Citation: | FAN Ting,REN Zijie,ZHANG Qiankun,et al. Quantitative Detection of Gas-Liquid Inclusions in High-Purity Quartz Sand by Double Extreme Case Analysis[J]. Rock and Mineral Analysis,2024,43(6):892−900. DOI: 10.15898/j.ykcs.202410230223 |
High-purity quartz sand serves as a critical material in various strategic emerging industries, such as semiconductors and photovoltaics. The quality of quartz sand is crucial for the application of products like single crystal silicon crucibles and quartz tubes. Besides impurity elements, gas-liquid inclusions are a significant factor affecting quartz quality. However, current detection methods for gas-liquid inclusions are mainly qualitative, lacking efficient and precise quantitative analysis techniques. The double extreme case analysis (DECA) method is innovatively proposed here to quantitatively assess the content of gas-liquid inclusions. The process involves quartz sand slices treated with reagent and put under a microscope for observation and photographing, obtaining at least 300 images of quartz particles where the quartz appears transparent and the inclusions appear black. By statistically analyzing the images, the ratio of transparent (T) to non-transparent (NT) particles is calculated to evaluate quartz quality. The crucible study of different quartz sands using DECA shows that quartz sand with a high T ratio and low NT ratio produces crucibles of excellent transparency, while quartz sand with a low T ratio and high NT ratio results in poor transparency. This method effectively addresses the challenge of quantitative gas-liquid inclusion detection and provides a reliable basis for evaluating high-purity quartz sand quality.
[1] |
赵海波, 张倩, 张勇, 等. 天然石英矿物微量元素赋存特征研究进展及对高纯石英找矿的指示[J]. 西北地质, 2024, 57(5): 106−119. doi: 10.12401/j.nwg.2023180
Zhao H B, Zhang Q, Zhang Y, et al. A review of the impurity element chemistry and textures of natural quartz and its application to the prospect of high purity quartz deposit[J]. Northwestern Geology, 2024, 57(5): 106−119. doi: 10.12401/j.nwg.2023180
|
[2] |
汪灵. 高纯石英的概念及其原料品级划分[J]. 矿产保护与利用, 2022, 42(5): 55−63. doi: 10.13779/j.cnki.issn1001-0076.2022.05.009
Wang L. Concept of high purity quartz and classification of its raw materials[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 55−63. doi: 10.13779/j.cnki.issn1001-0076.2022.05.009
|
[3] |
郝文俊, 冯书文, 詹建华, 等. 全球高纯石英资源现状、生产、消费及贸易格局[J]. 中国非金属矿工业导刊, 2020(5): 15−19. doi: 10.3969/j.issn.1007-9386.2020.05.005
Hao W J, Feng S W, Zhan J H, et al. Current situation, production, consumption and trade pattern of high purity quartz in the world[J]. China Non-metallic Mining Industry, 2020(5): 15−19. doi: 10.3969/j.issn.1007-9386.2020.05.005
|
[4] |
武志超, 张海啟, 谭秀民, 等. 高纯石英应用及化学提纯技术研究进展[J]. 化工矿物与加工, 2023, 52(9): 72−80. doi: 10.16283/j.cnki.hgkwyjg.2023.09.012
Wu Z C, Zhang H Q, Tan X M, et al. Research progress on the application of high-purity quartz and its chemical refinement technology[J]. Industrial Minerals & Processing, 2023, 52(9): 72−80. doi: 10.16283/j.cnki.hgkwyjg.2023.09.012
|
[5] |
马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019, 39(6): 48−57. doi: 10.13779/j.cnki.issn1001-0076.2019.06.008
Ma C, Feng A S, Liu C M, et al. Mineralogical characteristics and progress in processing technology of raw materials of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 48−57. doi: 10.13779/j.cnki.issn1001-0076.2019.06.008
|
[6] |
杨晓勇, 孙超, 曹荆亚, 等. 高纯石英的研究进展及发展趋势[J]. 地学前缘, 2022, 29(1): 231−244. doi: 10.13745/j.esf.sf.2021.8.1
Yang X Y, Sun C, Cao J Y, et al. High purity quartz: Research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1): 231−244. doi: 10.13745/j.esf.sf.2021.8.1
|
[7] |
张亮, 刘磊, 朱黎宽, 等. 关于高纯石英原料矿石地质学评价方法的探讨[J]. 岩石学报, 2024, 40(4): 1311−1326. doi: 10.18654/1000-0569/2024.04.16
Zhang L, Liu L, Zhu L K, et al. Discussion on the geological evaluation for high purity quartz raw material[J]. Acta Petrologica Sinica, 2024, 40(4): 1311−1326. doi: 10.18654/1000-0569/2024.04.16
|
[8] |
魏玉燕. 脉石英显微结构与包裹体特征及其与高纯石英加工提纯的关系[D]. 成都: 成都理工大学, 2018.
Wei Y Y. Microstructure and inclusion characteristics of vein quartz and its’ relationship of making high purity quartz[D]. Chengdu: Chengdu University of Technology, 2018.
|
[9] |
中国粉体技术网. 解析: 为什么美国尤尼明能够做出高纯石英砂[EB/OL]. (2018-3-15)[2019-6-12]. http://www.cnpowdertech.com/2018/jsjzt_0315/24824.html.
China Powder Technology Network. Analysis: Why Unimin can produce high-purity quartz sand[EB/OL]. (2018-3-15) [2019-6-12].http://www.cnpowdertech.com/2018/jsjzt_0315/24824.html.
|
[10] |
贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 111−117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011
Jia D L, Zhang W Y, Chen C L, et al. Global resource status and China’s development suggestions of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 111−117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011
|
[11] |
李光惠, 王超峰, 詹建华, 等. 高纯石英原料作为战略性矿产的分析及建议[J]. 中国非金属矿工业导刊, 2020(5): 20−24.
Li G H, Wang C F, Zhan J H. Analysis and suggestions on high purity quartz raw material as strategic minerals[J]. China Non-Metallic Mining Industry, 2020(5): 20−24.
|
[12] |
陶恭益. 石英包裹体中液相成分的测定[J]. 岩矿测试, 1996, 15(2): 143−146.
Tao G Y. Determination of liquid compositions in quartz inclusion[J]. Rock and Mineral Analysis, 1996, 15(2): 143−146.
|
[13] |
Shu L, Shen K, Yang R, et al. SEM-CL study of quartz containing fluid inclusions in Wangjiazhuang porphyry copper (-molybdenum) deposit, Western Shandong, China[J]. Journal of Earth Science, 2020, 31(4): 330−341.
|
[14] |
蓝廷广, 胡瑞忠, 范宏瑞, 等. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用[J]. 岩石学报, 2017, 33(10): 3239−3262.
Lan T G, Hu R Z, Fan H R, et al. In-situ analysis of major and trace elements in fluid inclusion and quartz: LA-ICP-MS method and applications to ore deposits[J]. Acta Petrologica Sinica, 2017, 33(10): 3239−3262.
|
[15] |
Lin M, Pei Z Y, Liu Y Y, et al. High-efficiency trace Na extraction from crystal quartz ore used for fused silica—A pretreatment technology[J]. Journal of Mineral Metallurgy and Materials, 2017(24): 1086. doi: 10.1007/s12613-017-1498-y
|
[16] |
李康宁, 张江苏, 徐进, 等. 西秦岭甘南加甘滩金矿床流体包裹体及氢-氧-硫-铅同位素特征[J]. 地质通报, 2023, 42(6): 941−952. doi: 10.12097/j.issn.1671-2552.2023.06.007
Li K N, Zhang J S, Xu J, et al. Fluid inclusions and H-O-S-Pb isotopic characteristics of the Jiagantan gold deposit in Gannan, West Qinling[J]. Geological Bulletin of China, 2023, 42(6): 941−952. doi: 10.12097/j.issn.1671-2552.2023.06.007
|
[17] |
唐春花, 张生辉, 袁晶, 等. 江西宁都白云母伟晶花岗岩型高纯石英用硅质原料矿床特征与资源潜力[J]. 地质通报, 2024, 43(5): 667−679. doi: 10.12097/gbc.2022.10.026
Tang C H, Zhang S H, Yuan J, et al. Deposit characteristics and potential resources of silicon material for high-purity quartz of muscovite-pegmatite-granite type in Ningdu, Jiangxi Province[J]. Geological Bulletin of China, 2024, 43(5): 667−679. doi: 10.12097/gbc.2022.10.026
|
[18] |
赵毅, 王守敬, 郭理想, 等. 基于机器视觉的石英流体包裹体自动识别与指数计算[J]. 矿产保护与利用, 2022, 42(5): 28−34. doi: 10.13779/j.cnki.issn1001-0076.2022.05.005
Zhao Y, Wang S J, Guo L X, et al. Index calculation and automatic identification of quartz fluid inclusions based on machine vision[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 28−34. doi: 10.13779/j.cnki.issn1001-0076.2022.05.005
|
[19] |
王征, 韩东, 刘阳, 等. 石英砂包裹体含量的检测方法、设备及存储介质[P]. 中国:CN201911174246. X(2023-08-29).
Wang Z, Han D, Liu Y, et al. Detection methods, equipment, and storage media for quartz sand inclusions[P]. China: CN201911174246. X (2023-08-29).
|
[20] |
张文淮, 陈紫英. 流体包裹体地质学[M]. 武汉: 中国地质大学出版社, 1993: 17−18.
Zhang W H, Chen Z Y. Geology of fluid inclusions[M]. Wuhan: China University of Geosciences Press, 1993: 17−18.
|
[21] |
欧阳恒, 张术根, 谷湘平. 溆浦高纯硅矿床石英流体包裹体研究[J]. 中国非金属矿工业导刊, 2006(2): 55−57, 64. doi: 10.3969/j.issn.1007-9386.2006.02.018
Ouyang H, Zhang S G, Gu X P. Fluid inclusions in quartz of high purity silica deposit of Xupu, Hunan[J]. China Non-metallic Mining Industry, 2006(2): 55−57, 64. doi: 10.3969/j.issn.1007-9386.2006.02.018
|
[22] |
李静. 微波和酸蚀作用去除石英砂中气液包裹体及机理研究[D]. 株洲: 湖南工业大学, 2014.
Li J. Study on removal fluid inclusions in quartz sand by microwave and acid leaching and removal mechanism[D]. Zhuzhou: Hunan University of Technology, 2014.
|
[23] |
刘泰荣. 酸浸辅助微波场去除石英砂中气液包裹体的研究[D]. 株洲: 湖南工业大学, 2015.
Liu T R. Research on removal of fluid inclusions from quartz sand through acid leaching-aided microwave field[D]. Zhuzhou: Hunan University of Technology, 2015.
|
[24] |
王旭东, 倪培, 袁顺达, 等. 赣南漂塘钨矿锡石及共生石英中流体包裹体研究[J]. 地质学报, 2013, 87(6): 850−859. doi: 10.3969/j.issn.0001-5717.2013.06.009
Wang X D, Ni P, Yuan S D, et al. Fluid inclusion studies on coexisting cassiterite and quartz from the Piaotang tungsten deposit, Jiangxi Province, China[J]. Acta Geologica Sinica, 2013, 87(6): 850−859. doi: 10.3969/j.issn.0001-5717.2013.06.009
|
[25] |
张立, 胡修权, 彭兴华, 等. 高纯石英砂原料矿中流体包裹体研究[J]. 矿产综合利用, 2022, 43(3): 188−192. doi: 10.3969/j.issn.1000-6532.2022.03.033
Zhang L, Hu X Q, Peng X H, et al. Research on fluid inclusions in vein quartz as higher purity quartz sand[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 188−192. doi: 10.3969/j.issn.1000-6532.2022.03.033
|
[26] |
Ji Z, Ge C, Zhou M, et al. Quartz-hosted fluid inclusions characteristics and their implications for fluvial deposits along the Changjiang River[J]. Journal of Earth Science, 2020: 571−581.
|
[27] |
汤中昉. 脉石英包裹体特征及其对高纯石英提纯效果的影响[D]. 成都: 成都理工大学, 2022.
Tang Z F. Characteristics of inclusions in vein quartz and its effect on purification of high-purity quartz [D]. Chengdu: Chengdu University of Technology, 2022.
|
[28] |
Yuan Y, Zhang L, Guan J, et al. Contribution on fluid inclusion abundance to activation of quartz flotation[J]. Physicochemical Problems of Mineral Processing, 2018.
|
[29] |
赵动. 去除微小气液包裹体制备高纯石英砂的研究[D]. 广州: 华南理工大学, 2014.
Zhao D. Research on removing tiny fluid inclusions for preparation of high purity quartz sand[D]. Guangzhou: South China University of Technology, 2014.
|
[30] |
王九一. 印度北部某4N8级高纯石英原料研究及其对我国的找矿启示[J/OL]. 岩石矿物学杂志[2024-04-28]. http://kns.cnki.net/kcms/detail/11.1966.p.20240419.1901.002.html.
Wang J Y. Investigation on a 4N8 grade high purity quartz deposit from Northern India: Implications for ore prospecting in China[J/OL]. Acta Petrologica Mineralogica [2024-04-28]. http://kns.cnki.net/kcms/detail/11.1966.p.20240419.1901.002.html.
|
[31] |
唐宇, 孙红娟, 刘波, 等. 典型光伏坩埚用高纯石英砂工艺属性对比研究[J]. 非金属矿, 2024, 47(S5): 37−41. doi: 10.3969/j.issn.1000-8098.2024.05.009
Tang Y, Sun H J, Liu B, et al. Comparative study on high purity quartz sand used in typical photovoltaic crucible[J]. Non-Metallic Mines, 2024, 47(S5): 37−41. doi: 10.3969/j.issn.1000-8098.2024.05.009
|
1. |
许娜,梁燕翔,王亮,赵丽丽,周雪晴,张博. 基于知识图谱的煤矿建设安全领域知识管理研究. 中国安全科学学报. 2024(05): 28-35 .
![]() |