Citation: | QIU Suwen,HU Jinsheng,SHI Guangyu,et al. Research on the Interference of the Spectral Line Mζ of the M Energy Level Series of Ce on the F Element Kα Peak in Monazite Samples[J]. Rock and Mineral Analysis,2025,x(x):1−7. DOI: 10.15898/j.ykcs.202410170217 |
Quantitative analysis of the ultra-light element F has always been one of the difficulties in electron probe mineral analysis. High-resolution qualitative analysis and the deduction of interference peaks of spectral lines of major elements are the prerequisites for accurate quantitative analysis of F elements. This paper takes F in monazite samples (with very low F content or even close to 0) as the research object. Through comparison and analysis of high-resolution qualitative analysis spectra with apatite, InP, CeAl2, and LaF3 samples, it is found that the third-order line of high-content PKα does not interfere with the FKα peak, but the spectral line Mζ of the M energy level series of Ce will interfere with the FKα peak. Monazite with high Ce content needs accurate quantitative analysis of F through interference peak deduction. The interference of the M-level spectral lines (including Mα,Mβ ,Mζ ) of rare earth elements on ultra-light element peaks needs to be taken seriously.
[1] |
吕华华, 石学法, 杨刚, 等. 大洋沉积物中独居石的矿物成分[J]. 矿物学报, 2015(35): 775.
Lyu H H, Shi X F, Yang G, et al. Mineral Composition of Monazite in Oceanic Sediments[J]. Journal of Mineralogy, 2015(35): 775.
|
[2] |
张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1): 9−16. doi: 10.11962/1006-4990.2019-0578
Zhang S J, Zhang L W, Zhang Y W, et al. Summarize on Rare Earth Mineral Resources and Their Distribution at Home and Abroad[J]. Inorganic Chemicals Industry, 2020, 52(1): 9−16. doi: 10.11962/1006-4990.2019-0578
|
[3] |
Chen N S, Sun M, Wang Q Y, et al. EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen: Records of Multi-Tectonometamorphic Events[J]. Chinese Science Bulletin, 2007, 52(16): 2252−2263. doi: 10.1007/s11434-007-0299-5
|
[4] |
Suzuki K, Adachi M. Precambrian Provenance and Silurian Metamorphism of the Tsubonosawa Paragneiss in the South Kitakami Terrane, Northeast Japan, Revealed by the Chemical Th-U-Total Pb Isochron Ages of Monazite, Zircon and Xenotime[J]. Geochemical Journal, 2008, 25(5): 357−376. doi: 10.2343/geochemj.25.357
|
[5] |
周剑雄, 陈振宇, 芮宗瑶. 独居石的电子探针钍-铀-铅化学测年[J]. 岩矿测试, 2002, 21(4): 241−246. DOI:CNKI:SUN:YKCS.0.2002-04-001
Zhou J X, Chen Z Y, Rui Z Y. Th-U-Pb Chemical Dating of Monazite by Electron Probe[J]. Rock and Mineral Analysis, 2002, 21(4): 241−246. doi: 10.3969/j.issn.0254-5357.2002.04.001
|
[6] |
张龙, 陈振宇, 汪方跃, 等. 电子探针技术研究粤北龙华山岩体中独居石蚀变晕圈的结构与成分特征[J]. 岩矿测试, 2022, 41(2): 174−184. doi: 10.15898/j.cnki.11-2131/td.202109070118
Zhang L, Chen Z Y, Wang F Y, et al. Application of Electron Probe Microanalyzer to Study the Textures and Compositions of alteration Coronas of Monazite from the Longhuashan Granite, Northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174−184. doi: 10.15898/j.cnki.11-2131/td.202109070118
|
[7] |
杨世平, 杨细华, 李安邦, 等. 电子探针技术研究大别造山带富硫独居石地球化学特征及稀土矿化成因[J]. 岩矿测试, 2022, 41(4): 541−553. doi: 10.15898/j.cnki.11-2131/td.202110240154
Yang S P, Yang X H, Li A B, et al. Study on Geochemical Characteristics and REE Mineralization of S-Enriched Monazite in the Dabie Orogenic Belt by Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2022, 41(4): 541−553. doi: 10.15898/j.cnki.11-2131/td.202110240154
|
[8] |
陈益平, 潘家永, 胡凯, 等. 贵州遵义镍-钼富集层中独居石的发现及成因意义[J]. 岩石矿物学杂志, 2007, 26(4): 340−344. doi: 10.3969/j.issn.1000-6524.2007.04.007
Chen Y P, Pan J Y, Hu K, et al. Discovery of monazite in the Ni-Mo Sulfide Layer of Zunyi, Guizhou Province, and Its Genetic Significance[J]. Acta Petrologica et Mineralogica, 2007, 26(4): 340−344. doi: 10.3969/j.issn.1000-6524.2007.04.007
|
[9] |
胡欢, 王汝成, 谢磊, 等. 基于大罗兰圆(R=140mm)大分光晶体的SPI独居石标样化学成分精准测定[J]. 高校地质学报, 2021, 27(3): 317−326. doi: 10.16108/j.issn1006-7493.2021036
Hu H, Wang R C, Xie L, et al. High Precision Analysis of Chemical Composition of SPI Monazite Standard on Large Spectrometer of 140mm Rowland Circle[J]. Geological Journal of China Universities, 2021, 27(3): 317−326. doi: 10.16108/j.issn1006-7493.2021036
|
[10] |
张晓峰, 胡晋生, 李明, 等. ZAF定量碳元素时K因子测量的要点解析[J]. 冶金分析, 2024, 44(9): 72−76. doi: 10.13228/j.boyuan.issn1000-7571.012466
Zhang X F, Hu J S, Li M, et al. Analysis on Key Points for K Factor Measurement During Quantification of Carbon by ZAF[J]. Metallurgical Analysis, 2024, 44(9): 72−76. doi: 10.13228/j.boyuan.issn1000-7571.012466
|
[11] |
王娟, 陈意, 毛骞, 等. 金红石微量元素电子探针分析[J]. 岩石学报, 2017, 33(6): 1934−1946.
Wang J, Chen Y, Mao Q, et al. Electron Microprobe Trace Element Analysis of Rutile[J]. Acta Petrologica Sinica, 2017, 33(6): 1934−1946.
|
[12] |
李小犁. 电子探针微量元素分析的一些思考[J]. 高校地质学报, 2021, 27(3): 306−316. doi: 10.16108/j.issn1006-7493.2021034
Li X L. Several Perspectives on Microprobe Trace Elements Analysis[J]. Geological Journal of China Universities, 2021, 27(3): 306−316. doi: 10.16108/j.issn1006-7493.2021034
|
[13] |
张文兰, 胡欢, 刘鹏, 等. 重稀土-钒-铝硅酸盐矿物电子探针定量分析[J]. 岩矿测试, 2022, 41(5): 754−763. doi: 10.15898/j.cnki.11-2131/td.202110250155
Zhang W L, Hu H, Liu P, et al. Electron Probe Quantitative Analysis of HREE-V-Aluminosilicate Minerals[J]. Rock and Mineral Analysis, 2022, 41(5): 754−763. doi: 10.15898/j.cnki.11-2131/td.202110250155
|
[14] |
Schulz B, Krause J, Dörr W. A Protocol for Electron Probe Microanalysis (EPMA) of Monazite for Chemical Th-U-Pb Age Dating[J]. Minerals, 2024, 14(8): 817. doi: 10.3390/min14080817
|