Citation: | LI Xiaoli,ZHANG Lifei. Electron Microprobe Reintegration Method for Clinopyroxene Breakdown with Lamellae Exsolution[J]. Rock and Mineral Analysis,2025,44(2):199−211. DOI: 10.15898/j.ykcs.202410090212 |
Pyroxene is an important rock-forming minerals in magmatic to metamorphic rocks, which often possesses certain breakdown texture with lamellae exsolution under temperature and pressure changes. In eclogite, the clinopyroxene, mostly omphacite may have different breakdown textures with quartz or amphibole-quartz, orthopyroxene and plagioclase lamellae exsolution during the retrogression process, and the later often further composes clinopyroxene-plagioclase symplectite aggregate at lower grade metamorphism. To explore the temperature-pressure changes and the metamorphic evolution of the parent rock, it is necessary to restore the precursor pyroxene prior to breakdown from the residuary clinopyroxene and associated lamellae. Currently there are two major methods that were widely applied by different researchers in the pyroxene reintegration before its breakdown, including (method 1) an indirect mathematical fitting approach and (method 2) direct measurement, both of which largely base on electron microprobe quantitative analysis. Method 1 largely relies on accurate microprobe analyses of host and exsolved component and appropriate estimates of their area percentages. Method 2 largely relies on the microprobe analytical conditions, involving grid analysis option, raster mode for electron spot size, and accumulation calculation, besides, correct standard material selection is also an essential factor. In this work, we exploited these two methods to reintegrate the precursor pyroxene prior to breakdown with (type-ii) orthopyroxene lamellae exsolution and (type-iii) clinopyroxene-plagioclase symplectite from eclogite and retrogressed eclogite samples. The results show that both types of clinopyroxene breakdown are a near-isochemical process that fits the requisite to apply the reintegration method. In type-ii, the reintegrated precursor pyroxene by method 1 turns to have analogous compositions with the unbroken relict omphacite in the sample, and thus this method is more suitable for such a scenario. In type-iii, in the opposite, the reintegrated precursor pyroxene by method 2 seems to have a better compositional consistency, and perhaps this method is more appropriate. Despite that both reintegration methods have their limitations, they are often widely utilized in metamorphic petrology for their technical accessibility and conveniency. In practices, we advise that both methods should be considered and each outcome must be analyzed appropriately to determine which one is more suitable for the scenario.
[1] |
赵珊茸, 边秋娟, 王勤燕. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2011: 368−380.
Zhao S R, Bian Q J, Wang Q Y. Crystallography and Mineralogy[M]. Beijing: Higher Education Press, 2011: 368−380.
|
[2] |
Morimoto N, Fabries J, Ferguson A K, et al. Nomenclature of Pyroxenes[J]. American Mineralogist, 1988, 73(9-10): 1123−1133.
|
[3] |
Morimoto N, Kitamura M. Q-J Diagram for Classification of Pyroxenes[J]. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 1983, 78: 141.
|
[4] |
Gasparik T. Phase diagrams for Geoscientists: An Atlas of the Earth’s Interior[M]. New York: Springer Science+Business Media, 2014: 13−31.
|
[5] |
Champness P E, Lorimer G W. Precipitation (exsolution) in an orthopyroxene[J]. Journal of Materials Science, 1973, 8(4): 467−474. doi: 10.1007/BF00550450
|
[6] |
朱永峰, 徐新. 西准噶尔白碱滩二辉橄榄岩中两种辉石的出溶结构及其地质意义[J]. 岩石学报, 2007, 23(5): 1075−1086. doi: 1000-0569/2007/023(05)-1075-86
Zhu Y F, Xu X. Exsolution Texture of Two-Pyrxoenes in Lherzolite from Baijiangtan Ophiolitic Melange, Western Junggar, China[J]. Acta Petrologica Sinica, 2007, 23(5): 1075−1086. doi: 1000-0569/2007/023(05)-1075-86
|
[7] |
Feinberg J M, Wenk H R, Renne P R, et al. Epitaxial Relationships of Clinopyroxene-Hosted Magnetite Determined Using Electron Backscatter Diffraction (EBSD) Technique [J]. American Mineralogist, 2004, 89(2−3): 462−466. doi: 10.2138/am-2004-2-328
|
[8] |
刘良, 杨家喜, 章军锋, 等. 超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战[J]. 科学通报, 2009, 54(10): 1387−1400. doi: 10.1360/csb2009-54-10-1387
Liu L, Yang J X, Zhang J F, et al. Exsolution Microstructures in Ultrahigh-Pressure Rocks: Progress, Controversies and Challenges[J]. Chinese Science Bulletin, 2009, 54(10): 1387−1400. doi: 10.1360/csb2009-54-10-1387
|
[9] |
Katayama I, Parkinson C D, Okamoto K, et al. Supersilicic Clinopyroxene and Silica Exsolution in UHPM Eclogite and Pelitic Gneiss from the Kokchetav Massif, Kazakhstan[J]. American Mineralogist, 2000, 85(10): 1368−1374. doi: 10.2138/am-2000-1004
|
[10] |
Gayk T, Kleinschrodt R, Langosch A, et al. Quartz Exsolution in Clinopyroxene of High-Pressure Granulite from the Munchberg Massif [J]. European Journal of Mineralogy, 1995, 7(5): 1217−1220. doi: 10.1127/ejm/7/5/1217
|
[11] |
Page F Z, Essene E J, Mukasa S B. Prograde and Retrograde History of Eclogites from the Eastern Blue Ridge, North Carolina, USA[J]. Journal of Metamorphic Geology, 2003, 21(7): 685−698. doi: 10.1046/j.1525-1314.2003.00479.x
|
[12] |
Page F Z, Essene E J, Mukasa S B. Quartz Exsolution in Clinopyroxene is not Proof of Ultrahigh Pressures: Evidence from Eclogites from the Eastern Blue Ridge, Southern Appalachians, USA [J]. American Mineralogist, 2005, 90(7): 1092−1099. doi: 10.2138/am.2005.1761
|
[13] |
Zhang L, Song S, Liou J G, et al. Relic Coesite Exsolution in Omphacite from Western Tianshan Eclogites, China[J]. American Mineralogist, 2005, 90(1): 181−186. doi: 10.2138/am.2005.1587
|
[14] |
Anderson E D, Moecher D P. Omphacite Breakdown Reactions and Relation to Eclogite Exhumation Rates[J]. Contributions to Mineralogy and Petrology, 2007, 154: 253−277. doi: 10.1007/s00410-007-0192-x
|
[15] |
Gopon P, Forshaw J B, Wade J, et al. Seeing through Metamorphic Overprints in Archean granulites: Combined High-Resolution Thermometry and Phase Equilibrium Modeling of the Lewisian Complex, Scotland[J]. American Mineralogist, 2022, 107(8): 1487−1500. doi: 10.2138/am-2022-8214CCBY
|
[16] |
Liu X, Zhao Z, Zhao Y, et al. Pyroxene Exsolution in Mafic Granulites from the Grove Mountains, East Antarctica: Constraints on Pan-African Metamorphic Conditions[J]. European Journal of Mineralogy, 2003, 15(1): 55−65. doi: 10.1127/0935-1221/2003/0001-0055
|
[17] |
Wu C, Zhang L, Li Q, et al. Tectonothermal Transition from Continental Collision to Post-Collision: Insights from Eclogites Overprinted in the Ultrahigh-Temperature Granulite Facies (Yadong Region, Central Himalaya)[J]. Journal of Metamorphic Geology, 2022, 40(5): 955−981.
|
[18] |
Su W, You Z, Wang R. Quartz and Clinoenstatite Exsolution in Clinopyroxene of Garnet-Pyroxenolite from the North Dabie Mountains, Eastern China [J]. Chinese Science Bulletin, 2001, 46(17): 1482−1485. doi: 10.1007/BF03187037
|
[19] |
Alifirova T A, Pokhilenk L N, Korsakov A V. Apatite, SiO2, Rutile and Orthopyroxene Precipitates in Minerals of Eclogite Xenoliths from Yakutian Kimberlites, Russia[J]. Lithos, 2015, 226: 31−49. doi: 10.1016/j.lithos.2015.01.020
|
[20] |
赵珊茸, 徐畅, 徐海军, 等. 海南文昌二辉橄榄岩中辉石出溶结构的结晶学取向分析[J]. 岩石学报, 2016, 32(6): 1644−1652. doi: 1000-0569/20161032(06)-1644-52
Zhao S R, Xu C, Xu H J, et al. Crystallographic Orientation of the Exsolution Microstructure in Pyroxene, Occurring in Lherzolite from Wenchang Area, Hainan, China[J]. Acta Petrologica Sinica, 2016, 32(6): 1644−1652. doi: 1000-0569/20161032(06)-1644-52
|
[21] |
Smyth J R. Cation Vacancies and the Crystal Chemistry of Breakdown Reactions in Kimberlitic Omphacites[J]. American Mineralogist, 1980, 65(11−12): 1185−1191.
|
[22] |
Gasparik T. Experimental Study of Subsolidus Phase Relations and Mixing Properties of Pyroxene and Plagioclase in the System Na2O-CaO-Al2O3-SiO2[J]. Contribution to Mineralogy and Petrology, 1985, 71: 13−22. doi: 10.1007/BF00381556
|
[23] |
Konzett J, Frost D J, Proyer A, et al. The Ca-Eskola Component in Eclogitic Clinopyroxene as a Function of Pressure, Temperature and Bulk Composition: An Experimental Study to 15GPa with Possible Implications for the Formation of Oriented SiO2-Inclusions in Omphacite[J]. Contribution to Mineralogy and Petrology, 2008, 155(2): 215−228. doi: 10.1007/s00410-007-0238-0
|
[24] |
Li X, Zhang L, Wei C, et al. Quartz and Orthopyroxene Exsolution Lamellae in Clinopyroxene and the Metamorphic P-T Path of Belomorian Eclogites[J]. Journal of Metamorphic Geology, 2018, 36(1): 1−22. doi: 10.1111/jmg.12280
|
[25] |
Li X, Zhang L, Bader T. The Metamorphic P-T History of Precambrian Belomorian Eclogites (Shirokaya Salma), Russia[J]. Journal of Metamorphic Geology, 2021, 39(3): 163−389. doi: 10.1111/jmg.12573
|
[26] |
Joanny V, van Roermund H, Lardeaux J M. The Clinopyroxene/Plagioclase Symplectite in Retrograde Eclogites: A Potential Geothermobarometer[J]. Geologische Rundschau, 1991, 80: 303−320. doi: 10.1007/BF01829368
|
[27] |
Zertani S, Morales L F G, Menegon L. Omphacite Break-down: Nucleation and Deformation of Clinopyroxene-Plagioclase Symplectites[J]. Contributions to Mineralogy and Petrology, 2024, 179: 40. doi: 10.1007/s00410-024-02125-0
|
[28] |
Dobrzhinetskaya L F, Schweinenage R, Massonne H J, et al. Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland: Evidence of Deep Subduction[J]. Journal of Metamorphic Geology, 2002, 20(5): 481−492. doi: 10.1046/j.1525-1314.2002.00383.x
|
[29] |
Liu F, Zhang L, Li X, et al. The Metamorphic Evolution of Paleoproterozoic Eclogites in Kuru-Vaara, Northern Belomorian Province, Russia: Constraints from P-T Pseudosections and Zircon Dating[J]. Precambrian Research, 2017, 289: 31−47. doi: 10.1016/j.precamres.2016.11.011
|
[30] |
Holland T J B. The Reaction Albite=Jadeite+Quartz Determined Experimentally in the Range 600−1200℃[J]. American Mineralogist, 1980, 65(1−2): 129−134.
|