a halomonas species: Accumulation and utilization of compatible solutes [J]. Microbiology, 1995(141): 1413-1418.
    Kim H, Bram V, Lieven W, Willy V, Nico B, Paul D V.Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study [J]. Applied and Environmental Microbiology, 2006(72): 2637-2643.
    Stefan J G, Om P, Thomas M G. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination [J]. Applied and Environ-mental Microbiology, 2010(76): 3244-3254.
    Christiane W, Andrea T, Antje W. Horizon-specific bacterial community composition of german grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes [J]. Applied and Environmental Microbiology, 2010(76): 6751-6759.
    Nicole D, Bruno G, Steffen K. Methanotrophic communities in Brazilian Ferralsols from naturally forested, afforested, and agricultural sites[J]. Applied and Environmental Microbiology, 2010(76): 1307-1310.

Catalog

    Article views (1128) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return