• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Zhi-hui CHEN, Luo-xin SUN, Li-xiang ZHONG, Yan WANG, Bao-zhong SHANG, Shu XIAO. The Determination of Available Molybdenum in Soil by Rapid Catalytic Polarography[J]. Rock and Mineral Analysis, 2014, 33(4): 584-588.
Citation: Zhi-hui CHEN, Luo-xin SUN, Li-xiang ZHONG, Yan WANG, Bao-zhong SHANG, Shu XIAO. The Determination of Available Molybdenum in Soil by Rapid Catalytic Polarography[J]. Rock and Mineral Analysis, 2014, 33(4): 584-588.

The Determination of Available Molybdenum in Soil by Rapid Catalytic Polarography

More Information
  • Received Date: November 12, 2013
  • Revised Date: February 12, 2014
  • Accepted Date: May 27, 2014
  • Published Date: June 30, 2014
  • Available molybdenum in soil is an important proxy of ecological geochemistry evaluation. The classic method to determine available molybdenum in soil is catalytic polarography, which uses oxalic acid-ammonium oxalate (Tamm solution) as an extracting agent. The procedure to eliminate the iron ion, manganese ion, and oxalate and organics interferences is complicated and time consuming. Consequently, the interference mechanism is discussed in this paper. Since oxalate and organics are reductive, the metallic ions with variable valences changed to a reduction state during leaching. The oxidation-reduction reaction proceeds between the before mentioned materials and sodium chlorate in the measurement system, affecting the sensitivity of the catalytic wave. The method presented in this article is to add solid natrium hydroxide into oxalic acid-ammonium oxalate solution so that iron and manganese impurities can be removed through precipitation separation. Afterwards, HNO3-H2SO4 was used to destroy the organics and oxalate in the leaching liquor. In the system of molybdenum-benzoglycolic acid-chlorate-sulfuric acid, available Mo in soil standard reference materials was determined by polarographic catalytic wave. Compared with the classic interference elimination method, this method effectively reduces reagent types, operating time and error sources in analysis. The detection limit of this method is 0.0015 μg/g, which is below the detection limit of the classic method (0.0068 μg/g). The precision (RSD, n=12) is less than 7% and relative error is less than 8%. Measured values of soil standard reference materials are in agreement with the certified values. Verified by thousands of soil samples, this method is suitable to measure available Mo in soil that pH range is from 3.6 to 10.5. The measuring range of available Mo is 0.005-2 mg/kg. The method has the advantage of simple operation, short process, is accurate and has stable analysis results. It could be widely used in large quantities for rapid analysis of available Mo in soil.
  • 周国华.多目标区域地球化学调查:分析测试面临的机遇和挑战[J].岩矿测试,2010,29(3):296-300. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201003023.htm
    刘鹏,杨玉爱.土壤中的钼及其植物效应的研究进展[J].农业环境保护,2001,20(4):280-282. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104027.htm
    杨雪兰,樊亚东,苏云松.土壤中有效钼测定方法的研究进展[J].理化检验(化学分册),2010,46(12):1485-1487. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201012053.htm
    GB/T 7878—1987,森林土壤有效钼的测定[S].
    LY/T 1259—1999,森林土壤有效钼的测定[S].
    邱海鸥,杨小秋,周延彪,汤志勇.土壤中钼的形态分析方法研究[J].安全与环境工程,2002,9(4):6-7. http://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ200204001.htm
    苏启英,张健康,袁宇,杨妍虹,苏子奇.石墨炉原子吸收光谱法测定土壤中有效钼[J].理化检验(化学分册),2009,45(3): 359,361. http://www.cnki.com.cn/Article/CJFDTOTAL-PXJY200304019.htm
    孙朝阳,贺颖婷,王雯妮.端视电感耦合等离子体发射光谱法测定土壤中有效钼[J].岩矿测试,2010,29(3):267-270. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201003014.htm
    岩石矿物分析编委会.岩石矿物分析(第四版 第四分册)[M].北京:地质出版社,2011:891-892.
    李力争,吴赫,韩张雄,王龙山,陶秋丽.电感耦合等离子体-质谱法测定土壤中的有效钼[J].光谱实验室,2012,29(4):2282-2285. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201204106.htm
    中国地质调查局.DD2005-03,生态地球化学评价样品分析技术要求(试行)[S].
    NY/T 1121.9—2006,土壤有效钼的测定[S].
    李锡坤,李鉴伦,洪翔,冯超,何平.酸性土壤中20种元素有效态浸提体系浅析[J].岩矿测试, 2001,20(3):167-172. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200103001.htm
    钱玥,许洪祥.土壤中有效钼的快速测定[J].黑龙江国土资源,2006(11):42-44. http://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200203029.htm
    付爱瑞,肖凡,罗治定,查晓康,孙连伟.氢氧化锰共沉淀分离-催化极谱法测定土壤中有效钼[J].理化检验(化学分册),2012,48(4): 417-419. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201204014.htm
    徐俊样,朱其清.土壤中有效相的极谱(催化波)测定方法[J].土壤学报,1983,20(2): 197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198302008.htm
    戴自强.土壤中有效相的示波极谱测定[J].土壤学报,1986,23(1): 82-88. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198601009.htm
    许庆福,王卿.催化极谱法测定土壤中有效钼方法的改进[J].理化检验(化学分册),2004,40(3):173,175. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200403020.htm
    万耀星,刘雄德,李正艳.土壤有效钼及植物全钼的示波极谱测定[J].土壤通报,1988,19(1):43-46. http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB198801017.htm
    [英]汤普森M,沃尔什J N.ICP光谱分析指南[M].北京:冶金工业出版社,1983:246-247.
    叶家瑜,江宝林.区域地球化学勘查样品的分析方法[M].北京:地质出版社,2004:372.

Catalog

    Article views (979) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return