Citation: | AI Xiaojun,YU Xiaojian,CHEN Zhansheng,et al. Spatial Pattern and Influence Factor Analysis of Soil Organic Matter Based on Geodetector Model: Taking Liaoyang—Anshan Area as an Example[J]. Rock and Mineral Analysis,2025,44(4):1−16. DOI: 10.15898/j.ykcs.202412050251 |
Spatial pattern of organic matter distribution and its influencing factors in the study area can provide decision-making basis for territorial spatial planning. Most previous studies in this area focused on the soil surface, and most of them studied the influence of single factors. Therefore, the characteristics, spatial pattern and multi-factor influence of soil horizontal and vertical organic matter content were studied in this study, and the results showed that: In the study area, organic matter is higher in southeast and lower in northwest, and decreases with increasing depth. Organic matter is positively correlated with total nitrogen, total phosphorus, viscosity and silt content, and negatively correlated with sand content and bulk density. The interaction of any two factors is greater than that of a single factor. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202412050251.
Significance: With the rapid development of industry and urbanization,the increase of land use intensity,soil fertility compared with the second national soil survey,the content of organic matter in the study area showed a decline. Meanwhile,due to irrational farming,the risk of excessive phosphate fertilizer appeared in Haicheng City,and the carbon storage deficit in Tai 'an County was serious (52%),and the risk of degradation of black soil was high. As an important parameter of soil fertility,soil organic matter not only affects the physical,chemical and ecological characteristics of soil,but also directly determines the productivity of soil and the robustness of ecosystem[1-3]. The spatial pattern of organic matter distribution and its influencing factors in the study area can provide decision-making basis for territorial spatial planning.
Existing studies have revealed that soil organic matter is comprehensively affected by altitude,average annual air temperature,soil type,soil parent material,precipitation,land use method,pH value and soil clay content[4-6]. Taking a comprehensive look at the existing studies,the research area studied by the above scholars is cultivated land or forest land,and geostatistical method is still the most common research method[16]. The research area covers various types of cultivated land,forest land and grassland,and extends from the soil surface to the deep layer. The interaction of multiple factors is the key issue to be considered. In view of this,the geographical detector developed by Wang,et al.[17] can reveal the influence of a single independent variable on the dependent variable,and also identify the interaction effect between the two factors. Linear relationship is not needed to prevent collinearity caused by multiple variables. The Q-value index can accurately evaluate the interpretation ability of single or interactive variables of geographic detectors on the spatial differentiation of soil organic matter[18]. Liaoyang—Anshan region is an important part of the old industrial base and grain production base in northeast China. Soil organic matter has a downward trend[28],and its decline has affected soil environment and crop growth,thus affecting regional food security and ecological balance. This study combined geostatistics,correlation analysis and geographic detector model to input more factors that had not been studied in previous studies,such as surface matrix configuration,clay,silt,sand,total nitrogen and total phosphorus content,etc.,to analyze the impact of environmental and human factors on soil organic matter distribution. In order to reveal the internal law of spatial pattern of soil surface and profile organic matter in the study area,promote the rational distribution of agriculture and forestry production and improve the level of land resource management and protection.
Methods: In order to systematically study the internal laws and influencing factors of organic matter distribution in soil surface and profile,soil surface and profile samples from Liaoyang-Anshan area were collected in this paper. Potassium dichromate volumetric method,inductively coupled plasma emission spectrometry and Kaye distillation volumetric method were used to determine the content of soil physical and chemical indexes. The characteristics,spatial pattern and influencing factors of soil organic matter content were investigated based on geostatistics,correlation analysis and GeoDetector model. Technical standards such as the Standard for multi-target regional geochemical Investigation (DZT 0258—2014) and the Standard for Quality Management of Geological and Mineral Laboratory Testing (DZ/T 0130—2006) are strictly implemented. Data processing and data quality control are shown in Table 1 and Table 2.
Data and Result: The research shows that: (1) The soil surface organic matter content in the study area ranged from 1.72 to 48.4g/kg,with an average value of 19.9g/kg and a coefficient of variation of 41.9%,as shown in Table 4. The spatial variation was moderate. The overall spatial pattern showed a gradual decrease from southeast to northwest,and the profile organic matter decreased with increasing depth,as shown in Fig.2 and Fig.3. The decrease of organic matter in profile was related to the decrease of soil oxygen content,root biomass and microbial activity[42]. (2) Soil surface and profile organic matter is positively correlated with total N,total P,clay and silt content,and negatively correlated with sand content and bulk density (p<0.01),as shown in Table 7 and Fig.4,which is determined by the biogeochemical mechanism of organic matter,N and P covariance and the cascade effect of soil parent material and texture[50-51]. (3) The interaction of any two factors was greater than that of a single factor,and the explanatory power of the interaction between total nitrogen and the other 16 factors was above 0.80,as shown in Fig.6. The spatial variation of soil surface organic matter was different,and total nitrogen,rainfall,bulk density and total phosphorus were the leading factors of spatial variation,which were also affected by multiple factors.
[1] |
黎钰鑫, 赵小敏, 郭熙, 等. 南昌市近郊耕层土壤有机质空间格局及其影响因素分析[J]. 江西农业大学学报, 2023, 45(3): 749−758. doi: 10.13836/j.jjau.2023070
Li Y X, Zhao X M, Guo X, et al. Spatial Pattern of Soil Organic Matter in the Suburbs of Nanchang City and Its Influencing Factors[J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(3): 749−758. doi: 10.13836/j.jjau.2023070
|
[2] |
贾鲁净, 杨联安, 冀泳帆, 等. 卫星遥感反演土壤有机质研究进展[J]. 遥感信息, 2023, 38(2): 1−9. doi: 10.20091/j.cnki.1000-3177.2023.02.001
Jia L J, Yang L A, Ji Y F, et al. Review on Inversion of Soil Organic Matter Using Satellite Remote Sensing[J]. Remote Sensing Information, 2023, 38(2): 1−9. doi: 10.20091/j.cnki.1000-3177.2023.02.001
|
[3] |
Almaraz M, Simmonds M, Boudinot F G, et al. Soil Carbon Sequestration in Global Working Lands as a Gateway for Negative Emission Technologies[J]. Global Change Biology, 2023, 29(21): 5988−5998. doi: 10.1111/gcb.16884
|
[4] |
Zhao H J, Luo C, Kong D, et al. Spatial and Temporal Variations in Soil Organic Matter and Their Influencing Factors in the Songnen and Sanjiang Plains of China (1984—2021)[J]. Land, 2024, 9: 1447. doi: 10.3390/land13091447
|
[5] |
Kong D, Chu N, Luo C, et al. Analyzing Spatial Distribution and Influencing Factors of Soil Organic Matter in Cultivated Land of Northeast China: Implications for Black Soil Protection[J]. Land, 2024, 13(7): 1028. doi: 10.3390/land13071028
|
[6] |
Galluzzi G, Plaza C, Priori S, et al. Soil Organic Matter Dynamics and Stability: Climate vs. Time[J]. Science of the Total Environment, 2024, 929: 172441. doi: 10.1016/j.scitotenv.2024.172441
|
[7] |
Zun F L, Hao C L, Hai Y S, et al. Analysis of Soil Organic Matter Influencing Factors in the Huangshui River Basin by Using the Optimal Parameter-based Geographical Detector Model[J]. Geocarto International, 2023, 38(1): 2246935. doi: 10.1080/10106049.2023.2246935
|
[8] |
蒯雁, 苏欣悦, 王晋峰, 等. 大理典型烟区土壤有机质与全氮时空演变特征[J]. 中国农业科技导报, 2023, 25(12): 177−185. doi: 10.13304/j.nykjdb.2023.0054
Kuai Y, Su X Y, Wang J F, et al. Temporal and Spatial Evolution of Soil Organic Matter and Total Nitrogen in Typical Tobacco—Planting Areas of Dali[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 177−185. doi: 10.13304/j.nykjdb.2023.0054
|
[9] |
黄会前, 张慧, 胡震, 等. 贵州山区耕地土壤有机质及pH的空间分布与影响因素研究[J]. 西南农业学报, 2023, 36(11): 2473−2479. doi: 10.16213/j.cnki.scjas.2023.11.019
Huang H Q, Zhang H, Hu Z, et al. Spatial Distribution and Influencing Between Organic Matter and pH of Arable Soil in Mountainous Areas of Guizhou[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2473−2479. doi: 10.16213/j.cnki.scjas.2023.11.019
|
[10] |
孙欣琪, 张蚌蚌, 柴朝卿, 等. 沙地整治下榆林土地利用及土壤有机质时空分异特征[J]. 农业工程学报, 2022, 38(24): 207−217. doi: 10.11975/j.issn.1002-6819.2022.24.023
Sun X Q, Zhang B B, Chai C Q, et al. Spatial-Temporal Characteristics of Land Use and Soil Organic Matter in Yulin Under Sandy Land Remediation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 207−217. doi: 10.11975/j.issn.1002-6819.2022.24.023
|
[11] |
刘尊方, 雷浩川, 雷蕾. 湟水流域土壤有机质和速效磷空间布局分析[J]. 科学技术与工程, 2022, 22(34): 15095−15102.
Liu Z F, Lei H C, Lei L. Analysis on Spatial Distribution of Soil Organic Matter and Available Phosphorus in Huangshui River Basin[J]. Science Technology and Engineering, 2022, 22(34): 15095−15102.
|
[12] |
石光辉, 毛伟, 曾洪玉, 等. 扬州市江都区耕地土壤有机质35年变化特征及其影响因素分析[J]. 扬州大学学报(农业与生命科学版), 2022, 43(6): 44−50. doi: 10.16872/j.cnki.1671-4652.2022.06.006
Shi G H, Mao W, Zeng H Y, et al. Variation Characteristics of Soil Organic Matter and Its Influencing Factors in 35 Years in Jiangdu District of Yangzhou City[J]. Journal of Yangzhou University (Agriculture and Life Science Edition), 2022, 43(6): 44−50. doi: 10.16872/j.cnki.1671-4652.2022.06.006
|
[13] |
申楷慧, 魏识广, 李林, 等. 漓江流域喀斯特森林土壤有机碳空间分布格局及其驱动因子[J]. 环境科学, 2024, 45(1): 323−334. doi: 10.13227/j.hjkx.202211142
Shen K H, Wei S G, Li L, et al. Spatial Distribution Patterns of Soil Organic Carbon in Karst Forests in Lijiang River Basin and Its Driving Factors[J]. Environmental Science, 2024, 45(1): 323−334. doi: 10.13227/j.hjkx.202211142
|
[14] |
张欣, 李梦佳, 刘洪斌, 等. 丘陵区耕地土壤剖面有机质含量分布特征及其影响因素分析[J]. 长江流域资源与环境, 2019, 29(12): 2696−2708. doi: 10.11870/cjlyzyyhj202012013
Zhang X, Li M J, Liu H B, et al. Distribution Characteristics and Influencing Factors of Organic Matter Content in Cultivated Soil in Different Horizons in Hilly Areas[J]. Resources and Environment in the Yangtze Basin, 2019, 29(12): 2696−2708. doi: 10.11870/cjlyzyyhj202012013
|
[15] |
廖宇波, 温良友, 孔祥斌, 等. 近40年大兴区耕地土壤有机质时空变异特征及其影响因素[J]. 土壤通报, 2020, 51(1): 40−49. doi: 10.19336/j.cnki.trtb.2020.01.06
Liao Y B, Wen L Y, Kong X B, et al. Spatio-Temporal Variability and Influencing Factors of Soil Organic Matter in Cultivated Land of Daxing District in Recent 40 Years[J]. Chinese Journal of Soil Science, 2020, 51(1): 40−49. doi: 10.19336/j.cnki.trtb.2020.01.06
|
[16] |
Wu X T, Jiang N, Li A Q, et al. Spatial Distribution Pattern of Soil Organic Matter in the Wind Erosion Region of Northeastern China Based on the Cokriging Method[J]. CATENA, 2025, 248: 108575. doi: 10.1016/j.catena.2024.108575
|
[17] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010
Wang J F, Xu C D. Geodetector: Principle and Prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010
|
[18] |
朱兴林, 司建华, 王军德, 等. 基于地理探测器的洮河流域生态环境质量时空演变及驱动力分析[J]. 水利水电技术, 2025, 56(1): 74−84. doi: 10.13928/j.cnki.wrahe.2025.01.007
Zhu X L, Si J H, Wang J D, et al. Analysi of Spatial and Temporal Evolution of Ecological Environmental Quality and Driving Force in Taohe River Basin Based[J]. Water Resources and Hydropower Engineering, 2025, 56(1): 74−84. doi: 10.13928/j.cnki.wrahe.2025.01.007
|
[19] |
齐杏杏, 高秉博, 潘瑜春, 等. 基于地理探测器的土壤重金属污染影响因素分析[J]. 农业环境科学学报, 2019, 38(11): 2476−2486. doi: 10.11654/jaes.2019-0537
Qi X X, Gao B B, Pan Y C, et al. Influence Factor Analysis of Heavy Metal Pollution in Large-Scale Soil Based on the Geographical Detector[J]. Journal of Agro-Environment Science, 2019, 38(11): 2476−2486. doi: 10.11654/jaes.2019-0537
|
[20] |
袁菊红, 陈拉, 胡绵好. “中四角”绿色水资源利用效率时空分异及其影响因素——基于非期望产出SBM-DEA和地理探测器模型[J]. 生态经济, 2019, 39(9): 138−147.
Yuan J H, Chen L, Hu M H. Spatial-Temporal Differentiation of Green Water Utilization Efficiency and Its Influencing Factors in "Four-City Area in Middle China": Based on SBM-DEA Model with Undesired Outputs and Geograpyical GeoDetector Model[J]. Ecological Economy, 2019, 39(9): 138−147.
|
[21] |
刘莉, 汪丽娜. 基于地理探测器的广东省水资源利用效率影响因素研究[J]. 水电能源科学, 2021, 39(4): 40−43. doi: 10.20040/j.cnki.1000-7709.2021.04.011
Liu L, Wang L N. Study on Influencing Factors of Water Resources Utilization Efficiency in Guangdong Province Based on Geo-Detector Method[J]. Water Resources and Power, 2021, 39(4): 40−43. doi: 10.20040/j.cnki.1000-7709.2021.04.011
|
[22] |
辛培源, 田甜, 张美露, 等. 基于InVEST模型和地理探测器的吉林省生境质量变化及驱动因素评估[J]. 应用生态学报, 2024, 35(10): 2853−2860. doi: 10.13287/j.1001-9332.202410.026
Xin P Y, Tian T, Zhang M L, et al. Assessment of Habitat Quality Changes and Driving Factors in Jilin Province Based on InVEST Model and Geodetector[J]. Chinese Journal of Applied Ecology, 2024, 35(10): 2853−2860. doi: 10.13287/j.1001-9332.202410.026
|
[23] |
李斯林, 王贺封, 刘佳, 等. 冀南非露天煤矿土壤重金属风险评价与影响因素分析[J]. 岩矿测试, 2024, 43(5): 769−782. doi: 10.15898/j.ykcs.202401180006
Li S L, Wang H F, Liu J, et al. Risk Assessment and Influencing Factors Analysis of Heavy Metals in Soil of Non-Surface Coal Mines in Southern Hebei Province[J]. Rock and Mineral Analysis, 2024, 43(5): 769−782. doi: 10.15898/j.ykcs.202401180006
|
[24] |
龚仓, 王亮, 王顺祥, 等. 四川成都市唐昌镇土壤硒分布特征及影响因素[J]. 岩矿测试, 2022, 41(3): 437−450. doi: 10.15898/j.cnki.11-2131/td.202111180179
Gong C, Wang L, Wang S X, et al. Distribution Characteristics of Soil Selenium and Its Influencing Factors in Tangchang Town of Chengdu Ctiy, Sichuan Province[J]. Rock and Mineral Analysis, 2022, 41(3): 437−450. doi: 10.15898/j.cnki.11-2131/td.202111180179
|
[25] |
王洋, 冯卓亚, 许丽, 等. 塔里木河流域生境质量与土地利用变化响应及驱动力[J]. 干旱区研究, 2024, 41(12): 2132−2142. doi: 10.13866/j.azr.2024.12.14
Wang Y, Feng Z Y, Xu L, et al. Response and Influencing Factors of Habitat Quality and Land Use Change in the Tarim River Basin[J]. Arid Zone Research, 2024, 41(12): 2132−2142. doi: 10.13866/j.azr.2024.12.14
|
[26] |
张湘雪, 程昌秀, 徐成东, 等. 基于贝叶斯时空层次模型(BSTHM)和地理探测器法(GeoDetector)对细菌性痢疾的环境风险评估[J]. 环境化学, 2022, 41(7): 2193−2201. doi: 10.7524/j.issn.0254-6108.2021110901
Zhang X X, Cheng C X, Xu C D, et al. Environmental Risk Assessment of Bacillary Dysentery Based on BSTHM and GeoDetector[J]. Environmental Chemistry, 2022, 41(7): 2193−2201. doi: 10.7524/j.issn.0254-6108.2021110901
|
[27] |
Teixeira F, Basch G, Alaoui A, et al. Manuring Effects on Visual Soil Quality Indicators and Soil Organic Matter Content in Different Pedoclimatic Zones in Europe and China[J]. Soil & Tillage Research, 2021, 212: 105033. doi: 10.1016/J.STILL.2021.105033
|
[28] |
汪春鹏, 尤建功, 孙浩, 等. 辽阳市土壤重金属含量特征及潜在风险评价[J]. 地质通报, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010
Wang C P, You J G, Sun H, et al. Characteristics and Potential Risk Assessment of Heavy Metal Contents in Urban Soil, Liaoyang City[J]. Geological Bulletin of China, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010
|
[29] |
孙才志, 李秀明. 基于ArcGIS的下辽河平原地下水功能评价[J]. 地理科学, 2013, 33(2): 174−180. doi: 10.13249/j.cnki.sgs.2013.02.015
Sun C Z, Li X M. Groundwater Function Assessment Based on ArcGIS in the Lower Reach of the Liaohe River Plain[J]. Science Geographica Sinica, 2013, 33(2): 174−180. doi: 10.13249/j.cnki.sgs.2013.02.015
|
[30] |
边振兴, 蒋文浩, 陆璐, 等. 下辽河平原区典型县域非耕作土地对作物干旱减缓效应[J]. 土壤通报, 2019, 51(1): 89−98. doi: 10.19336/j.cnki.trtb.2020.01.12
Bian Z X, Jiang W H, Lu L, et al. Effects of Non-Cultivated Land on Drought Mitigation in Typical Counties of Lower Liaohe Plain[J]. Chinese Journal of Soil Science, 2019, 51(1): 89−98. doi: 10.19336/j.cnki.trtb.2020.01.12
|
[31] |
艾晓军, 陈占生, 侯红星, 等. 辽阳—丹东地区土壤重金属分布特征与源解析[J]. 岩矿测试, 2024, 43(5): 755−768. doi: 10.15898/j.ykcs.202404070080
Ai X J, Chen Z S, Hou H X, et al. Distribution Characteristics and Source Analysis of Soil Heavy Metals in the Liaoyang—Dandong Region[J]. Rock and Mineral Analysis, 2024, 43(5): 755−768. doi: 10.15898/j.ykcs.202404070080
|
[32] |
汪景宽, 徐香茹, 裴久渤, 等. 东北黑土地区耕地质量现状与面临的机遇和挑战[J]. 土壤通报, 2019, 52(3): 695−701. doi: 10.19336/j.cnki.trtb.2021011103
Wang J K, Xu X R, Pei J B, et al. Current Situations of Black Soil Quality and Facing Opportunities and Challenges in Northeast China[J]. Chinese Journal of Soil Science, 2019, 52(3): 695−701. doi: 10.19336/j.cnki.trtb.2021011103
|
[33] |
刘玖芬, 赵晓峰, 侯红星, 等. 地表基质调查分层及分层测试指标体系设计与构建[J]. 岩矿测试, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157
Liu J F, Zhao X F, Hou H X, et al. Exploration on the Stratification of the Ground Substrate Survey and the Design and Construction of Its Testing Indicator System[J]. Rock and Mineral Analysis, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157
|
[34] |
徐吉, 信自成, 兰模, 等. 冶金机理与贝叶斯优化XGBoost融合的VD炉精炼终点钢液温度预测[J]. 工程科学与技术, 2024, 56(6): 63−72. doi: 10.12454/j.jsuese.202400014
Xu J, Xin Z C, Lan M, et al. Predicting Endpoint Temperature of Molten Steel in VD Furnace Refining Process Using Metallurgical Mechanism and Bayesian Optimization XGBoost[J]. Advanced Engineering Sciences, 2024, 56(6): 63−72. doi: 10.12454/j.jsuese.202400014
|
[35] |
杨宋琪, 高兴亮, 王丽娟, 等. 西北干旱区典型水库浮游植物群落结构特征及驱动因子[J]. 湖泊科学, 2021, 33(2): 377−387. doi: 10.18307/2021.0207
Yang S Q, Gao X L, Wang L J, et al. Phytoplankton Community Structure and Driving Factors in Typical Reservoirs of Arid Region of Northwest China[J]. Journal of Lake Sciences, 2021, 33(2): 377−387. doi: 10.18307/2021.0207
|
[36] |
陈孟耀, 刘啸歌, 黄达沧, 等. 基于地理探测器模型的福建省耕地土壤有机碳影响因素研究[J]. 福建农业学报, 2024, 33(6): 738−751. doi: 10.19303/j.issn.1008-0384.2024.06.013
Chen M Y, Liu X G, Huang D C, et al. Factors Affecting Soil Organic Carbon on Farmland in Fujian Analyzed by Geodetector Model[J]. Fujian Journal of Agriculture Sciences, 2024, 33(6): 738−751. doi: 10.19303/j.issn.1008-0384.2024.06.013
|
[37] |
任向宁, 董玉祥. 基于地理探测器的区域土壤耕层有机碳含量多元复合模型构建——以珠三角核心区为例[J]. 热带地理, 2018, 38(4): 546−556. doi: 10.13284/j.cnki.rddl.003063
Ren X N, Dong Y X. Construction of Multivariate Composite Calculation Model of Soil Organic Carbon Content in Plough Horizon Based on Geodetector[J]. Tropical Geography, 2018, 38(4): 546−556. doi: 10.13284/j.cnki.rddl.003063
|
[38] |
杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047−1056. doi: 10.11766/trxb201703180633
Yang F, Xu Y, Cui Y, et al. Variation of Soil Organic Matter Content in Croplands of China over the Last Three Decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047−1056. doi: 10.11766/trxb201703180633
|
[39] |
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 81−83.
Chi Q H, Yan M C. Handbook of Applied Geochemical Element Abundance Data[M]. Beijing: Geological Publishing House, 2007: 81−83.
|
[40] |
白树彬, 裴久渤, 李双异, 等. 30年来辽宁省耕地土壤有机质与pH时空动态变化[J]. 土壤通报, 2016, 47(3): 636−644. doi: 10.19336/j.cnki.trtb.2016.03.20
Bai S B, Pei J B, Li S Y, et al. Temporal and Spatial Dynamics of Soil Organic Matter and pH in Cultivated Land of Liaoning Province During the Past 30 Years[J]. Chinese Journal Soil Science, 2016, 47(3): 636−644. doi: 10.19336/j.cnki.trtb.2016.03.20
|
[41] |
蒙雯洋, 饶良懿. 砒砂岩覆土区典型小流域土壤可蚀性K值空间变异特征[J]. 水土保持研究, 2024, 31(3): 10−19. doi: 10.13869/j.cnki.rswc.2024.03.017
Meng W Y, Rao L Y. Spatial Variability of Soil Erodibility Factor K of the Typical Small Watershed in the Soil Covered Area of Pisha Sandstone Region[J]. Research of Soil and Water Conservation, 2024, 31(3): 10−19. doi: 10.13869/j.cnki.rswc.2024.03.017
|
[42] |
Liebmann P, Wordell-Dietrich P, Kalbitz K, et al. Relevance of Aboveground Litter for Soil Organic Matter Formation—A Soil Profile Perspective[J]. Biogeosciences, 2020, 17(12): 3099−3113. doi: 10.5194/bg-17-3099-2020
|
[43] |
王国芳, 张吴平, 毕如田, 等. 县域尺度农田深层土壤有机质的估算及空间变异特征[J]. 农业工程学报, 2019, 35(22): 122−131. doi: 10.11975/j.issn.1002-6819.2019.22.014
Wang G F, Zhang W P, Bi R T, et al. Estimation and Spatial Variability of Organic Matter in Deep Soil of Farmland at County Scale[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 122−131. doi: 10.11975/j.issn.1002-6819.2019.22.014
|
[44] |
张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007
Zhang W L, Kolbe H, Zhang R L. Research Progress of SOC Functions and Transformation Mechanisms[J]. Scientia Agricultura Sinica, 2020, 53(2): 317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007
|
[45] |
寇建村, 杨文权, 李尚玮, 等. 我国果园土壤有机质研究进展[J]. 北方园艺, 2016(4): 185−191. doi: 10.11937/bfyy.201604045
Kou J C, Yang W Q, Li S W, et al. Research Advance on Soil Organic Matter of Orchard in China[J]. Northern Horticulture, 2016(4): 185−191. doi: 10.11937/bfyy.201604045
|
[46] |
徐云鹤, 方斌. 江浙典型茶园土壤有机质空间异质性分析[J]. 地球信息科学学报, 2015, 17(5): 622−630. doi: 10.3724/SP.J.1047.2015.00622
Xu Y H, Fang B. Study on Spatial Heterogeneity of the Soil Organic Matter in Typical Tea Gar dens of Jiangsu Province and Zhejiang Province[J]. Journal of Geo-information Science, 2015, 17(5): 622−630. doi: 10.3724/SP.J.1047.2015.00622
|
[47] |
商靖敏, 罗维, 吴光红, 等. 洋河流域不同土地利用类型土壤硒(Se)分布及影响因素[J]. 环境科学, 2015, 36(1): 301−308. doi: 10.13227/j.hjkx.2015.01.040
Shang J M, Luo W, Wu G H, et al. Spatial Distribution of Se in Soils from Different Land Use Types and Its Influencing Factors Within the Yanghe Watershed, China[J]. Environmental Science, 2015, 36(1): 301−308. doi: 10.13227/j.hjkx.2015.01.040
|
[48] |
宋恒飞, 吴克宁, 李婷, 等. 寒地黑土典型县域土壤重金属空间分布及影响因素分析——以海伦市为例[J]. 土壤通报, 2018, 49(6): 1480−1486. doi: 10.19336/j.cnki.trtb.2018.06.30
Song H F, Wu K N, Li T, et al. The Spatial Distribution and Influencing Factors of Farmland Heavy Metals in the Cold Black Soil Region: A Case of Hailun County[J]. Chinese Journal of Soil Science, 2018, 49(6): 1480−1486. doi: 10.19336/j.cnki.trtb.2018.06.30
|
[49] |
宫兆宁, 李洪, 阿多, 等. 官厅水库消落带土壤有机质空间分布特征[J]. 生态学报, 2017, 37(24): 8336−8347. doi: 10.5846/stxb201611182344
Gong Z N, Li H, A D, et al. Spatial Distribution Characteristics of Soil Organic Matter in the Water Lever Fluctuation Zone of Guanting Reservoir[J]. Acta Ecologica Sinica, 2017, 37(24): 8336−8347. doi: 10.5846/stxb201611182344
|
[50] |
陈梦, 刘汉文, 马倩, 等. 轻中度盐碱地土壤有机质空间异质性及影响因素分析——以山东省黄河三角洲农业高新技术示范区为例[J]. 山东农业科学, 2019, 56(1): 139−146. doi: 10.14083/j.issn.1001-4942.2024.01.019
Chen M, Liu H W, Ma Q, et al. Spatial Heterogeneity and Influencing Factors of Soil Organic Matter in Light and Moderate Saline-Alkali Soil—A Case Study of the Agricultural High-Tech Industry Demonstration Area of the Yellow River Delta, Shandong Province[J]. Shandong Agricultural Sciences, 2019, 56(1): 139−146. doi: 10.14083/j.issn.1001-4942.2024.01.019
|
[51] |
文鑫, 王艺惠, 钟聪, 等. 贵州表层土壤有机质空间变异特征及其影响因素分析[J]. 水土保持学报, 2023, 37(3): 218−224. doi: 10.13870/j.cnki.stbcxb.2023.03.028
Wen X, Wang Y H, Zhong C, et al. Spatial Variation of Surface Soil Organic Matter and Its Influencing Factors in Guizhou Province[J]. Journal of Soil and Water Conservation, 2023, 37(3): 218−224. doi: 10.13870/j.cnki.stbcxb.2023.03.028
|
[52] |
雷琪, 蒋洪丽, 吴淑芳, 等. 西北地区有机质空间分布及其影响因素研究[J]. 水土保持学报, 2022, 36(3): 274−279, 293. doi: 10.13870/j.cnki.stbcxb.2022.03.039
Lei Q, Jiang H L, Wu S F, et al. Spatial Distribution of Organic Matter and Its Influencing Factors in Northwest China[J]. Journal of Soil and Water Conservation, 2022, 36(3): 274−279, 293. doi: 10.13870/j.cnki.stbcxb.2022.03.039
|
[53] |
Li Y, Zheng S F, Wang L P, et al. Systematic Identification of Factors Influencing the Spatial Distribution of Soil Organic Matter in Croplands Within the Black Soil Region of Northeastern China Across Multiple Scales[J]. CATENA, 2025, 249: 108633. doi: 10.1016/j.catena.2024.108633
|
[54] |
Ni J, Luo D H, Xia J, et al. Vegetation in Karst Terrain of Southwestern China Allocates More Biomass to Roots[J]. Solid Earth, 2015, 6(3): 799−810. doi: 10.5194/se-6-799-2015
|
[55] |
徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3): 1491−1503. doi: 10.13227/j.hjkx.201806205
Xu G P, Li Y Q, Shen Y Y, et al. Soil Organic Carbon Distribution and Components in Different Plant Communities Along a Water Table Gradient in the Huixian Karst Wetland in Guilin[J]. Environmental Science, 2019, 40(3): 1491−1503. doi: 10.13227/j.hjkx.201806205
|
[56] |
黄兴成, 杨叶华, 李渝, 等. 长期施肥对黄壤性水稻土综合肥力和水稻产量的影响[J]. 南方农业学报, 2023, 54(2): 506−515. doi: 10.3969/j.issn.2095-1191.2023.02.019
Huang X C, Yang Y H, Li Y, et al. Effects of Long-Term Fertilization on Integrated Fertility and Rice Yield in Yellow Paddy Soil[J]. Journal of Southern Agricultural, 2023, 54(2): 506−515. doi: 10.3969/j.issn.2095-1191.2023.02.019
|
[57] |
葛楠楠, 石芸, 杨宪龙, 等. 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征[J]. 应用生态学报, 2017, 28(5): 1626−1632. doi: 10.13287/j.1001-9332.201705.021
Ge N N, Shi Y, Yang X L, et al. Distribution of Soil Organic Carbon, Total Nitrogen, Total Phosphorus and Water Stable Aggregates of cropland with Different Soil Textures on the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1626−1632. doi: 10.13287/j.1001-9332.201705.021
|