Citation: | SUN Xinyuan,ZHAO Jiujiang,GUO Yingying. Research on Speciation and Bioavailability of Chromium in Environment and Analysis Techniques: A Review[J]. Rock and Mineral Analysis,2025,x(x):1−14. DOI: 10.15898/j.ykcs.202410280226 |
Chromium (Cr) pollution has become a globally-concerned environmental issue, seriously threatening ecosystems and human health. In the natural environment, chromium mainly exists in the forms of trivalent Cr(Ⅲ) and hexavalent Cr(Ⅵ), and its speciation transformation is affected by environmental physicochemical properties such as humidity, pH, redox potential, and microorganisms. This paper reviews the research progress on chromium speciation analysis and bioavailability in the natural environment in the past five years, focusing on the valence and speciation changes of chromium, chromium speciation analysis techniques, chromium bioavailability, and its evaluation methods. There are various classification methods for chromium chemical forms in different disciplines, such as the Tessier method and the BCR method. These methods enhance the understanding of chromium from different perspectives and provide a basis for assessing chromium pollution risks and remediation. However, the practical application needs to be selected according to the purpose and scenario. Furthermore, advanced detection methods such as X-ray absorption fine structure spectroscopy (XAFS), diffusive gradient in thin-films (DGT), machine learning, and gene sequencing are summarized, which are based on a deeper understanding of the factors affecting Cr valence. Novel materials, such as graphene oxide, are introduced for their application in sensors. These new methods and materials have significantly improved the selectivity and sensitivity for the detection of Cr(Ⅲ) and Cr(Ⅵ), achieving detection limits of 0.073μmol/L and 0.36μmol/L, respectively. Such advancements facilitate a better understanding of the bioavailability of Cr. Future research should focus on the migration mechanisms of chromium in different environmental media and its target toxicity mechanisms, and develop more convenient, rapid, and cost-effective detection technologies to meet the demands of environmental monitoring. These efforts will provide more comprehensive and precise solutions for chromium pollution environmental risk assessment, ecological restoration, and health risk management.
[1] |
Georgaki M N, Mytiglaki C, Tsokkou S, et al. Leach-ability of hexavalent chromium from fly ash-marl mixtures in Sarigiol Basin, western Macedonia, Greece: Environmental hazard and potential human health risk[J]. Environmental Geochemistry and Health, 2024, 46(5): 161. doi: 10.1007/s10653-024-01946-z
|
[2] |
Li M Y, Zhou J Y, Cheng Z W, et al. Pollution levels and probability risk assessment of potential toxic elements in soil of Pb-Zn smelting areas[J]. Environmental Geochemistry and Health, 2024, 46(5): 165. doi: 10.1007/s10653-024-01933-4
|
[3] |
Jiwarungrueangkul T, Sompongchaiyakul P, Tipmanee D, et al. Equilibrium partitioning approach for metal toxicity assessment in tropical estuarine sediment of Bandon Bay, Thailand[J]. Marine Pollution Bulletin, 2024, 203: 116418. doi: 10.1016/j.marpolbul.2024.116418
|
[4] |
徐腾, 曹凉媚, 肖虹. 三块制革场地土壤铬污染的健康风险评价研究[J]. 中国皮革, 2025, 54(1): 22−29 doi: 10.13536/j.cnki.issn1001-6813.2025-001-005
Xu T, Cao L M, Xiao H. Health risk assessment of soil chromium contamination in three tannery sites[J]. China Leather, 2025, 54(1): 22−29. doi: 10.13536/j.cnki.issn1001-6813.2025-001-005
|
[5] |
Guan M Y, Li H, Tu M, et al. A novel fluorescent “off-on” probe based on phenanthro 9, 10-dimidazole conjugated polymers (PIPF) for Cr3+ detection with high selectivity and sensitivity[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2024, 311: 123988. doi: 10.1016/j.saa.2024.123988
|
[6] |
Zeng J Y, Zhang T, Liang G Y, et al. A “turn off-on” fluorescent sensor for detection of Cr(Ⅵ) based on upconversion nanoparticles and nanoporphyrin[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2024, 311: 124002. doi: 10.1016/j.saa.2024.124002
|
[7] |
Khan A, Khan M S, Shafique M A, et al. Assessment of potentially toxic and mineral elements in paddy soils and their uptake by rice (Oryza sativa L. ) with associated health hazards in District Malakand, Pakistan[J]. Heliyon, 2024, 10(7): e28043. doi: 10.1016/j.heliyon.2024.e28043
|
[8] |
张照志, 潘昭帅, 车东, 等. 中国铬矿资源特征及2021—2035年铬供需形势分析[J]. 中国地质, 2024, 51(4): 1191−1209. doi: 10.12029/gc20220909002
Zhang Z Z, Pan Z S, Che D. et al. Chromite ore resources characteristic and analysis of supply and demand situation from 2021 to 2035 in China[J]. Geology in China, 2024, 51(4): 1191−1209. doi: 10.12029/gc20220909002
|
[9] |
陈俊茹, 沈亚婷, 刘菲. 土壤中铬价态转化的影响因素与作用机制研究进展[J]. 岩矿测试, 2025, 44(1): 35−50. doi: 10.15898/j.ykcs.202401180007
Chen J R, Shen Y T, Liu F. Research progress on influencing factors and mechanisms of chromium valence state transformation in soil[J]. Rock and Mineral Analysis, 2025, 44(1): 35−50. doi: 10.15898/j.ykcs.202401180007
|
[10] |
郑宇琦, 许春雪, 安子怡, 等. 土壤和沉积物重金属形态分析研究进展[J]. 中国无机分析化学, 2024, 14(9): 1281−1290. doi: 10.3969/j.issn.2095-1035.2024.09.012
Zhneg Y Q, Xu C X, An Z Y, et al. Research progress on speciation analysis of heavy metals in soil and sediment[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(9): 1281−1290. doi: 10.3969/j.issn.2095-1035.2024.09.012
|
[11] |
Maiz I, Esnaola M V, Millan E. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure[J]. Science of the Total Environment, 1997, 206(2-3): 107−115. doi: 10.1016/s0048-9697(97)00223-4:
|
[12] |
周笑怡, 张辉, 刘淑琴. 煤及其转化产物中重金属形态分布研究[J]. 矿物岩石地球化学通报, 2005, 24(3): 195−199. doi: 10.3969/j.issn.1007-2802.2005.03.003
Zhou X Y, Zhang H, Liu S Q. Modes of occurrence of heavy metals in coal and its products[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3): 195−199. doi: 10.3969/j.issn.1007-2802.2005.03.003
|
[13] |
Shuman L M. Fractionation method for soil microelements[J]. Soil Science, 1985, 140(1): 11−22. doi: 10.1097/00010694-198507000-00003
|
[14] |
Gambrell R P. Trace and toxic metals in wetlands—A review[J]. Journal of Environmental Quality, 1994, 23(5): 883−891. doi: 10.2134/jeq1994.00472425002300050005x
|
[15] |
邢宁, 吴平霄, 李媛媛, 等. 大宝山尾矿重金属形态及其潜在迁移能力分析[J]. 环境工程学报, 2011, 5(6): 1370−1374.
Xing N, Wu P X, Li Y Y, et al. Analysis of chemical forms and potential mobility ability of heavy metals in tailings from Dabaoshan mine[J]. Chinese Journal of Environmental Engineering, 2011, 5(6): 1370−1374.
|
[16] |
Sedigheh S, Sedigheh B L, Hakimeh A, et al. Accumulation and bioavailability of heavy metals (cadmium, chromium, nickel, lead and zinc) in water and sediment samples in the Musa Creek, northwest coasts of the Persian Gulf[J]. Journal of Marine Science and Technology, 2021, 29(5): 666−672. doi: 10.51400/2709-6998.1591
|
[17] |
Osibote A, Oputu O. Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: A health risk approach to data interpretation[J]. Environ Geochem Health, 2020, 42(1): 283−312. doi: 10.1007/s10653-019-00348-w
|
[18] |
李东, 贺丽洁, 盛培培. Tessier连续提取法用于土壤铬分析的Cr(Ⅵ)-Cr(Ⅲ)转化及适用性[J]. 环境工程学报, 2021, 15(7): 2368−2378. doi: 10.12030/j.cjee.202012141
Li D, He L J, Sheng P P. Transformation of Cr(Ⅵ)-Cr(Ⅲ) and application suitability in Tessier sequential extractior of soil chromium[J]. Chinese Joumal of Environmental Engineering, 2021, 15(7): 2368−2378. doi: 10.12030/j.cjee.202012141
|
[19] |
Zhang H Y, Lu Y, Ouyang Z Z, et al. Mechanistic insights into the detoxification of Cr(Ⅵ) and immobili-zation of Cr and C during the biotransformation of ferrihydrite-polygalacturonic acid-Cr coprecipitates[J]. Journal of Hazardous Materials, 2023, 448: 130726. doi: 10.1016/j.jhazmat.2023.130726
|
[20] |
Qin X Q, Guinoiseau D, Ren Z L, et al. Redox control of chromium in the red soils from China evidenced by Cr stable isotopes[J]. Journal of Hazard Materials, 2024, 465: 133406. doi: 10.1016/j.jhazmat.2023.133406
|
[21] |
Wu Q, Wan R H, Li Q N, et al. Transformation of chromium speciation during high hexavalent chromium-contaminated soil remediation by CPS and biostimulation[J]. Agronomy, 2022, 12(4): 801. doi: 10.3390/agronomy12040801
|
[22] |
Wang Y H, Yang J J, Han H, et al. Differential transformation mechanisms of exotic Cr(Ⅵ) in agricultural soils with contrasting physio-chemical and biological properties[J]. Chemosphere, 2021, 279: 130546. doi: 10.1016/j.chemosphere.2021.130546
|
[23] |
Song L J, Xu Y H, Yang J Y. Assessing the impact of lime on chromium migration in soil caused by basic chromium sulfate in Tannery[J]. Environmental Technology, 2023, 44(10): 1367−1378. doi: 10.1080/09593330.2021.2003436
|
[24] |
Liu L C, Sun P, Chen Y Y, et al. Distinct chromium removal mechanisms by iron-modified biochar under varying pH: Role of iron and chromium speciation[J]. Chemosphere, 2023, 331: 138786. doi: 10.1016/j.chemosphere.2023.138796
|
[25] |
Gattullo C E, Allegretta I, Porfido C, et al. Assessing chromium pollution and natural stabilization processes in agricultural soils by bulk and micro X-ray analyses[J]. Environmental Science and Pollution Research, 2020, 27(18): 22967−22979. doi: 10.1007/s11356-020-08857-3
|
[26] |
Shi J J, Mcgill W B, Chen N, et al. Formation and immobilization of Cr(Ⅵ) species in long-term tannery waste contaminated soils[J]. Environmental Science & Technology, 2020, 54(12): 7226−7235. doi: 10.1021/acs.est.0c00156
|
[27] |
Kong X K, Wang Y Y, Ma L S, et al. Impact of δ-MnO2 on the chemical speciation and fractionation of Cr(Ⅲ) in contaminated soils[J]. Environmental Science and Pollution Research, 2022, 29(30): 45328−45337. doi: 10.1007/s11356-022-18798-8
|
[28] |
Papassiopi N, Vaxevanidou K, Christou C, et al. Synthesis, characterization and stability of Cr(Ⅲ) and Fe(Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264: 490−497. doi: 10.1016/j.jhazmat.2013.09.058
|
[29] |
Liang J L, Huang X M, Yan J W, et al. A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. doi: 10.1016/j.scitotenv.2021.145762
|
[30] |
Chen S, Chen B, Xu H Y, et al. Comprehensive investigation of pollution levels and potential bioavailable risks of 7 potentially toxic elements in Qinghai—Tibet soils by using diffusive gradients in thin-films (DGT)[J]. Environmental Pollutants and Bioavailability, 2024, 36(1): 2357292. doi: 10.1080/26395940.2024.2357297
|
[31] |
Tan S L, Xin Y, Liu K, et al. Remediation of Cr(Ⅵ)-contaminated soils by washing with low-molecular-weight organic acids based on the distribution of heavy metal species[J]. Environmental Engineering Science, 2022, 39(1): 64−72. doi: 10.1089/ees.2021.0018
|
[32] |
徐腾, 南丰, 蒋晓锋, 等. 制革场地土壤和地下水中铬污染来源及污染特征研究进展[J]. 土壤学报, 2020, 57(6): 1341−1352.
Xu T, Nan F, Jiang X F, et al. Progresses in research on sources and characteristics of chromium pollution in soils and groundwater of tannery sites[J]. Acta Pedologica Sinica, 2020, 57(6): 1341−1352.
|
[33] |
Zhang W J, Jin D, Yuan J. Speciation transformation and release of Cr(Ⅵ) in a GGBS-NaOH treated soil under acidic wet-dry cycle: Leaching characteristics and microscopic mechanisms[J]. Journal of Cleaner Production, 2024, 456: 142424. doi: 10.1016/j.jclepro.2024.142424
|
[34] |
Saren S, Singh D, Chandel S, et al. Effect of organic amendments on the speciation of chromium in contaminated and uncontaminated soils[J]. Soil & Sediment Contamination, 2024, 34(2): 259−275. doi: 10.1080/15320383.2024.2342930
|
[35] |
Ying R R, Yang B, Chen M, et al. Characteristics and numerical simulation of chromium transportation, migration and transformation in soil-groundwater system[J]. Journal of Hazardous Materials, 2024, 471: 134414. doi: 10.1016/j.jhazmat.2024.134414
|
[36] |
Cao Y, Dong S N, Dai Z X, et al. Adsorption model identification for chromium(Ⅵ) transport in unconsolidated sediments[J]. Journal of Hydrology, 2021, 598: 126228. doi: 10.1016/j.jhydrol.2021.126228
|
[37] |
Gao L, Li R, Liang Z B, et al. Dual diffusive gradients in the thin films (DGT) probes provide insights into speciation and mobility of sediment chromium (Cr) from the Xizhi River Basin, South China[J]. Journal of Hazardous Materials, 2022, 436: 129229. doi: 10.1016/j.jhazmat.2022.129229
|
[38] |
Shao S, Liu H, Tai X Q, et al. Speciation and migration of heavy metals in sediment cores of Urban Wetland: Bioavailability and risks[J]. Environmental Science and Pollution Research, 2020, 27(19): 23914−23925. doi: 10.1007/s11356-020-08719-y
|
[39] |
Liu Q Z, Xu X, Lin L H, et al. A retrospective analysis of heavy metals and multi elements in the Yangtze River Basin: Distribution characteristics, migration tendencies and ecological risk assessment[J]. Water Research, 2024, 254: 121385. doi: 10.1016/j.watres.2024.121385
|
[40] |
曲良, 谭海涛, 刘涛, 等. 北部湾铁山港附近海域水体和沉积物重金属分布特征及生态风险评价[J]. 环境化学, 2023, 42(3): 757−768. doi: 10.7524/j.issn.0254-6108.2022102606
Qu L, Tan H T, Liu T, et al. Distribution characteristics and potential ecological risk of heavy metals in the seawater and sediment of Tieshan Port, Beibu Gulf[J]. Environmental Chemistry, 2023, 42(3): 757−768. doi: 10.7524/j.issn.0254-6108.2022102606
|
[41] |
Zhao Y X, Zhao S N, Shi X H, et al. Influence of environmental factors on changes in the speciation of Pb and Cr in sediments of Wuliangsuhai Lake, during the ice-covered period[J]. Environmental Geochemistry and Health, 2024, 46(4): 116. doi: 10.1007/s10653-023-01842-y
|
[42] |
Bhattacharya M, Shriwastav A, Bhole S, et al. Processes governing chromium contamination of groundwater and soil from a chromium waste source[J]. ACS Earth and Space Chemistry, 2019, 4(1): 35−49. doi: 10.1021/acsearthspacechem.9b00223
|
[43] |
王琳琳, 樊晓翠, 许爱华, 等. 紫外可见分光光度法测定水中高浓度六价铬[J]. 分析仪器, 2023(6): 35−37. doi: 10.3969/j.issn.1001‐232x.2023.06.007
Wang L L, Fan X C, Xu A H, et al. Ultraviolet-visible spectrophotometry for determination of high concentrations of hexavalent chromium in water[J]. Analytical Instrumentation, 2023(6): 35−37. doi: 10.3969/j.issn.1001‐232x.2023.06.007
|
[44] |
Muhammed A, Hussen A, Kaneta T. Speciation of chromium in water samples using microfluidic paper-based analytical devices with online oxidation of trivalent chromium[J]. Analytical and Bioanalytical Chemistry, 2021, 413(12): 3339−3347. doi: 10.1007/s00216-021-03274-y
|
[45] |
Zhai H M, Zhou T, Fang F, et al. Colorimetric speciation of Cr on paper-based analytical devices based on field amplified stacking[J]. Talanta, 2020, 210: 120635. doi: 10.1016/j.talanta.2019.120635
|
[46] |
Khoshmaram L, Mohammadi M. Combination of a smart phone based low-cost portable colorimeter with air-assisted liquid-liquid microextraction for speciation and determination of chromium(Ⅲ) and (Ⅵ)[J]. Microchemical Journal, 2021, 164: 105991. doi: 10.1016/j.microc.2021.105991
|
[47] |
Ahmed H E H, Soylak M. A MWCNTs@CuAl2O4@SiO2 nanocomposite for the speciation of Cr(Ⅲ), Cr(Ⅵ), and total chromium prior to high-resolution continuum source flame atomic absorption spectrometric determination[J]. Water Air and Soil Pollution, 2024, 235(4): 217. doi: 10.1007/s11270-024-07020-9
|
[48] |
Long T T, Luo H M, Li H C, et al. Fe-doping green fluorescent carbon dots via Co-electrolysis of chrysoidine G and potassium ferrocyanide for sensitive Cr(Ⅵ) detection[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2024, 311: 124010. doi: 10.1016/j.saa.2024.124010
|
[49] |
Shah J H, Sharif S, Sahin O, et al. A dual-emitting rhodamine B-encapsulated Zn-based MOF for the selective sensing of chromium(Ⅵ)[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2024, 310: 123899. doi: 10.1016/j.saa.2024.123899
|
[50] |
Li Y, Han H T, Fei Y H, et al. A honeycomb-like micro-needle sensor with gold nanoparticles embedded for the determination of hexavalent chromium in seawater[J]. Microchemical Journal, 2024, 197: 109857. doi: 10.1016/j.microc.2023.109857
|
[51] |
Boruah P K, Darabdhara G, Borthakur P, et al. Fe3O4 quantum dots anchored on functionalized graphene: A multimodal platform for sensing and remediation of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2023, 474: 145797. doi: 10.1016/j.cej.2023.145797
|
[52] |
李财, 任明漪, 石丹, 等. 薄膜扩散梯度(DGT)——技术进展及展望[J]. 农业环境科学学报, 2018, 37(12): 2613−2628. doi: 10.11654/jaes.2018-1403
Li C, Ren M Y, Shi D, et al. Diffusive gradient in thin films (DGT): Technological progress and prospects[J]. Journal of Agro-Environment Science, 2018, 37(12): 2613−2628. doi: 10.11654/jaes.2018-1403
|
[53] |
Yang D X, Fang W, Zhang H, et al. Effects of nZVI on the migration and availability of Cr(Ⅵ) in soils under simulated acid rain leaching conditions[J]. Journal of Hazardous Materials, 2024, 476: 134985. doi: 10.1016/j.jhazmat.2024.134985
|
[54] |
潘岳. 基于梯度扩散薄膜技术(DGT)选择性分析六价铬方法的建立及其在水体和土壤中的应用[D]. 南京: 南京大学, 2016: 1−74.
Pan Y. Development of a new diffusive gradients in thin-films (DGT) technique for selectively measuring Cr(Ⅵ) in waters and soils[D]. Nanjing: Nanjing Universiry, 2016: 1−74.
|
[55] |
Vogel C, Hoffmann M C, Krüger O, et al. Chromium(Ⅵ) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique[J]. Environmental Science and Pollution Research, 2020, 27(19): 24320−24328. doi: 10.1007/s11356-020-08761-w
|
[56] |
Gao L, Gao B, Xu D, et al. In-situ measurement of labile Cr(Ⅲ) and Cr(Ⅵ) in water using diffusive gradients in thin-films (DGT)[J]. Science of the Total Environment, 2019, 653: 1161−1167. doi: 10.1016/j.scitotenv.2018.10.392
|
[57] |
Fan X F, Ding S M, Chen M S, et al. Peak chromium pollution in summer and winter caused by high mobility of chromium in sediment of a Eutrophic Lake: In situ evidence from high spatiotemporal sampling[J]. Environmental Science & Technology, 2019, 53(9): 4755−4764. doi: 10.1021/acs.est.8b07060
|
[58] |
Gao S, Xing X, Ding S, et al. The long-term effects of dredging on chromium pollution in the sediment of Meiliang Bay, Lake Taihu, China[J]. Water, 2021, 13(3): 327. doi: 10.3390/w13030327
|
[59] |
Chen R, Liu J, Ding G, et al. Simultaneous measurement of multiple labile heavy metals in soils by diffusive gradients in thin film technique[J]. Journal of Soils and Sediments, 2022, 23(2): 958−972.
|
[60] |
Chen H, Zhang Y Y, Zhong K L, et al. Selective sampling and measurement of Cr(Ⅵ) in water with polyquaternary ammonium salt as a binding agent in diffusive gradients in thin-films technique[J]. Journal of Hazardous Materials, 2014, 271: 160−165. doi: 10.1016/j.jhazmat.2014.02.022
|
[61] |
Guo L W, Chen H, Zhang Y Y, et al. Determination of chromium speciation in tap water using diffusive gradients in thin film technique[J]. Chemistry Letters, 2014, 43(6): 849−850. doi: 10.1246/cl.140100
|
[62] |
Zheng Y M, Liu T, Jiang J W, et al. Characterization of hexavalent chromium interaction with sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry calculation[J]. Journal of Colloid and Interface Science, 2011, 356(2): 741−748. doi: 10.1016/j.jcis.2010.12.070
|
[63] |
Zhang M M, Fujimori T, Shiota K, et al. Thermochemical formation of dioxins promoted by chromium chloride: In situ Cr- and Cl-XAFS analysis[J]. Journal of Hazardous Materials, 2020, 388: 122064. doi: 10.1016/j.jhazmat.2020.122064
|
[64] |
Mian F, Bottaro G, Wang Z Q, et al. Chromium doped ZnGa2O4 thin films: An X-ray absorption near edge structure (XANES) and X-ray excited optical luminescence (XEOL) study[J]. Applied Surface Science, 2022, 577: 151896. doi: 10.1016/j.apsusc.2021.151896
|
[65] |
龚冰, 王徐鹏, 应蓉蓉, 等. 土壤湿度对重金属污染物的生物有效性和生态毒性影响 [J/OL]. 生态毒理学报(2025-01-21)[2025-02-18]. https://link.cnki.net/urlid/11.5470.X.20250121.1345.007.
Gong B, Wang X P, Ying R R, et al. Impact of soil moisture on the bioavailability and ecotoxicity of heavy metals[J/OL]. Asian Journal of Ecotoxicology (2025-01-21)[2025-02-18]. https://link.cnki.net/urlid/11.5470.X.20250121.1345.007.
|
[66] |
唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J]. 环境工程学报, 2019, 13(8): 1775−1790. doi: 10.12030/j.cjee.201902041
Tang W Z, Sun L, Shan B Q. Esearch progress of bioavailability and bioaccessibility of heavy metals in soil or sediment[J]. Chinese Journal of Environmental Engineering, 2019, 13(8): 1775−1790. doi: 10.12030/j.cjee.201902041
|
[67] |
Li P S, Wang Y L, Wang X T, et al. Preparation of a novel oat β-glucan-chromium(Ⅲ) complex and its hypoglycemic effect and mechanism[J]. Molecules, 2024, 29(9): 1998. doi: 10.3390/molecules29091998
|
[68] |
Wang P S, Liu Z L, Sweef O, et al. Hexavalent chromium exposure activates the non-canonical nuclear factor Kappa B pathway to promote immune checkpoint protein programmed death-ligand 1 expression and lung carcinogenesis[J]. Cancer Letters, 2024, 589: 216827. doi: 10.1016/j.canlet.2024.216827
|
[69] |
Alur A, Phillips J, Xu D Z. Effects of Hexavalent chromium on mitochondria and their implications in carcinogenesis[J]. Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis, 2024, 42(2): 109−125. doi: 10.1080/26896583.2024.2301899
|
[70] |
Elloumi-Mseddi J, Mnif S, Akacha N, et al. Selective cytotoxicity of arene tricarbonylchromium towards tumour cell lines[J]. Journal of Organometallic Chemistry, 2018, 862: 7−12. doi: 10.1016/j.jorganchem.2018.01.036
|
[71] |
Chakraborty R, Renu K, Eladl M A, et al. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents[J]. Biomedicine & Pharmacotherapy, 2022, 151: 113119. doi: 10.1016/j.biopha.2022.113119
|
[72] |
Bruno M, Ross J, Ge Y. Proteomic responses of BEAS-2B cells to nontoxic and toxic chromium: Protein indicators of cytotoxicity conversion[J]. Toxicology Letters, 2016, 264: 59−70. doi: 10.1016/j.toxlet.2016.08.025
|
[73] |
Ramzan M, Zia A, Naz G, et al. Effect of nanobiochar (nBC) on morpho-physio-biochemical responses of black cumin (Nigella sativa L. ) in Cr-spiked soil[J]. Plant Physiology and Biochemistry, 2023, 196: 859−867. doi: 10.1016/j.plaphy.2023.02.037
|
[74] |
Bouhadi M, Lahmidi A, Am A, et al. Study of the toxicity and translocation of chromium(Ⅵ) in Vicia faba plant[J]. Bulletin of Environmental Contamination and Toxicology, 2024, 112(3): 40. doi: 10.1007/s00128-024-03864-3
|
[75] |
白雪, 李玉靖, 景秀清, 等. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418−433. doi: 10.17521/cjpe.2022.0049
Bai X, Li Y J, Jing X Q, et al. Response mechanisms of millet and its rhizosphere soil microbial communities to chromium stress[J]. Chinese Journal of Plant Ecology, 2023, 47(3): 418−433 doi: 10.17521/cjpe.2022.0049
|
[76] |
Kumari A, Mandzhieva S S, Minkina T M, et al. Speciation of macro- and nanoparticles of Cr2O3 in Hordeum vulgare L. and subsequent toxicity: A comparative study[J]. Environmental Research, 2023, 223: 115485. doi: 10.1016/j.envres.2023.115485
|
[77] |
彭叶棉, 杨阳, 侯素霞, 等. 外源六价铬在土壤中的有效性及其小麦毒性效应[J]. 生态环境学报, 2020, 29(2): 369−377. doi: 10.16258/j.cnki.1674-5906.2020.02.019
Peng Y J, Yang Y, Hou S X, et al. The bioavailability of exogenous Cr(Ⅵ) in soils and its toxic effect on wheat[J]. Ecology and Environmental Sciences, 2020, 29(2): 369−377. doi: 10.16258/j.cnki.1674-5906.2020.02.019
|
[78] |
Monga A, Fulke A B, Dasgupta D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies[J]. Journal of Hazardous Materials Advances, 2022, 7: 100113. doi: 10.1016/j.hazadv.2022.100113
|
[79] |
Yan T T, Xu Y W, Zhu Y Q, et al. Chromium exposure altered metabolome and microbiome-associated with neurotoxicity in Zebrafish[J]. Journal of Applied Toxicology, 2023, 43(7): 1026−1038. doi: 10.1002/jat.4440
|
[80] |
García-Rodríguez M D, Hernández-Cortés L M, Montaño-Rodríguez A R, et al. A comparative study on chromium-induced micronuclei assessment in the peripheral blood of Hsd: ICR mice[J]. Journal of Applied Toxicology, 2024, 44(4): 526−541. doi: 10.1002/jat.4556
|
[81] |
Balamanikandan V, Shalini R, Arisekar U, et al. Bioaccumulation and health risk assessment of trace elements in Tilapia (Oreochromis Mossambicus) from selected inland water bodies[J]. Environmental Geochemistry and Health, 2024, 46(6): 187. doi: 10.1007/s10653-024-01909-4
|
[82] |
Garza-León C V, Fernández-Flores C A, Arzate-Cárdenas M A, et al. Differential effects on the toxicity and bioconcentration of hexavalent and trivalent chromium on the rotifer lecane papuana (Murray, 1913) (Monogononta: Lecanidae)[J]. Hidrobiologica, 2023, 33(3): 329−338. doi: 10.24275/LCZI5134
|
[83] |
Zhou J J, Du N N, Li D Q, et al. Combined effects of perchlorate and hexavalent chromium on the survival, growth and reproduction of Daphnia carinata[J]. Science of the Total Environment, 2021, 769: 144676. doi: 10.1016/j.scitotenv.2020.144676
|
[84] |
Rong W T, Chen Y Z, Lu J Y, et al. Effects of chromium exposure on the gene expression of the midgut in Silkworms, Bombyx mori[J]. Genes, 2023, 14(8): 1616. doi: 10.3390/genes14081616
|
[85] |
Li T J, Zheng Y, Wu Z L, et al. YTHDF2 controls hexavalent chromium-induced mitophagy through modulating Hif1α and Bnip3 decay via the m6A/mRNA pathway in spermatogonial stem cells/progenitors[J]. Toxicology Letters, 2023, 377: 38−50. doi: 10.1016/j.toxlet.2023.01.010
|
[86] |
Zheng S Y, Wang Z L, Cao X H, et al. Insights into the effects of chronic combined chromium-nickel exposure on colon damage in mice through transcriptomic analysis and in vitro gastrointestinal digestion assay[J]. Ecotoxicology and Environmental Safety, 2024, 279: 116458. doi: 10.1016/j.ecoenv.2024.116458
|
[87] |
Zhu Y R, Chen P, Wan H Y, et al. Selenium-chromium(Ⅵ) interaction regulates the contents and correlations of trace elements in chicken brain and serum[J]. Biological Trace Element Research, 2018, 181(1): 154−163. doi: 10.1007/s12011-017-1038-7
|
[88] |
Kumar N, Bhushan S, Patole P B, et al. Multi-biomarker approach to assess chromium, pH and temperature toxicity in fish[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2022, 254: 109264. doi: 10.1016/j.cbpc.2021.109264
|
[89] |
Zhao L, Duan H X, Liu Y H, et al. Long-term exposure of Zebrafish (Danio rerio) to Cr(Ⅵ): Reproductive toxicity and neurotoxicity[J]. Regional Studies in Marine Science, 2024, 74: 103559. doi: 10.1016/j.rsma.2024.103559
|
[90] |
赵吉洋, 陈星, 郑刘根, 等. 典型煤矸石堆积区土壤重金属特定源健康风险评价及优先控制源分析 [J]. 环境科学(2024-05-17)[2025-01-18]. https://link.cnki.net/urlid/11.1895.x.20240516.1050.012.
Zhao J Y, Chen X, Zheng L G, et al. Identification of priority source for heavy metals in soils of typical coal gangue identification of priority source for heavy metals in soils of typical coal gangue [J/OL]. Environmental Science (2024-05-17)[2025-01-18]. https://link.cnki.net/urlid/11.1895.x.20240516.1050.012.
|
[91] |
潘飞飞, 陈丹利, 白何领, 等. 豫西钼矿集区地表水重金属时空分布特征及健康风险评价[J]. 地质论评, 2024, 70(5): 1833−1843. doi: 10.16509/j.georeview.2024.05.075
Pan F F, Chen D L, Bai H L, et al. Temporal-spatial distribution of heavy metals and health risk assessment of surface water in West Henan molybdenum ore concentrated area[J]. Geological Review, 2024, 70(5): 1833−1843. doi: 10.16509/j.georeview.2024.05.075
|
[92] |
唐晨, 赵苒, 范春. 全基因组完成图测序在细菌修复环境铬污染中应用[J]. 中国公共卫生, 2020, 36(10): 1510−1514. doi: 10.11847/zgggws1123426
Tang C, Zhao R, Fan C. Application of whole genome sequencing of bacteria in microorganicremediation of chromium contaminated environment: A review[J]. Chinese Journal of Public Health, 2020, 36(10): 1510−1514. doi: 10.11847/zgggws1123426
|
[93] |
Cai Y J, Chen X, Qi H H, et al. Genome analysis of Shewanella Putrefaciens 4H revealing the potential mechanisms for the chromium remediation[J]. BMC Genomics, 2024, 25(1): 136. doi: 10.1186/s12864-024-10031-9
|
[94] |
Jiao L F, Dai T M, Cao T L, et al. New insight into the molecular basis of chromium exposure of Litopenaeus vannamei by transcriptome analysis[J]. Marine Pollution Bulletin, 2020, 160: 111673. doi: 10.1016/j.marpolbul.2020.111673
|
[95] |
Li W B, Wang T K, Chen W F, et al. Responses of bacterial communities along vertical soil profile to the chromium-contamination stress[J]. International Biodeterioration & Biodegradation, 2023, 179: 105584. doi: 10.1016/j.ibiod.2023.105584
|
[96] |
Sun Y S, Chen S S, Jiang H, et al. Towards interpretable machine learning for observational quantification of soil heavy metal concentrations under environmental constraints[J]. Science of the Total Environment, 2024, 926: 171931. doi: 10.1016/j.scitotenv.2024.171931
|
[97] |
Banerjee S, Ghosh S, Chakraborty S, et al. Synergistic impact of bioavailable PHEs and alkalinity on microbial diversity and traits in agricultural soil adjacent to chromium-asbestos mines[J]. Environmental Pollution, 2024, 350: 124021. doi: 10.1016/j.envpol.2024.124021
|