Citation: | TAN Xiaoxuan,GAN Tingting,YIN Gaofang,et al. Research Progress and Application Status of Biological Toxicity Detection Methods in Water Quality[J]. Rock and Mineral Analysis,2025,x(x):1−19. DOI: 10.15898/j.ykcs.202412110256 |
Faced with increasingly serious water pollution problems, water quality biotoxicity testing has become an important means of water quality status investigation and water environment safety supervision because it can reflect the toxic effects of pollutants on aquatic organisms in an effect-oriented manner. In view of this, based on the domestic and foreign literature on water quality biotoxicity testing in recent years, this paper systematically summarizes the existing water quality biotoxicity testing methods, combs the toxicity response indicators and toxicity testing principles used in different testing methods, compares the characteristics of different testing methods, and analyzes the development status of existing testing methods. At present, water quality biotoxicity detection methods based on different tested organisms (fish, fleas, luminescent fungi, algae) have been widely used in toxicity analysis of typical environmental pollutants such as heavy metals and pesticides, and in actual water body toxicity detection and evaluation. In the future, developing a multi-indicator water quality biotoxicity detection and evaluation method based on multi-level aquatic organisms, establishing a new comprehensive characterization and evaluation method of water quality toxicity that integrates the apparent toxicity and potential toxicity of water bodies, and corresponding toxicity grading standards will be the key development points and difficulties of water quality biological toxicity detection research direction.
[1] |
Masoner J R, Kolpin D W, Cozzarelli I M, et al. Contaminant exposure and transport from three potential reuse waters within a single watershed[J]. Environmental Science & Technology, 2023, 57(3): 1353−1365. doi: 10.1021/acs.est.2c07372
|
[2] |
Cheng S, Wu Y P, Young T R, et al. Rapid determination of trace haloacetic acids in water and wastewater using non-suppressed ion chromato-graphy with electrospray ionization-tandem mass spectrometry[J]. Science of the Total Environment, 2021, 754: 142297. doi: 10.1016/j.scitotenv.2020.142297
|
[3] |
Alexandrou L D, Bowen C, Jones O A H. Fast analysis of multiple haloacetic acids and nitrosamines in recycled and environmental waters using liquid chromatography-mass spectrometry with positive-negative switching and multiple reaction monitoring[J]. Analytical Methods, 2019, 11(30): 3793−3799. doi: 10.1039/c9ay01276a
|
[4] |
Zhou Z F, Lu J L, Wang J Y, et al. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 234: 118250. doi: 10.1016/j.saa.2020.118250
|
[5] |
Liu Z H, Shangguan Y Y, Zhu P L, et al. Developmental toxicity of glyphosate on embryo-larval zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113493. doi: 10.1016/j.ecoenv.2022.113493
|
[6] |
Fan W H, Zhang Y, Liu S, et al. Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water[J]. Journal of Hazardous Materials, 2020, 389: 122155. doi: 10.1016/j.jhazmat.2020.122155
|
[7] |
dos Reis L L, de Goncalves Alho L, de Abreu C B, et al. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111628. doi: 10.1016/j.ecoenv.2020.111628
|
[8] |
Chen F, Wu L G, Xiao X Y, et al. Mixture toxicity of zinc oxide nanoparticle and chemicals with different mode of action upon Vibrio fischeri[J]. Environmental Sciences Europe, 2020, 32(1): 41. doi: 10.1186/s12302-020-00320-x
|
[9] |
朱爱萍, 陈建耀, 高磊, 等. 北江上游水环境重金属污染及生态毒性的时空变化[J]. 环境科学学报, 2015, 35(8): 2487−2496. doi: 10.13671/j.hjkxxb.2014.0984
Zhu A P, Chen J Y, Gao L, et al. Spatial and temporal variation of heavy metals and their association with ecotoxicity in the upper reaches of Wengjiang River in Beijiang Basin[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2487−2496. doi: 10.13671/j.hjkxxb.2014.0984
|
[10] |
Zhang J, Zhang Y B, Liu W, et al. Evaluation of removal efficiency for acute toxicity and genotoxicity on zebrafish in anoxic-oxic process from selected municipal wastewater treatment plants[J]. Chemosphere, 2013, 90(11): 2662−2666. doi: 10.1016/j.chemosphere.2012.11.043
|
[11] |
宋张杨, 韦昊, 魏玥, 等. 发光细菌法在煤化工废污水急性毒性评价中的应用[J]. 工业水处理, 2022, 42(1): 158−162. doi: 10.19965/j.cnki.iwt.2021-0434
Song Z Y, Wei H, Wei Y, et al. Application of bioluminescent bacteria test on evaluating toxicity of coal chemical enterprise wastewater[J]. Industrial Water Treatment, 2022, 42(1): 158−162. doi: 10.19965/j.cnki.iwt.2021-0434
|
[12] |
武毛妮, 葛媛, 朱艳芳. 生活污水的生物毒性检测及成因分析[J]. 环境科学与技术, 2021, 44(3): 130−134. doi: 10.19672/j.cnki.1003-6504.2021.03.017
Wu M N, Ge Y, Zhu Y F. Biotoxicity test and cause analysis in domestic wastewater[J]. Environmental Science & Technology, 2021, 44(3): 130−134. doi: 10.19672/j.cnki.1003-6504.2021.03.017
|
[13] |
薛柯, 薛银刚, 许霞, 等. 厌氧-缺氧-好氧处理工艺的污水处理厂进出水的毒性评价[J]. 中国环境监测, 2020, 36(5): 121−129. doi: 10.19316/j.issn.1002-6002.2020.05.16
Xue K, Xue Y G, Xu X, et al. Toxicity evaluation of influent and effluent from wastewater treatment plant with anaerobic-anoxic-oxic treatment process[J]. Environmental Monitoring in China, 2020, 36(5): 121−129. doi: 10.19316/j.issn.1002-6002.2020.05.16
|
[14] |
杜太峰, 郑树楷, 黄苑妮, 等. 草甘膦对斑马鱼生殖发育的毒性研究进展[J]. 癌变·畸变·突变, 2018, 30(5): 410−412. doi: 10.3969/j.issn.1004-616x.2018.05.017
Du T F, Zheng S K, Huang Y N, et al. Research progress on the toxicity of glyphosate to the reproductive development of Zebrafish[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(5): 410−412. doi: 10.3969/j.issn.1004-616x.2018.05.017
|
[15] |
薛柯, 许霞, 薛银刚, 等. 基于斑马鱼全生命周期毒性测试的研究进展[J]. 生态毒理学报, 2019, 14(5): 83−96. doi: 10.7524/AJE.1673-5897.20181011002
Xue K, Xu X, Xue Y G, et al. Research progress of life-cycle toxicity test of zebrafish[J]. Asian Journal of Ecotoxicology, 2019, 14(5): 83−96. doi: 10.7524/AJE.1673-5897.20181011002
|
[16] |
周旖妮, 王欢, 杨景峰, 等. 过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联[J]. 生态毒理学报, 2022, 17(6): 365−375. doi: 10.7524/AJE.1673-5897.20220207001
Zhou Y N, Wang H, Yang J F, et al. Toxicity of excess selenium-L-methionine on Medaka embryos and its relationship with oxidative stress mechanism[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 365−375. doi: 10.7524/AJE.1673-5897.20220207001
|
[17] |
郝其睿, 张植元, 王鹏, 等. 苯并芘对鲤鱼胆囊的毒性效应及响应机制[J]. 哈尔滨工业大学学报, 2024, 56(6): 34−43. doi: 10.11918/202401092
Hao Q R, Zhang Z Y, Wang P, et al. Toxic effects of benz[a]opyrene on gall bladder of common carp (Cyprinus carpio) and its response mechanism[J]. Journal of Harbin Institute of Technology, 2024, 56(6): 34−43. doi: 10.11918/202401092
|
[18] |
高修歌, 杨丹, 宋昕昊, 等. 硫酸铜和马度米星铵联合暴露对鲫鱼的毒性和效应标记物研究[J]. 生态毒理学报, 2021, 16(5): 285−300. doi: 10.7524/AJE.1673-5897.20200923003
Gao X G, Yang D, Song X H, et al. Toxicity and toxic effect markers of combined exposure of copper sulphate and maduramicin on Carassius auratus[J]. Asian Journal of Ecotoxicology, 2021, 16(5): 285−300. doi: 10.7524/AJE.1673-5897.20200923003
|
[19] |
Pandelides Z, Arblaster J, Conder J. Establishing chronic toxicity effect levels for zebrafish (Danio rerio) exposed to perfluorooctane sulfonate[J]. Environmental Toxicology and Chemistry, 2024, 43(1): 7−18. doi: 10.1002/etc.5768
|
[20] |
Kataba A, Botha T L, Nakayama S M M, et al. Environmentally relevant lead (Pb) water concentration induce toxicity in zebrafish (Danio rerio) larvae[J]. Comparative Biochemistry and Physiology Part C : Toxicology & Pharmacology, 2022, 252: 109215. doi: 10.1016j.cbpc.2021.109215
|
[21] |
Li Y B, Yang X J, Chen Z G, et al. Comparative toxicity of lead (Pb2+), copper (Cu2+), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip[J]. Biomicrofluidics, 2015, 9(2): 024105. doi: 10.1063/1.4913699
|
[22] |
Gao Y, Li A J, Zhang W J, et al. Assessing the toxicity of bisphenol a and its six alternatives on zebrafish embryo/larvae[J]. Aquatic Toxicology, 2022, 246: 106154. doi: 10.1016/j.aquatox.2022.106154
|
[23] |
Gao Y, Yang X, Wang Z Y, et al. Supramolecular nano-encapsulation of anabasine reduced its developmental toxicity in zebrafish[J]. Frontiers in Chemistry, 2020, 8: 134. doi: 10.3389/fchem.2020.00134
|
[24] |
Wang J Z, Liu K C, Mo C L, et al. Nano-titanium nitride causes developmental toxicity in zebrafish through oxidative stress[J]. Drug and Chemical Toxicology, 2022, 45(4): 1660−1669. doi: 10.1080/01480545.2020.1853765
|
[25] |
陈雪怡, 马天驰, 王康, 等. 全氟辛酸通过芳香烃受体介导的氧化应激及细胞凋亡导致斑马鱼幼鱼心脏发育异常 [J]. 环境与职业医学, 2024, 41(12): 1354−1360. doi: 10.11836/JEOM24404
Chen X Y, Ma T C, Wang K, et al. Perfluorooctanoic acid induces abnormal heart development via aryl hydrocarbon receptormediated oxidative stress and apoptosis in zebrafish larvae [J]. Journal of Environmental and Occupational Medicine, 2024, 41(12): 1354−1360. doi: 10.11836/JEOM24404
|
[26] |
王斌杰, 付立斌, 叶昕宇, 等. 芬太尼对斑马鱼幼鱼的心脏和神经毒性及机制[J]. 中国药理学与毒理学杂志, 2023, 37(10): 767−773. doi: 10.3867/j.issn.1000-3002.2023.10.006
Wang B J, Fu L B, Ye X Y, et al. Cardiac and neural toxicity and mechanisms of fentanyl in zebrafish larvae[J]. Chinese Journal of Pharmacology and Toxicology, 2023, 37(10): 767−773. doi: 10.3867/j.issn.1000-3002.2023.10.006
|
[27] |
Wang S H, Han X, Yu T T, et al. Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis[J]. Ecotoxicology and Environmental Safety, 2022, 242: 113870. doi: 10.1016/j.ecoenv.2022.113870
|
[28] |
卯明彩, 孟瑞媛, 李亚梦, 等. 环丙沙星对斑马鱼早期发育阶段的神经毒性研究[J]. 生态毒理学报, 2023, 18(4): 411−420. doi: 10.7524/AJE.1673-5897.20221010001
Mao M C, Meng R Y, Li Y M, et al. Neurotoxicity of ciprofloxacin on early life stages of Danio rerio[J]. Asian Journal of Ecotoxicology, 2023, 18(4): 411−420. doi: 10.7524/AJE.1673-5897.20221010001
|
[29] |
潘睿捷, 黄文平, 张斌, 等. 斑马鱼幼鱼运动行为测试评价饮用水安全[J]. 生态毒理学报, 2016, 11(4): 18−25. doi: 10.7524/AJE.1673-5897.20160308004
Pan R J, Huang W P, Zhang B, et al. Toxicity assessment of drinking water using zebrafish swimming behavior tests[J]. Asian Journal of Ecotoxicology, 2016, 11(4): 18−25. doi: 10.7524/AJE.1673-5897.20160308004
|
[30] |
王晓辉, 金静, 任洪强, 等. 水质生物毒性检测方法研究进展[J]. 河北工业科技, 2007, 24(1): 58−62. doi: 10.3969/j.issn.1008-1534.2007.01.018
Wang X H, Jin J, Ren H Q, et al. Development of biotoxicity testing method on detecting water quality[J]. Hebei Journal of Industrial Science and Technology, 2007, 24(1): 58−62. doi: 10.3969/j.issn.1008-1534.2007.01.018
|
[31] |
陈彦吉, 柳川江, 宋怡彤, 等. 杀虫剂阿维菌素、伊维菌素对斜生栅藻和大型蚤的毒性作用[J]. 生态毒理学报, 2022, 17(6): 434−440. doi: 10.7524/AJE.1673-5897.20211211001
Chen Y J, Liu C J, Song Y T, et al. Toxic effects of avermectin and ivermectin on Scenedesmus obliquus and Daphnia magna[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 434−440. doi: 10.7524/AJE.1673-5897.20211211001
|
[32] |
徐晓平, 李济源, 曹怀礼. 市政污水对大型蚤急性毒性评价研究[J]. 西安文理学院学报(自然科学版), 2017, 20(2): 97−101. doi: 10.3969/j.issn.1008-5564.2017.02.021
Xu X P, Li J Y, Cao H L. Research on evaluation of the acute toxicity of municipal wastewater to Daphnia magna[J]. Journal of Xi’an University (Natural Science Edition), 2017, 20(2): 97−101. doi: 10.3969/j.issn.1008-5564.2017.02.021
|
[33] |
Tinkov O V, Grigorev V Y, Razdolsky A N, et al. Effect of the structural factors of organic compounds on the acute toxicity toward Daphnia magna[J]. Sar and Qsar in Environmental Research, 2020, 31(8): 615−641. doi: 10.1080/1062936x.2020.1791250
|
[34] |
Kühne R, Ebert R U, von der Ohe P C, et al. Read-across prediction of the acute toxicity of organic compounds toward the water flea Daphnia magna[J]. Molecular Informatics, 2013, 32(1): 108−120. doi: 10.1002/minf.201200085
|
[35] |
Cappelli C I, Toropov A A, Toropova A P, et al. Ecosystem ecology: Models for acute toxicity of pesticides towards Daphnia magna[J]. Environmental Toxicology and Pharmacology, 2020, 80: 103459. doi: 10.1016/j.etap.2020.103459
|
[36] |
Xu E G, Cheong R S, Liu L, et al. Primary and secondary plastic particles exhibit limited acute toxicity but chronic effects on Daphnia magna[J]. Environmental Science & Technology, 2020, 54(11): 6859−6868. doi: 10.1021/acs.est.0c00245
|
[37] |
Sakai M. Chronic toxicity tests with Daphnia magna for examination of river water quality[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2001, 36(1): 67−74. doi: 10.1081/pfc-100000917
|
[38] |
Erbe M C L, Ramsdorf W A, Vicari T, et al. Toxicity evaluation of water samples collected near a hospital waste landfill through bioassays of genotoxicity piscine micronucleus test and comet assay in fish Astyanax and ecotoxicity Vibrio fischeri and Daphnia magna[J]. Ecotoxicology, 2011, 20(2): 320−328. doi: 10.1007/s10646-010-0581-1
|
[39] |
李珊, 王潇逸, 刘军, 等. 北京市密云某私采金矿矿洞废水对大型溞的急性毒性研究[J]. 生态毒理学报, 2022, 17(4): 433−440. doi: 10.7524/AJE.1673-5897.20210110001
Li S, Wang X Y, Liu J, et al. Acute toxicity of metallurgical sewage from a private gold mine in Miyun, Beijing on Daphnia magna[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 433−440. doi: 10.7524/AJE.1673-5897.20210110001
|
[40] |
郭鹄飞, 张雪萍, 孙晨, 等. 镉对大型溞心率和摄食能力的影响[J]. 山西农业科学, 2018, 46(4): 568−571. doi: 10.3969/j.issn.1002-2481.2018.04.19
Guo H F, Zhang X P, Sun C, et al. Effect of cadmium on heart rate and feeding behavior in Daphnia magna[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(4): 568−571. doi: 10.3969/j.issn.1002-2481.2018.04.19
|
[41] |
Gao C, Gao L, Duan P F, et al. Evaluating combined toxicity of binary heavy metals to the cyanobacterium Microcystis: A theoretical non-linear combined toxicity assess-ment method[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109809. doi: 10.1016/j.ecoenv.2019.109809
|
[42] |
Sun C, Xu Y F, Hu N T, et al. To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters[J]. Chemosphere, 2020, 244: 125514. doi: 10.1016/j.chemosphere.2019.125514
|
[43] |
Li S X, Chu R Y, Hu D, et al. Combined effects of 17β-estradiol and copper on growth, biochemical characteristics and pollutant removals of freshwater microalgae Scenedesmus dimorphus[J]. Science of the Total Environment, 2020, 730: 138597. doi: 10.1016/j.scitotenv.2020.138597
|
[44] |
Wen J Y, Zou D H. Interactive effects of increasing atmospheric CO2 and copper exposure on the growth and photosynthesis in the young sporophytes of Sargassum fusiforme (Phaeophyta)[J]. Chemosphere, 2021, 269: 129397. doi: 10.1016/j.chemosphere.2020.129397
|
[45] |
Dao L H T, Beardall J. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae[J]. Chemosphere, 2016, 147: 420−429. doi: 10.1016/j.chemosphere.2015.12.117
|
[46] |
Mu W J, Chen Y, Liu Y, et al. Toxicological effects of cadmium and lead on two freshwater diatoms[J]. Environmental Toxicology and Pharmacology, 2018, 59: 152−162. doi: 10.1016/j.etap.2018.03.013
|
[47] |
Chen Z W, Song S F, Wen Y Z, et al. Toxicity of Cu(Ⅱ) to the green alga Chlorella vulgaris: A perspective of photosynthesis and oxidant stress[J]. Environmental Science and Pollution Research, 2016, 23(18): 17910−17918. doi: 10.1007/s11356-016-6997-2
|
[48] |
孙琰晴, 陈亚男, 郝明梅, 等. 无机砷As(Ⅲ、Ⅴ)对牟氏角毛藻生长、叶绿素荧光特性及基因组DNA甲基化水平的影响[J]. 海洋湖沼通报, 2021(1): 85−90. doi: 10.13984/j.cnki.cn37-1141.2021.01.012
Sun Y Q, Chen Y N, Hao M M, et al. Effects of inorganic arsenic As(Ⅲ, Ⅴ)exposure on the growth, chlorophyll fluorescence parameters and genomic DNA methylation of Chaetoceros mulleri[J]. Transactions of Oceanology and Limnology, 2021(1): 85−90. doi: 10.13984/j.cnki.cn37-1141.2021.01.012
|
[49] |
Andosch A, Affenzeller M J, Luetz C, et al. A Fresh-water green alga under cadmium stress: Ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias[J]. Journal of Plant Physiology, 2012, 169(15): 1489−1500. doi: 10.1016/j.jplph.2012.06.002
|
[50] |
Hamed S M, Hassan S H, Selim S, et al. Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses[J]. Environmental Pollution, 2020, 258: 113681. doi: 10.1016/j.envpol.2019.113681
|
[51] |
Wu X Q, Viner-Mozzini Y, Jia Y L, et al. Alkyltrimethylammonium (ATMA) surfactants as cyanocides—effects on photosynthesis and growth of cyanobacteria[J]. Chemosphere, 2021, 274: 129778. doi: 10.1016/j.chemosphere.2021.129778
|
[52] |
Qian L, Qi S Z, Cao F J, et al. Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris[J]. Environmental Pollution, 2018, 242: 171−181. doi: 10.1016/j.envpol.2018.06.055
|
[53] |
Ebenezer V, Ki J S. Quantification of toxic effects of the herbicide metolachlor on marine microalgae Ditylum brightwellii (Bacillariophyceae), Prorocentrum minimum (Dinophyceae), and Tetraselmis suecica (Chlorophyceae)[J]. Journal of Microbiology, 2013, 51(1): 136−139. doi: 10.1007/s12275-013-2114-0
|
[54] |
Bedil B, Cetin A K. Toxicity of four fungicides to the growth and protein amount of Chlorella vulgaris[J]. Fresenius Environmental Bulletin, 2017, 26(2A): 1778−1783.
|
[55] |
Camuel A, Guieysse B, Alcantara C, et al. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU[J]. Ecotoxicology and Environmental Safety, 2017, 140: 141−147. doi: 10.1016/j.ecoenv.2017.02.013
|
[56] |
Nestler H, Groh K J, Schoenenberger R, et al. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2012, 110: 214−224. doi: 10.1016/j.aquatox.2012.01.014
|
[57] |
Qin H W, Chen L F, Lu N, et al. Toxic effects of enrofloxacin on Scenedesmus obliquus[J]. Frontiers of Environmental Science & Engineering, 2012, 6(1): 107−116. doi: 10.1007/s11783-011-0327-1
|
[58] |
Chen X Q, Su L Y, Yin X S, et al. Responses of Chlorella vulgaris exposed to boron: Mechanisms of toxicity assessed by multiple endpoints[J]. Environmental Toxicology and Pharmacology, 2019, 70: 103208. doi: 10.1016/j.etap.2019.103208
|
[59] |
Cai H L, Liang J Y, Ning X A, et al. Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants[J]. Journal of Environmental Sciences, 2020, 91: 199−208. doi: 10.1016/j.jes.2020.01.004
|
[60] |
Laohaprapanon S, Kaczala F, Salomon P S, et al. Wastewater generated during cleaning/washing procedures in a wood-floor industry: Toxicity on the microalgae Desmodesmus subspicatus[J]. Environmental Technology, 2012, 33(21): 2439−2446. doi: 10.1080/09593330.2012.671853
|
[61] |
Chen M, Yin G F, Zhao N J, et al. Rapid and sensitive detection of water toxicity based on photosynthetic inhibition effect[J]. Toxics, 2021, 9(12): 321. doi: 10.3390/toxics9120321
|
[62] |
胡丽, 陈敏, 殷高方, 等. 基于藻类光合作用抑制效应的敌草隆毒性响应参数研究[J]. 光谱学与光谱分析, 2021, 41(5): 1519−1524. doi: 10.3964/j.issn.1000-0593(2021)05-1519-06
Hu L, Chen M, Yin G F, et al. Toxicity response parameters of diaquilone based on photosynthetic inhibition effect of algae[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1519−1524. doi: 10.3964/j.issn.1000-0593(2021)05-1519-06
|
[63] |
Perez P, Beiras R, Fernandez E. Monitoring copper toxicity in natural phytoplankton assemblages: Application of fast repetition rate fluorometry[J]. Ecotoxicology and Environmental Safety, 2010, 73(6): 1292−1303. doi: 10.1016/j.ecoenv.2010.06.008
|
[64] |
Kottuparambil S, Kim Y J, Choi H, et al. A Rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis carter[J]. Aquatic Toxicology, 2014, 155: 9−14. doi: 10.1016/j.aquatox.2014.05.014
|
[65] |
Gan T T, Yin G F, Zhao N J, et al. A sensitive response index selection for rapid assessment of heavy metals toxicity to the photosynthesis of Chlorella pyrenoidosa based on rapid chlorophyll fluorescence induction kinetics[J]. Toxics, 2023, 11(5): 468. doi: 10.3390/toxics11050468
|
[66] |
朱松梅, 方政, 董玉瑛. 3种大环内酯类抗生素对海洋发光菌的毒性作用[J]. 环境监控与预警, 2020, 12(5): 112−116. doi: 10.3969/j.issn.16746732.2020.05.015
Zhu S M, Fang Z, Dong Y Y. Toxicity of three macrolide antibiotics to marine Photobacterium phosphoreum[J]. Environmental Monitoring and Forewarning, 2020, 12(5): 112−116. doi: 10.3969/j.issn.16746732.2020.05.015
|
[67] |
嵇志远, 孟炯, 黄允河. 采用快速毒性测定仪测定水源水和自来水的综合毒性[J]. 净水技术, 2018, 37(9): 73−77,131. doi: 10.15890/j.cnki.jsjs.2018.09.013
Ji Z Y, Meng J, Huang Y H. Determination of comprehensive toxicity of source water and drinking water with rapid toxtracer[J]. Water Purification Technology, 2018, 37(9): 73−77,131. doi: 10.15890/j.cnki.jsjs.2018.09.013
|
[68] |
吴淑杭, 凌云, 赵渝, 等. 生物发光法在农产品安全性检测中的应用前景[J]. 农业环境科学学报, 2006, 25(S1): 421−424. doi: 10.3321/j.issn:1672-2043.2006.z1.097
Wu S H, Ling Y, Zhao Y, et al. Prospects of applying bioluminescence in monitoring agricultural product safety[J]. Journal of Agro-Environment Science, 2006, 25(S1): 421−424. doi: 10.3321/j.issn:1672-2043.2006.z1.097
|
[69] |
刘芸, 易皓, 丘锦荣, 等. 发光菌法检测雨源型河道水及工业废水的生物毒性[J]. 中国给水排水, 2015, 31(10): 113−119. doi: 10.19853/j.zgjsps.1000-4602.2015.10.028
Liu Y, Yi H, Qiu J R, et al. Testing of Toxicity of Rain-Source River Water and Industrial Wastewater by Using Luminescent Bacteria[J]. China Water & Waste Water, 2015, 31(10): 113−119. doi: 10.19853/j.zgjsps.1000-4602.2015.10.028
|
[70] |
Yang M, Li J J, Wu H X. Toxicity Evaluation of Chlorinated Natural Water Using Photobacterium phosphoreum: Implications for Ballast Water Management[J]. Journal of Environmental Management, 2023, 335: 117471. doi: 10.1016/j.jenvman.2023.117471
|
[71] |
Li M, Wang Y Y, Ma L, et al. Dose-effect and Structure-Activity Relationships of Haloquinoline Toxicity Towards Vibrio fischeri[J]. Environmental Science and Pollution Research, 2022, 29(7): 10858−10864. doi: 10.1007/s11356-021-16388-8
|
[72] |
Ma X Y, Wang X C, Ngo H H, et al. Reverse Osmosis Pretreatment Method for Toxicity Assessment of Domestic Wastewater Using Vibrio qinghaiensis sp. -Q67[J]. Ecotoxicology and Environmental Safety, 2013, 97: 248−254. doi: 10.1016/j.ecoenv.2013.08.001
|
[73] |
张颖, 张瑾, 周娜娜, 等. 3种增塑剂对发光菌Q67联合毒性作用定量评估[J]. 生态毒理学报, 2023, 18(3): 465−477. doi: 10.7524/AJE.1673-5897.20221026001
Zhang Y, Zhang J, Zhou N N, et al. Quantitative Evaluation of Combined Toxicity Interactions of Three Plasticizers on Phtobacterium Q67[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 465−477. doi: 10.7524/AJE.1673-5897.20221026001
|
[74] |
Woutersen M, van der Gaag B, Boakye A A, et al. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring [J]. Sensors, 2017, 17(11).
|
[75] |
Meng X, Zhang W Q, Shan B Q. Evaluating the Biotoxicity of Surface Water in a Grassy Lake in North China[J]. Journal of Environmental Sciences, 2021, 102: 316−325. doi: 10.1016/j.jes.2020.09.028
|
[76] |
Yi X W, Gao Z Q, Liu L H, et al. Acute Toxicity Assessment of Drinking Water Source with Luminescent Bacteria: Impact of Environmental Conditions and a Case Study in Luoma Lake, East China[J]. Frontiers of Environmental Science & Engineering, 2020, 14(6): 109. doi: 10.1007/s11783-020-1288-z
|
[77] |
Liu X K, Y. Ma X Y, Dong K, et al. Investigating the Origins of Acute and Long-Term Toxicity Posed by Municipal Wastewater Using Fractionation[J]. Environmental Technology, 2020, 41(18): 2350−2359. doi: 10.1080/09593330.2019.1567602
|
[78] |
Ye Z F, Zhao Q L, Zhang M H, et al. Acute Toxicity Evaluation of Explosive Wastewater by Bacterial Bioluminescence Assays Using a Freshwater Luminescent Bacterium, Vibrio qinghaiensis sp. Nov[J]. Journal of Hazardous Materials, 2011, 186(2-3): 1351−1354. doi: 10.1016/j.jhazmat.2010.12.013
|
[79] |
杨俊杰, 刘瑞浩, 杨子彦, 等. 工业废水水质综合评价研究——基于理化指标和生物毒性分析[J]. 环境保护科学, 2022, 48(3): 76−80. doi: 10.16803/j.cnki.issn.1004-6216.2022.03.012
Yang J J, Liu R H, Yang Z Y, et al. Research on Comprehensive Evaluation of Industrial Wastewater Quality——Based on Physicochemical Indicators and Biological Toxicity Analysis[J]. Environmental Protection Science, 2022, 48(3): 76−80. doi: 10.16803/j.cnki.issn.1004-6216.2022.03.012
|
[80] |
Wang Z Y, Walker G W, Muir D C G, et al. Toward a Global Understanding of Chemical Pollution: a First Comprehensive Analysis of National and Regional Chemical Inventories[J]. Environmental Science & Technology, 2020, 54(5): 2575−2584. doi: 10.1021/acs.est.9b06379
|
[81] |
王佳钰, 王中钰, 陈景文, 等. 环境新污染物治理与化学品环境风险防控的系统工程[J]. 科学通报, 2022, 67(3): 267−277. doi: 10.1360/TB-2021-0422
Wang J Y, Wang Z Y, Chen J W, et al. Environmental Systems Engineering Consideration on Treatment of Emerging Pollutants and Risk Prevention and Control of Chemicals[J]. Chin Sci Bul, 2022, 67(3): 267−277. doi: 10.1360/TB-2021-0422
|
[82] |
葛海虹, 王燕飞, 杨力, 等. 化学物质环境信息调查工作思路探讨[J]. 生态毒理学报, 2022, 17(6): 77−84. doi: 10.7524/AJE.1673-5897.20220224001
Ge H H, Wang Y F, Yang L, et al. Discussion on Working Thoughts of Chemical Substances Environmental Information Investigation[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 77−84. doi: 10.7524/AJE.1673-5897.20220224001
|
[83] |
叶旌, 刘洪英. 美国化学物质数据报告制度的经验和启示[J]. 化工环保, 2017, 37(5): 581−586. doi: 10.3969/j.issn.1006-1878.2017.05.017
Ye J, Liu H Y. Experience and Inspiration of Chemical Data Reporting System Under US Toxic Substances Control Act[J]. Environmental Protection of Chemical Industry, 2017, 37(5): 581−586. doi: 10.3969/j.issn.1006-1878.2017.05.017
|
[84] |
占发旺. 新兴污染物的分类及其检测技术研究进展[J]. 环境科学与技术, 2023, 46(S1): 81−87,101. doi: 10.19672/j.cnki.1003-6504.0975.22.338
Zhan F W. Research Progress on the Classification of Emerging Pollutants and Their Detection Technologies[J]. Environmental Science & Technology, 2023, 46(S1): 81−87,101. doi: 10.19672/j.cnki.1003-6504.0975.22.338
|
[85] |
Naidu R, Espana V A A, Liu Y, et al. Emerging Contaminants in the Environment: Risk-Based Analysis for Better Management[J]. Chemosphere, 2016, 154: 350−357. doi: 10.1016/j.chemosphere.2016.03.068
|
[86] |
Richardson S D, Kimura S Y. Water Analysis: Emerging Contaminants and Current Issues[J]. Analytical Chemistry, 2016, 88(1): 546−582. doi: 10.1021/acs.analchem.5b04493
|
[87] |
Pratap A, Mani F S, Prasad S. Heavy Metals Contamination and Risk Assessment in Sediments of Laucala Bay, Suva, Fiji [J]. Marine Pollution Bulletin, 2020, 156.
|
[88] |
Chen J W, Yuan L, Zhang Y, et al. Risk Assessment of Trace Metal(loid) Pollution in Surface Water of Industrial Areas Along the Huangpu River and Yangtze River Estuary in Shanghai, China [J]. Regional Studies in Marine Science, 2023, 57.
|
[89] |
Traudt E M, Ranville J F, Meyer J S. Effect of Age on Acute Toxicity of Cadmium, Copper, Nickel, and Zinc in Individual-Metal Exposures to Daphnia magna Neonates[J]. Environmental Toxicology and Chemistry, 2017, 36(1): 113−119. doi: 10.1002/etc.3507
|
[90] |
Qu R J, Wang X H, Feng M B, et al. The Toxicity of Cadmium to Three Aquatic Organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) Under Different pH Levels[J]. Ecotoxicology and Environmental Safety, 2013, 95: 83−90. doi: 10.1016/j.ecoenv.2013.05.020
|
[91] |
Mo L Y, Yang Y L, Zhao D N, et al. Time-Dependent Toxicity and Health Effects Mechanism of Cadmium to Three Green Algae[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10974. doi: 10.3390/ijerph191710974
|
[92] |
Gao M Z, Ling N, Tian H Y, et al. Toxicity, Physiological Response, and Biosorption Mechanism of Dunaliella salina to Copper, Lead, and Cadmium[J]. Frontiers in Microbiology, 2024, 15: 1374275. doi: 10.3389/fmicb.2024.1374275
|
[93] |
郐安琪. 重金属Cd2+对五种常见淡水浮游藻类的毒性效应研究 [D]. 武汉: 长江科学院; 2016.
Kuai A Q. Study on the Toxic Effect of Cd2+ to Five Common Freshwater Phytoplankton [D]. Wuhan: Changjiang River Scientific Research Institute, 2016.
|
[94] |
罗紫蝶, 郭少娟, 曾晨, 等. 镉暴露对斑马鱼胚胎发育的毒性效应研究[J]. 环境科学研究, 2022, 35(5): 1315−1322. doi: 10.13198/j.issn.1001-6929.2022.03.02
Luo Z D, Guo S J, Zeng C, et al. Toxic Effects of Cadmium Exposure on Zebrafish Embryo Development[J]. Research of Environmental Sciences, 2022, 35(5): 1315−1322. doi: 10.13198/j.issn.1001-6929.2022.03.02
|
[95] |
杨瑞瑞, 王兰, 孙敏, 等. 急性镉暴露对斑马鱼早期胚胎发育的毒性效应[J]. 山西农业科学, 2019, 47(3): 351−356. doi: 10.3969/j.issn.1002-2481.2019.03.14
Yang R R, Wang L, Sun M, et al. Toxic Effects of Acute Cadmium Exposure on Early Embryonic Development of Zebrafish(Danio rerio)[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(3): 351−356. doi: 10.3969/j.issn.1002-2481.2019.03.14
|
[96] |
Qu R J, Wang X H, Liu Z T, et al. Development of a Model to Predict the Effect of Water Chemistry on the Acute Toxicity of Cadmium to Photobacterium phosphoreum[J]. Journal of Hazardous Materials, 2013, 262: 288−296. doi: 10.1016/j.jhazmat.2013.08.039
|
[97] |
Zhang Z L, Chen Q L, Chen B, et al. Toxic Effects of Pesticides on the Marine Microalga Skeletonema costatum and Their Biological Degradation[J]. Science China Earth Sciences, 2023, 66(3): 663−674. doi: 10.1007/s11430-022-1064-7
|
[98] |
Gao J, Wang F, Jiang W Q, et al. Biodegradation of Chiral Flufiprole in Chlorella pyrenoidosa: Kinetics, Transformation Products, and Toxicity Evaluation[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 1966−1973. doi: 10.1021/acs.jafc.9b05860
|
[99] |
Tien C J, Chen C S. Assessing the Toxicity of Organophosphorous Pesticides to Indigenous Algae with Implication for Their Ecotoxicological Impact to Aquatic Ecosystems[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2012, 47(9): 901−912. doi: 10.1080/03601234.2012.693870
|
[100] |
Sarmah R, Pokhrel H, Ameen R, et al. Comparative Toxicity Analysis of Fenpropathrin with Its Two Commercial Formulations on Developing Zebrafish Embryos[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2023, 23(10): 23405. doi: 10.4194/trjfas23405
|
[101] |
李瑞瑞, 周宁, 吴梦琪, 等. 氯氟醚菊酯对斑马鱼胚胎及仔鱼心脏发育的毒性及氧化损伤作用[J]. 农药学学报, 2024, 26(1): 149−159. doi: 10.16801/j.issn.1008-7303.2023.0102
Li R R, Zhou N, Wu M Q, et al. Toxicity and Oxidative Damage of Meperfluthrin on Cardiac Development of Zebrafish Embryos and Larvae[J]. Chinese Journal of Pesticide Science, 2024, 26(1): 149−159. doi: 10.16801/j.issn.1008-7303.2023.0102
|
[102] |
Sanches A L M, Vieira B H, Reghini M V, et al. Single and Mixture Toxicity of Abamectin and Difenoconazole to Adult Zebrafish (Danio rerio)[J]. Chemosphere, 2017, 188: 582−587. doi: 10.1016/j.chemosphere.2017.09.027
|
[103] |
Park H, Lee J Y, Park S, et al. Developmental Toxicity and Angiogenic Defects of Etoxazole Exposed Zebrafish (Danio rerio) Larvae[J]. Aquatic Toxicology, 2019, 217: 105324. doi: 10.1016/j.aquatox.2019.105324
|
[104] |
Shen W, Yang G, Guo Q, et al. Combined Toxicity Assessment of Myclobutanil and Thiamethoxam to Zebrafish Embryos Employing Multi-Endpoints[J]. Environmental Pollution, 2021, 269: 116116. doi: 10.1016/j.envpol.2020.116116
|
[105] |
Man Y, Sun T, Wu C, et al. Evaluating the Impact of Individual and Combined Toxicity of Imidacloprid, Cycloxaprid, and Tebuconazole on Daphnia magna[J]. Toxics, 2023, 11(5): 428. doi: 10.3390/toxics11050428
|
[106] |
Wang K, Liang Y, Duan M, et al. Chronic Toxicity of Broflanilide in Daphnia magna: Changes in Molting, Behavior, and Gene Expression[J]. Environmental Science and Pollution Research, 2023, 30(19): 54846−54856. doi: 10.1007/s11356-023-26255-3
|
[107] |
Fan L, Zhang X, Wang J, et al. Relationship Between Photolysis Mechanism and Photo-Enhanced Toxicity to Vibrio Fischeri for Neonicotinoids with Cyano-Amidine and Nitroguanidine Structures[J]. Aquatic Toxicology, 2023, 257: 106443. doi: 10.1016/j.aquatox.2023.106443
|
[108] |
Schmidt S, Busch W, Altenburger R, et al. Mixture Toxicity of Water Contaminants—Effect Analysis Using the Zebrafish Embryo Assay (Danio rerio)[J]. Chemosphere, 2016, 152: 503−512. doi: 10.1016/j.chemosphere.2016.03.006
|
[109] |
Zhang Y, Liu M, Liu J, et al. Combined Toxicity of Triclosan, 2,4-Dichloro-phenol and 2,4,6-Trichloro-phenol to Zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2018, 57: 9−18. doi: 10.1016/j.etap.2017.11.006
|
[110] |
Fan Y, Miao W, Lai K, et al. Developmental Toxicity and Inhibition of the Fungicide Hymexazol to Melanin Biosynthesis in Zebrafish Embryos[J]. Pesticide Biochemistry and Physiology, 2018, 147: 139−144. doi: 10.1016/j.pestbp.2017.10.007
|
[111] |
Mendes E J, Mazon S C, Marsaro I B, et al. Investigation on the Mancozeb Toxicity in Adult Zebrafish (Danio rerio)[J]. Journal of Toxicology and Environmental Health—Part A—Current Issues, 2024, 87(15): 616−629. doi: 10.1080/15287394.2024.2352787
|
[112] |
Qi S Z, Chen X F, Liu Y, et al. Comparative Toxicity of Rac- and S-Tebuconazole to Daphnia magna[J]. Journal of Environmental Science and Health Part B: Pesticides Food Contaminants and Agricultural Wastes, 2015, 50(7): 456−462. doi: 10.1080/03601234.2015.1018756
|
[113] |
Hernando M D, Ejerhoon M, Fernández-Alba A R, et al. Combined Toxicity Effects of MTBE and Pesticides Measured with Vibrio fischeri and Daphnia magna Bioassays[J]. Water Research, 2003, 37(17): 4091−4098. doi: 10.1016/s0043-1354(03)00348-8
|
[114] |
蔡卫丹, 刘惠君, 方治国. Rac-及S-异丙甲草胺对2种微藻毒性特征影响研究[J]. 环境科学, 2012, 33(2): 448−453. doi: 10.13227/j.hjkx.2012.02.004
Cai W D, Liu H J, Fang Z G. Toxicity Effects of Rac- and S-Metolachlor on Two Algaes[J]. Environment Science, 2012, 33(2): 448−453. doi: 10.13227/j.hjkx.2012.02.004
|
[115] |
Vidal T, Goncalves A M M, Pardal M A, et al. Assessing the Toxicity of Betanal® on Growth and Sensitiveness of Five Freshwater Planktonic Species[J]. Fresenius Environmental Bulletin, 2009, 18(5): 585−589.
|
[116] |
He H Z, Yu J, Chen G K, et al. Acute Toxicity of Butachlor and Atrazine to Freshwater Green Alga Scenedesmus obliquus and Cladoceran Daphnia carinata[J]. Ecotoxicology and Environmental Safety, 2012, 80: 91−96. doi: 10.1016/j.ecoenv.2012.02.009
|
[117] |
Gatidou G, Stasinakis A S, Iatrou E I. Assessing Single and Joint Toxicity of Three Phenylurea Herbicides Using Lemna minor and Vibrio fischeri Bioassays[J]. Chemosphere, 2015, 119: S69−S74. doi: 10.1016/j.chemosphere.2014.04.030
|
[118] |
Liu S, Deng X, Zhou X, et al. Assessing the Toxicity of Three “inert” Herbicide Safeners Toward Danio rerio: Effects on Embryos Development[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111576. doi: 10.1016/j.ecoenv.2020.111576
|
[119] |
Lee J Y, Park S, Lim W, et al. Picolinafen Exerts Developmental Toxicity via the Suppression of Oxidative Stress and Angiogenesis in Zebrafish Embryos[J]. Pesticide Biochemistry and Physiology, 2021, 171: 104734. doi: 10.1016/j.pestbp.2020.104734
|
[120] |
Hong T, Park H, An G, et al. Ethalfluralin Induces Developmental Toxicity in Zebrafish via Oxidative Stress and Inflammation[J]. Science of the Total Environment, 2023, 854: 158780. doi: 10.1016/j.scitotenv.2022.158780
|
[121] |
Park J, An G, You J, et al. Dimethenamid Promotes Oxidative Stress and Apoptosis Leading to Cardiovascular, Hepatic, and Pancreatic Toxicities in Zebrafish Embryo[J]. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 2023, 273: 109741.
|
[122] |
Zhang W, Yan J, Huang Y, et al. Benoxacor Caused Developmental and Cardiac Toxicity in Zebrafish Larvae[J]. Ecotoxicology and Environmental Safety, 2021, 224: 112696. doi: 10.1016/j.ecoenv.2021.112696
|
[123] |
Wiegand C, Pflugmacher S, Giese M, et al. Uptake, Toxicity, and Effects on Detoxication Enzymes of Atrazine and Trifluoroacetate in Embryos of Zebrafish[J]. Ecotoxicology and Environmental Safety, 2000, 45(2): 122−131. doi: 10.1006/eesa.1999.1845
|
[124] |
Stevanovic M, Gasic S, Pipal M, et al. Toxicity of Clomazone and Its Formulations to Zebrafish Embryos (Danio rerio)[J]. Aquatic Toxicology, 2017, 188: 54−63. doi: 10.1016/j.aquatox.2017.04.007
|
[125] |
Velki M, Di Paolo C, Nelles J, et al. Diuron and Diazinon Alter the Behavior of Zebrafish Embryos and Larvae in the Absence of Acute Toxicity[J]. Chemosphere, 2017, 180: 65−76. doi: 10.1016/j.chemosphere.2017.04.017
|
[126] |
Ralston-Hooper K, Hardy J, Hahn L, et al. Acute and Chronic Toxicity of Atrazine and Its Metabolites Deethylatrazine and Deisopropylatrazine on Aquatic Organisms[J]. Ecotoxicology, 2009, 18(7): 899−905. doi: 10.1007/s10646-009-0351-0
|
[127] |
Herrera J M, Armijos C I, Alcarria D R, et al. Toxicity of Difenoconazole and Atrazine and Their Photodegradation Products on Aquatic Biota: Environmental Implications in Countries Lacking Good Agricultural Practices[J]. Toxics, 2023, 11(3): 213. doi: 10.3390/toxics11030213
|
[128] |
Cuhra M, Traavik T, Bohn T. Clone- and Age-Dependent Toxicity of a Glyphosate Commercial Formulation and Its Active Ingredient in Daphnia magna[J]. Ecotoxicology, 2013, 22(2): 251−262. doi: 10.1007/s10646-012-1021-1
|
[129] |
Yan H, Huang S, Scholz M. Kinetic Processes of Acute Atrazine Toxicity to Brachydanio rerio in the Presence and Absence of Suspended Sediments[J]. Water Air and Soil Pollution, 2015, 226(3): 66. doi: 10.1007/s11270-015-2296-7
|
[130] |
汝少国, 王懿, 张晓娜, 等. 三嗪类除草剂对水生动物的毒性效应及其降解方法研究进展[J]. 中国海洋大学学报(自然科学版), 2022, 52(6): 1−12. doi: 10.16441/ j.cnki.hdxb.20210183
Ru S G, Wang Y, Zhang X N, et al. Toxic Effects of Triazine Herbicides on Aquatic Animals and Their Degradation Method[J]. Periodical of Ocean University of China, 2022, 52(6): 1−12. doi: 10.16441/j.cnki.hdxb.20210183
|
[131] |
Ivantsova E, Konig I, Lopez-Scarim V, et al. Molecular and Behavioral Toxicity Assessment of Tiafenacil, a Novel PPO-Inhibiting Herbicide, in Zebrafish Embryos/Larvae[J]. Environmental Toxicology and Pharmacology, 2023, 98: 104084. doi: 10.1016/j.etap.2023.104084
|
[132] |
Xu C, Tu W, Deng M, et al. Stereoselective Induction of Developmental Toxicity and Immunotoxicity by Acetochlor in the Early Life Stage of Zebrafish[J]. Chemosphere, 2016, 164: 618−626. doi: 10.1016/j.chemosphere.2016.09.004
|
[133] |
Hernando M D, de Vettori S, Martínez Bueno M J, et al. Toxicity Evaluation with Vibrio fischeri Test of Organic Chemicals Used in Aquaculture[J]. Chemosphere, 2007, 68(4): 724−730. doi: 10.1016/j.chemosphere.2006.12.097
|
[134] |
Bettiol C, de Vettori S, Minervini G, et al. Assessment of Phenolic Herbicide Toxicity and Mode of Action by Different Assays[J]. Environmental Science and Pollution Research, 2016, 23(8): 7398−7408. doi: 10.1007/s11356-015-5958-5
|
[135] |
Heisterkamp I, Gartiser S, Schoknecht U, et al. Investigating the Ecotoxicity of Construction Product Eluates as Multicomponent Mixtures[J]. Environmental Sciences Europe, 2023, 35(1): 7. doi: 10.1186/s12302-023-00711-w
|