• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
LI Fei,CHEN Yue,ZHOU Guoyan,et al. Study on Mechanism of Synergistic Effect of pH and Dissolved Organic Matter in Water on Photochemical Transformation Kinetics of Antibiotics[J]. Rock and Mineral Analysis,2025,x(x):1−14. DOI: 10.15898/j.ykcs.202502100018
Citation: LI Fei,CHEN Yue,ZHOU Guoyan,et al. Study on Mechanism of Synergistic Effect of pH and Dissolved Organic Matter in Water on Photochemical Transformation Kinetics of Antibiotics[J]. Rock and Mineral Analysis,2025,x(x):1−14. DOI: 10.15898/j.ykcs.202502100018

Study on Mechanism of Synergistic Effect of pH and Dissolved Organic Matter in Water on Photochemical Transformation Kinetics of Antibiotics

More Information
  • Received Date: February 09, 2025
  • Revised Date: March 02, 2025
  • Accepted Date: March 06, 2025
  • Available Online: March 20, 2025
  • HIGHLIGHTS
    (1) pH affects the occurrence form of NOR and CIP to directly influence their photochemical transformation, which is the fastest when the two antibiotics exist in the form of zwitterion (pH=9.0).
    (2) The effect of DOM on the photochemical transformation kinetics of antibiotics was deeply discussed by introducing the dissociable and non-dissociable small molecular analogues of DOM to reveal the key role of DOM characteristics in the photochemical transformation of contaminants.
    (3) pH indirectly affects the photochemical transformation of NOR and CIP by affecting the formation of DOM photosensitized PPRIs, during which the promoting effect of 1O2, •OH and 3DOM* on the photochemical transformation of antibiotics decreases in turn and the contribution of PPRIs reduces with the increase of pH.

    pH and dissolved organic matter (DOM) are important for photochemical transformation of antibiotics in water, yet their synergistic mechanism remains unclear. In the study, through photochemical simulation experiments and high performance liquid chromatography (HPLC), the synergistic effect of pH and DOM on the photochemical transformation kinetics of antibiotics was studied, and the molecular mechanism was elucidated by exploring how different pH values influenced quantum yields of 3DOM*, 1O2 and •OH generated by photosensitization of DOM and its small molecule analogues. As a result, pH, which influences occurrence forms of NOR and CIP, directly affects their photochemical transformation, and that of the two antibiotics is the fastest in the form of zwitterion (pH=9.0), consistent with previous results. 1O2 and •OH play the most significant role in promoting the photochemical transformation of antibiotics, with a contribution rate of 36.50% and 12.58% respectively, while the contribution of PPRIs decreases as pH increases, with a contribution rate of 29.17% at pH=5.0 and 16.00% at pH=7.0. The photophysical properties and functional groups can affect quantum yields of PPRIs, and pH, by influencing the dissociation degree and the redox active functional groups of DOM, changes quantum yields and indirectly impacts the photochemical transformation of antibiotics.

  • [1]
    张怡晅, 庞锐, 任源鑫, 等. 不同来源有色溶解性有机物光化学/微生物降解过程[J]. 湖泊科学, 2022, 34(5): 1550−1561. doi: 10.18307/2022.0511

    Zhang Y Y, Pang R, Ren Y X, et al. Photochemical and microbial alteration of chromophoric dissolved organic matter (CDOM) in aquatic ecosystems associated with different sources[J]. Journal of Lake Sciences, 2022, 34(5): 1550−1561. doi: 10.18307/2022.0511
    [2]
    LI L W, Cao X X, Ren Y Y, et al. Effects of acid mine drainage on photochemical and biological degradation of dissolved organic matter in karst river water[J]. Journal of Environmental Sciences, 2024, 135: 26−38. doi: 10.1016/j.jes.2022.12.012
    [3]
    Lu J X, Ji Y F, Lu J H, et al. Fluoroquinolone antibiotics sensitized photodegradation of isoproturon[J]. Water Research, 2021, 198: 117136. doi: 10.1016/j.watres.2021.117136
    [4]
    曹文庚, 王妍妍, 张亚南, 等. 含微塑料地下水的污染现状、环境风险及其发展趋势[J]. 中国地质, 2024, 51(6): 1895−1916. doi: 10.12029/gc20231028001

    Cao W G, Wang Y Y, Zhang Y N, et al. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. Geology in China, 2024, 51(6): 1895−1916. doi: 10.12029/gc20231028001
    [5]
    Boreen A L, Arnold W A, Mcneill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups[J]. Environmental Science & Technology, 2004, 38(14): 3933−3940. doi: 10.1021/es0353053
    [6]
    Jin X, Xu H Z, Qiu S S, et al. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2017, 332: 224−231.
    [7]
    Liu S K, Cui Z G, Qu K M, et al. Effect of the molecular weight of DOM on the indirect photodegradation of fluoroquinolone antibiotics[J]. Journal of Environmental Management, 2023, 348: 119192. doi: 10.1016/j.jenvman.2023.119192
    [8]
    Li Y J, Wei X X, Chen J W, et al. Photodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy[J]. Journal of Hazardous Materials, 2015, 290: 9−15. doi: 10.1016/j.jhazmat.2015.02.040
    [9]
    Wang Z X, Zhai Y B, Xu M, et al. The impact of dissolved organic matter on the photodegradation of tetracycline in the presence of microplastics[J]. Chemosphere, 2024, 349: 140784. doi: 10.1016/j.chemosphere.2023.140784
    [10]
    吕宝玲, 李威, 于筱莉, 等. 溶解性有机质对罗红霉素光降解的影响研究[J]. 环境科学学报, 2019, 39(3): 747−754. doi: 10.13671/j.hjkxxb.2018.0409

    Lyu B L, Li W, Yu X L, et al. Effect of dissolved organic matter on the photodegradation of roxithromycin[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 747−754. doi: 10.13671/j.hjkxxb.2018.0409
    [11]
    徐秀娟, 吕宝玲, 许婷婷, 等. UV/H2O2氧化降解克拉霉素的反应动力学及影响因素[J]. 环境科学学报, 2017, 37(9): 3419−3426. doi: 10.13671/j.hjkxxb.2017.0166

    Xu X J, Lyu B L, Xu T T, et al. Degradation of clarithromycin by UV/H2O2 process: reaction kinetics and impact factors[J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3419−3426. doi: 10.13671/j.hjkxxb.2017.0166
    [12]
    Du Y X, Chen H, Zhang Y Y, et al. Photodegradation of gallic acid under UV irradiation: Insights regarding the pH effect on direct photolysis and the ROS oxidation-sensitized process of DOM[J]. Chemosphere, 2014, 99: 254−260. doi: 10.1016/j.chemosphere.2013.10.093
    [13]
    Ge L, Chen J W, Qiao X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: Mechanism and kinetics[J]. Environmental Science & Technology, 2009, 43(9): 3101−3107. doi: 10.1021/es8031727
    [14]
    曹文庚, 王妍妍, 张栋, 等. 工业废水去除重金属技术的研究现状与进展[J]. 中国地质, 2023, 50(3): 756−776. doi: 10.12029/gc20221128002

    Cao W G, Wang Y Y, Zhang D, et al. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 2023, 50(3): 756−776. doi: 10.12029/gc20221128002
    [15]
    Yang X, Rosario-Ortiz F L, Lei Y, et al. Multiple roles of dissolved organic matter in advanced oxidation processes[J]. Environmental Science & Technology, 2022, 56(16): 11111−11131. doi: 10.1021/acs.est.2c01017
    [16]
    刘砚弘, 李威, 韩建刚. Fe(Ⅲ)对不同来源溶解性有机质的光化学活性的影响[J]. 农业环境科学学报, 2019, 38(11): 2563−2572. doi: 10.11654/jaes.2019-0411

    Liu Y H, Li W, Han J G. Effect of Fe(Ⅲ) on the photochemical activity of dissolved organic matter from different sources[J]. Acta Scientiae Circumstantiae, 2019, 38(11): 2563−2572. doi: 10.11654/jaes.2019-0411
    [17]
    于莉莉, 钟晔, 孙福红, 等. pH值对滇池水体溶解性有机质(DOM)光降解作用的影响[J]. 光谱学与光谱分析, 2019, 39(8): 2533−2539. doi: 10.3964/j.issn.1000-0593(2019)08-2533-07

    Yu L L, Zhong Y, Sun F H, et al. Effects of pH values on the photo-degradation of dissolved organic matter (DOM) from Dianchi Lake[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2533−2539. doi: 10.3964/j.issn.1000-0593(2019)08-2533-07
    [18]
    马哲, 王杰琼, 陈景文, 等. pH对不同来源溶解性有机质光致生成活性物种量子产率的影响[J]. 环境化学, 2017, 36(9): 1889−1895. doi: 10.7524/j.issn.0254-6108.2017012301

    Ma Z, Wang J Q, Chen J W, et al. Effect of pH on the quantum yield of reactive photo-induced species generated in different sources of DOM[J]. Environmental Chemistry, 2017, 36(9): 1889−1895. doi: 10.7524/j.issn.0254-6108.2017012301
    [19]
    Dalrymple R M, Carfangno A K, Sharpless C M. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide[J]. Environmental Science & Technology, 2010, 44(15): 5824−5829. doi: 10.1021/es101005u
    [20]
    Bodhipaksha L C, Sharpless C M, Chin Y P, et al. Triplet photochemistry of effluent and natural organic matter in whole water and isolates from effluent-receiving rivers[J]. Environmental Science & Technology, 2015, 49(6): 3453−3463. doi: 10.1021/es505081w
    [21]
    Haag W R, Hoigné J. Singlet oxygen in surface waters. 3. photochemical formation and steady-state concentrations in various types of waters[J]. Environmental Science & Technology, 1986, 20(4): 341−348. doi: 10.1021/es00146a005
    [22]
    Carena L, Minella M, Vione D, et al. Phototransformation of the herbicide propanil in paddy field water[J]. Environmental Science & Technology, 2017, 51(5): 2695−2704. doi: 10.1021/acs.est.6b05053
    [23]
    Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12): 2874−2890. doi: 10.1016/j.watres.2004.03.017
    [24]
    Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin[J]. Environmental Science & Technology, 2013, 47(9): 4284−4290. doi: 10.1021/es400425b
    [25]
    Guo Y H, Peng B, Rui O Y, et al. Recent advances in the role of dissolved organic matter during antibiotics photodegradation in the aquatic environment[J]. Science of the Total Environment, 2024, 916: 170101. doi: 10.1016/j.scitotenv.2024.170101
    [26]
    Shi Z Q, Wang P, Peng L F, et al. Kinetics of heavy metal dissociation from natural organic matter: roles of the carboxylic and phenolic sites[J]. Environmental Science & Technology, 2016, 50(19): 10476−10484. doi: 10.1021/acs.est.6b01809
    [27]
    刘璐, 栾日坚, 沈秋岑, 等. 新污染物在含溶解有机物水体中光降解行为研究进展[J]. 环境化学, 2024, 43(5): 1429−1444. doi: 10.7524/j.issn.0254-6108.2022101702

    Liu L, Luan R J, Shen Q C, et al. Research progress on photodegradation behavior of emerging pollutants in water containing dissolved organic matter[J]. Environmental Chemistry, 2024, 43(5): 1429−1444. doi: 10.7524/j.issn.0254-6108.2022101702
    [28]
    杜超, 程德义, 代静玉, 等. 不同来源溶解性有机质在光辐射下产生活性氧基团能力的差异[J]. 环境科学学报, 2019, 39(7): 2279−2287. doi: 10.13671/j.hjkxxb.2019.0094

    Du C, Cheng D Y, Dai J Y, et al. Differences in the ability of dissolved organic matter from different sources to produce reactive oxygen species under light irradiation[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2279−2287. doi: 10.13671/j.hjkxxb.2019.0094
    [29]
    贾炜辰. 溶解性有机质解离特征对生成光致活性氧物种的影响[D]. 南京: 南京农业大学, 2021: 25−26.

    Jia W C. Effect of dissociation characteristics of dissolved organic matter on the formation of photoactive oxygen species[D]. Nanjing: Nanjing Agricultural University, 2021: 25−26.
    [30]
    Zhou H X, Lian L S, Yan S W, et al. Insights into the photo-induced formation of reactive from effluent organic matter: The role of chemical constituents[J]. Water Research, 2017, 112: 120−128. doi: 10.1016/j.watres.2017.01.048
    [31]
    赵健辰. 溶解性有机质光致生成活性物种机理及量子产率的定量构效关系模型研究[D]. 长春: 东北师范大学, 2020: 60−61.

    Zhao J C. Photochemical generation mechanisms and quantum yield quantitative structure-activity relationship models of reactive species from dissolved organic matter[D]. Changchun: Northeast Normal University, 2020: 60−61.

Catalog

    Article views (13) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return